首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract Temporal–spatial variations in Late Cenozoic volcanic activity in the Chugoku area, southwest Japan, have been examined based on 108 newly obtained K–Ar ages. Lava samples were collected from eight Quaternary volcanic provinces (Daisen, Hiruzen, Yokota, Daikonjima, Sambe, Ooe–Takayama, Abu and Oki) and a Tertiary volcanic cluster (Kibi Province) to cover almost all geological units in the province. Including published age data, a total of 442 Cenozoic radiometric ages are now available. Across‐arc volcanic activity in an area approximately 500 km long and 150 km wide can be examined over 26 million years. The period corresponds to syn‐ and post‐back‐arc basin opening stages of the island arc. Volcanic activity began in the central part of the rear‐arc ca 26 Ma. This was followed by arc‐wide expansion at 20 Ma by eruption at two rear‐arc centers located at the eastern and western ends. Expansion to the fore‐arc occurred between 20 and 12 Ma. This Tertiary volcanic arc was maintained until 4 Ma with predominant alkali basalt centers. The foremost‐arc zone activity ceased at 4 Ma, followed by quiescence over the whole arc between 4 and 3 Ma. Volcanic activity resumed at 3 Ma, covering the entire rear‐arc area, and continued until the present to form a Quaternary volcanic arc. Adakitic dacite first occurred at 1.7 Ma in the middle of the arc, and spread out in the center part of the Quaternary volcanic arc. Alkali basalt activities ceased in the area where adakite volcanism occurred. Fore‐arc expansion of the volcanic arc could be related to the upwelling and expansion of the asthenosphere, which caused opening of the Japan Sea. Narrowing of the volcanic zone could have been caused by progressive Philippine Sea Plate subduction. Deeper penetration could have caused melting of the slab and resulted in adakites. Volcanic history in the Late Cenozoic was probably controlled by the history of evolution of the upper mantle structure, coinciding with back‐arc basin opening and subsequent reinitiation of subduction.  相似文献   

2.
Abstract To understand the characteristics of long‐term spatial and temporal variation in volcanism within a volcanic arc undergoing constant subduction since the cessation of back‐arc opening, a detailed investigation of middle Miocene to Quaternary volcanism was carried out within the Chokai‐Kurikoma area of the Northeast Japan Arc. This study involved a survey of available literature, with new K–Ar and fission track dating, and chemical analyses. Since 14 Ma, volcanism has occurred within the Chokai‐Kurikoma area in specific areas with a ‘branch‐like’ pattern, showing an east–west trend. This is in marked contrast to the widespread distribution of volcanism with a north–south trend in the 20–14 Ma period. The east–west‐ trending ‘branches’ are characterized by regular intervals (50–100 km) of magmatism along the arc. These branches since 14 Ma are remarkably discrepant to the general northwest–southeast or north‐northeast–south‐southwest direction of the crustal structures that have controlled Neogene to Quaternary tectonic movements in northeast Japan. In addition, evidence indicating clustering and focusing of volcanism into smaller regions since 14 Ma was verified. Comparison of the distribution and chemistry of volcanic rocks for three principal volcanic stages (11–8, 6–3 and 2–0 Ma) revealed that widely but sparsely distributed volcanic rocks had almost the same level of alkali and incompatible element concentrations throughout the area (with the exception of Zr) in the 11–8 Ma stage. However, through the 6–3 Ma stage to the 2–0 Ma stage, the concentration level in the back‐arc cluster increased, while that in the volcanic front cluster remained almost constant. Therefore, the degree of partial melting has decreased, most likely with a simultaneous increase in the depth of magma segregation within the back‐arc zone, whereas within the volcanic front zone, the conditions of magma generation have changed little over the three stages. In conclusion, the evolution of the thermal structure within the mantle wedge across the arc since 14 Ma has reduced the extent of ascending mantle diapirs into smaller fields. This has resulted in the tendency for the distribution of volcanism to become localized and concentrated into more specific areas in the form of clusters from the late Miocene to Quaternary.  相似文献   

3.
The Japanese archipelago underwent two arc–arc collisions during the Neogene. Southwest Honshu arc collided with the Izu‐Bonin‐Mariana arc and the northeast Honshu arc collided with the Chishima arc. The complicated geological structure of the South Fossa Magna region has been attributed to the collision between the Izu‐Bonin‐Mariana arc and the southwest Honshu arc. Understanding the geotectonic evolution of this tectonically active region is crucial for delineating the Neogene tectonics of the Japanese archipelago. Many intrusive granitoids occur around the Kofu basin, in the South Fossa Magna region. Although the igneous ages of these granitoids have been mainly estimated through biotite and hornblende K–Ar dating, here, we perform U–Pb dating of zircon to determine the igneous ages more precisely. In most cases, the secondary post‐magmatic overprint on the zircon U–Pb system was minor. Based on our results, we identify four groups of U–Pb ages: ca 15.5 Ma, ca 13 Ma, ca 10.5 Ma, and ca 4 Ma. The Tsuburai pluton belongs to the first group, and its age suggests that the granite formation within the Izu‐Bonin‐Mariana arc dates back to at least 15.5 Ma. The granitoids of the second group intruded into the boundary between the Honshu arc and the ancient Izu‐Bonin‐Mariana arc, suggesting that the arc–arc collision started by ca 13 Ma. As in the case of the Kaikomagatake pluton, the Chino pluton likely corresponds to a granodiorite formed in a rear‐arc setting in parallel with the other granodiorites of the third group. The U–Pb age of the Kogarasu pluton, which belongs to the fourth group, is the same as those of the Tanzawa tonalitic plutons. This might support a syncollisional rapid granitic magma formation in the South Fossa Magna region.  相似文献   

4.
De-Ru  Xu  Bin  Xia  Peng-Chun  Li  Guang-Hao  Chen  Ci  Ma  Yu-Quan  Zhang 《Island Arc》2007,16(4):575-597
Abstract Metabasites within the Paleozoic volcanic‐clastic sedimentary sequences in Hainan Island, South China, show large differences not only in the nature of protoliths, but also in zircon U‐Pb sensitive high mass‐resolution ion microprobe (SHRIMP) ages. The protoliths for the Tunchang area metabasites have intraoceanic arc geochemical affinities. In the east‐central island gabbroic to diabasic rocks and pillow lavas are also present, while the Bangxi area metabasites with back‐arc geochemical affinities in the northwest island consist of basaltic, gabbroic and/or picritic rocks. Three types of zircon domains/crystals in the Tunchang area metabasites are defined. Type 1 is comagmatic and yields concordant to approximately concordant 206 Pb/238 U ages ranging from 442.1 ± 13.7 Ma to 514.3 ± 30.2 Ma with a weighted U‐Pb mean age of 445 ± 10 Ma. Type 2 is inherited and yields a weighted 207 Pb/206 Pb mean age of 2488.1 ± 8.3 Ma. Type 3 is magmatic with a 207 Pb/206 Pb age of ca 1450 Ma. Magmatic zircons in the Bangxi area metabasites yield a weighted U‐Pb mean age of 269 ± 4 Ma. We suggest 450 Ma is the minimum age for crystallization of protoliths of the Tunchang area metabasites, because the age range of ca 440–514 Ma probably corresponds to both the time of igneous crystallization and the high‐temperature overprint. The presence of abundant inherited zircons strongly favors derivation of these rocks from a NMORB‐like mantle proximal to continental crust. A protolith age of ca 270 Ma for the Bangxi area metabasites probably records expansion of an epircontinental back‐arc basin and subsequent generation of a small oceanic basin. The presence of ophiolitic rocks with an age of ca 450 Ma, not only in Hainan Island, but also in the Yangtze block, highlights the fact that the South China Caledonian Orogeny was not intracontinental in nature, but characterized by an ocean‐related event.  相似文献   

5.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   

6.
Ion microprobe dating of zircon from meta‐igneous samples of the Hitachi metamorphic terrane of eastern Japan yields Cambrian magmatic ages. Tuffaceous schist from the Nishidohira Formation contains ca 510 Ma zircon, overlapping in age with hornblende gneiss from the Tamadare Formation (ca 507 Ma), and meta‐andesite (ca 507 Ma) and metaporphyry (ca 505 Ma) from the Akazawa Formation. The latter is unconformably overlain by the Carboniferous Daioin Formation, in which a granite boulder from metaconglomerate yields a magmatic age of ca 500 Ma. This date overlaps a previous estimate for granite that intrudes the Akazawa Formation. Intrusive, volcanic, and volcaniclastic lithologies are products of a Cambrian volcanic arc associated with a continental shelf, as demonstrated by the presence of arkose and conglomerate in the lowermost Nishidohira Formation. Granitic magmatism of Cambrian age is unknown elsewhere in Japan, except for a single locality in far western Japan with a similar geological context. Such magmatism is also unknown on the adjacent Asian continental margin, with the exception of the Khanka block in far northeastern China. A ‘great hiatus’ in the Paleozoic stratigraphy of the Sino–Korean block also exists in the Hitachi terrane between Cambrian volcanic arc rocks and Early Carboniferous conglomerate, and may indicate a common paleogeographic provenance.  相似文献   

7.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

8.
We present new Middle Miocene paleomagnetic data for the central Japan Arc, and discuss their implications for Miocene rotation. To obtain a refined paleodirection, we made magnetic measurements on basaltic to andesitic lavas and intrusive rocks from 12 sites in the Tsugu volcanic rocks (ca 15 Ma) in the northern part of the Shitara area, Japan. Significant secondary magnetizations in samples with strong magnetic intensities are interpreted as lightning‐induced components. Mean directions carried by magnetite and/or titanomagnetite were determined for all sites. An overall mean direction with a northerly declination was obtained from dual‐polarity site means for nine sites. This direction is indistinguishable from the mean direction for coeval parallel dikes in the northern part of the Shitara area, and also indistinguishable from the Miocene reference direction derived from the paleopole for the North China Block in the Asian continent. These comparisons suggest little or no rotation or latitudinal motion in the study area with respect to the North China Block since 15 Ma. We obtained a refined early Middle Miocene paleodirection (D = 9.7°, I = 52.5°, α95 = 4.8°; 30 sites) and paleopole (82.0°N, 230.8°E, A95 = 5.6°) for Shitara by combining data from the Tsugu volcanic rocks and a coeval dike swarm. An anomalous direction found at three sites could be a record of an extraordinary field during a geomagnetic polarity transition or excursion. Paleomagnetic data from Shitara suggest that: (i) the western wing of the Kanto Syntaxis, a prominent cuspate geologic structure in central Honshu, underwent a counterclockwise rotation with respect to the main part of the southwestern Japan Arc between ca 17.5 Ma and 15 Ma; (ii) collision between the Japan and Izu–Bonin (Ogasawara) Arcs began prior to 15 Ma; and (iii) clockwise rotation of the entire southwestern part of the Japan Arc had ceased by 15 Ma.  相似文献   

9.
Abstract Meatiq and Hafafit core complexes are large swells in the Eastern Desert of Egypt, comprising two major tectono‐stratigraphic units or tiers. The lower (infrastructure) unit is composed of variably cataclased gneissose granites and high‐grade gneisses and schists. It is structurally overlain by Pan–African ophiolitic mélange nappes (the higher unit). The two units are separated by a low‐angle sole thrust, along which mylonites are developed. Major and trace element data indicate formation of the gneissose granites in both volcanic arc and within‐plate settings. Nevertheless, all analyzed gneissose granites and other infrastructural rocks, exhibit low initial ratios (Sri) (<0.7027), positive εNd(t) (+4.9 to +10.3) and Neoproterozoic Nd model age (TDM) (592–831 Ma for the gneissose granite samples). Although these values are compatible with other parts of the Arabian– Nubian Shield considered to be juvenile, the εNd(t) values and several incompatible element ratios of the gneissose granites are too low to be derived from a mantle source without contribution from an older continental crust. Our geological, Sr–Nd isotopic and chemical data combined with the published zircon ages indicate the existence of a pre‐Neoproterozoic continent in the Eastern Desert that started to break up at ca 800 Ma. Rifting and subsequent events caused the formation of oceanic crust and emplacement within‐plate alkali basalts in the hinterland domains of the old continent. The emplacement of basaltic magma might have triggered melting of lower crust in the old continent and resulted in emplacement of the within‐plate granite masses between 700 Ma and 626 Ma. The granite masses and other rocks in the old continent have been subjected to deformation during the over‐thrusting of Pan–African nappes, probably because of the oblique convergence between East and West Gondwanaland. Rb–Sr isotopes of the gneissose granites in both Meatiq and Hafafit core complexes defines an isochron age of 619 ± 25 Ma with Sri of 0.7009 ± 0.0017 and mean squares of weighted deviates = 2.0. We interpret this age as the date of thrusting of the Pan–African nappes in the Eastern Desert. Continued oblique convergence between East and West Gondwanaland could have resulted in the formation northwest–southeast‐trending Meatiq and Hafafit anticlinoriums.  相似文献   

10.
New U–Pb ages of zircons from migmatitic pelitic gneisses in the Omuta district, northern Kyushu, southwest Japan are presented. Metamorphic zonation from the Suo metamorphic complex to the gneisses suggests that the protolith of the gneisses was the Suo metamorphic complex. The zircon ages reveal the following: (i) a transformation took place from the high‐P Suo metamorphic complex to a high‐T metamorphic complex that includes the migmatitic pelitic gneisses; (ii) the detrital zircon cores in the Suo pelitic rocks have two main age components (ca 1900–1800 Ma and 250 Ma), with some of the detrital zircon cores being supplied (being reworked) from a high‐grade metamorphic source; and (iii) one metamorphic zircon rim yields 105.1 ±5.3 Ma concordant age that represents the age of the high‐T metamorphism. The high‐P to high‐T transformation of metamorphic complexes implies the seaward shift of a volcanic arc or a landward shift of the metamorphic complex from a trench to the sides of a volcanic arc in an arc–trench system during the Early Cretaceous. The Omuta district is located on the same geographical trend as the Ryoke plutono‐metamorphic complex, and our estimated age of the high‐T metamorphism is similar to that of the Ryoke plutono‐metamorphism in the Yanai district of western Chugoku. Therefore, the high‐T metamorphic complex possibly represents the western extension of the Ryoke plutono‐metamorphic complex. The protolith of the metamorphic rocks of the Ryoke plutono‐metamorphic complex was the Jurassic accretionary complex of the inner zone of southwest Japan. The high‐P to high‐T transformation in the Omuta district also suggests that the geographic trend of the Jurassic accretionary complex was oblique to that of the mid‐Cretaceous high‐T metamorphic field.  相似文献   

11.
Satoru  Honda  Takeyoshi  Yoshida  Kan  Aoike 《Island Arc》2007,16(2):214-223
Abstract   Arc volcanism of the past 10 my in the northeast Honshu and Izu-Bonin Arcs shows several notable features. In the northeast Honshu Arc, the spatial distribution of volcanism exhibits several clusters elongated nearly perpendicular to the arc and the possible migration of volcanism from the back-arc side to the volcanic front side, at least, during the past 5 my. The pattern of clusters seems to have flip-flopped around 5 Ma. In the Izu-Bonin Arc, there are a series of across-arc seamount chains, in which volcanic activity occurred from ca 17 Ma to ca 3 Ma, similar to the clusters of the northeast Honshu Arc, although the recent active rifting occurs almost parallel to the arc. On the basis of studies of numerical modeling, these features might be explained, at least qualitatively, by the small-scale convection under the island arc. Several inferences can be made from our modeling results for the tectonics of the Izu-Bonin Arc. The angle of dip of subducting plate in the Izu-Bonin Arc might have increased. This can explain the disappearance of volcanism along the seamount chains and the recent along-arc volcanism with narrow rifting. The trend of seamount chains, which is oblique to the arc, might not be their intrinsic feature but rather a result of the lateral movement of the back-arc region after their formation. These inferences can be tested by the future detailed morphological and chronological studies of the Izu-Bonin Arc.  相似文献   

12.
Zircon U–Pb dating of the Tonaru metagabbro body in the Sanbagawa metamorphic belt, southwest Japan, suggests that igneous events at ca 200–180 Ma were involved in the protolith formation. The trace element compositions of the Tonaru zircons are enriched in U (a fluid‐mobile element) and Sc (an amphibole‐buffered element), and depleted in Nb (a fluid‐immobile element), suggesting that the parental magmas related to the Tonaru metagabbros formed in an arc setting. Integration of our results with previous studies of the metasedimentary rocks in the Tonaru body clearly indicates that the protoliths of the Tonaru body were produced by oceanic‐arc magmatism. With the previous geochronological and geological studies, the tectono‐magmatic–metamorphic history of the Tonaru and other mafic bodies in the Sanbagawa metamorphic belt may be summarized as follows: (i) the protolith formation by the oceanic‐arc magmatic event had occurred at 200–180 Ma; (ii) the protoliths were accreted in the trench at ca 130–120 Ma; and (iii) they were completely subducted into the depth of the eclogite‐facies condition after 120 Ma.  相似文献   

13.
Abstract Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low‐ and medium‐K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short‐lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub‐Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions.  相似文献   

14.
Thermal histories of Cretaceous sedimentary basins in the Korean peninsula have been assessed to understand the response of the East Asian continental margin to subduction of the Paleo‐Pacific (Izanagi) Plate. The Izanagi Plate subducted obliquely beneath the East Asian continent during the Early Cretaceous and orthogonally in the Late Cretaceous. First, the Jinan Basin, a pull‐apart basin, was studied by illite crystallinity and apatite fission‐track analyses. Analytical results indicate that Jinan Basin sediment was heated to a maximum temperature of approximately 287°C by burial. The sediment experienced two cooling episodes during ca 95–80 Ma and after ca 30 Ma, with a quiescent period between them. A similar cooling pattern is recognized in the Gyeongsang Basin, the largest Cretaceous basin in Korea. The Jinan and Gyeongsang Basins were cooled mainly by exhumation between ca 95 and 80 Ma, but the former was exhumed slightly earlier than the latter by transpressional force due to the subduction direction change of the Izanagi Plate. Comparison of thermal history of Korean Cretaceous basins with those of granitoids in northeastern China and the accretionary complexes in southwestern Japan reveals that the Upper Cretaceous regional exhumation of the East Asian continental margin including the Korean peninsula during ca 95–80 Ma was facilitated by the subduction of the Izanagi–Pacific ridge, which migrated northeastwards with time, resulting in the end of regional exhumation at ca 80 Ma in this region.  相似文献   

15.
Miocene intra‐arc rifting associated with the opening of the Japan Sea formed grabens in several areas in Southwest (SW) Japan, but the extensional tectonics of the arc are still not well understood. In this study, we first document the tectonostratigraphy of the Hokutan Group in the northwestern part of the Kinki district, and demonstrate the termination of extensional tectonics at ca 16.5 Ma, as inferred from grabens in the lower part of the group being unconformably overlain by sediments of the upper part. Second, we review early Miocene grabens in SW Japan to suggest that intra‐arc rifting was abandoned at ca 16 Ma, essentially simultaneously with the end of rotation of the SW Japan arc as evidenced by paleomagnetic studies. The lesser numbers of grabens and reduced thicknesses of graben fills suggest that extensional deformation of the SW Japan arc was significantly weaker than that of the Northeast (NE) Japan arc, which was broken into blocks, indicating various degrees of paleomagnetic rotation within NE Japan. The weak deformation has allowed paleomagnetic studies to infer the coherent rotation of the SW Japan arc.  相似文献   

16.
The Gangdese magmatic belt is located in the southern margin of the Lhasa terrane, south Tibet. Here zircon U–Pb ages and Hf isotopic data, as well as whole‐rock geochemistry and Sr–Nd isotopes on andesites from the Bima Formation with a view to evaluating the history of the Gangdese magmatism and the evolution of the Neotethys Ocean. Zircon U–Pb dating yields an age of ca 170 Ma from six samples, representing the eruptive time of these volcanic rocks. Zircon Hf isotopes show highly positive εHf(t) values of +13 to +16 with a mean of +15.2. Whole‐rock geochemical and Sr–Nd isotopic results suggest that the magma source of these andesites was controlled by partial melting of a depleted mantle source with addition of continental‐derived sediments, similar to those in the southern arcs of the Lesser Antilles arc belt. In combination with published data, the volcanic rocks of the Bima Formation are proposed to have been generated in an intra‐oceanic arc system, closely associated with northward subduction of the Neotethyan oceanic lithosphere.  相似文献   

17.
The Andaman–Sumatra margin displays a unique set‐up of extensional subduction–accretion complexes, which are the Java Trench, a tectonic (outer arc) prism, a sliver plate, a forearc, oceanic rises, inner‐arc volcanoes, and an extensional back‐arc with active spreading. Existing knowledge is reviewed in this paper, and some new data on the surface and subsurface signatures for operative geotectonics of this margin is analyzed. Subduction‐related deformation along the trench has been operating either continuously or intermittently since the Cretaceous. The oblique subduction has initiated strike–slip motion in the northern Sumatra–Andaman sector, and has formed a sliver plate between the subduction zone and a complex, right‐lateral fault system. The sliver fault, initiated in the Eocene, extended through the outer‐arc ridge offshore from Sumatra, and continued through the Andaman Sea connecting the Sagaing Fault in the north. Dominance of regional plate dynamics over simple subduction‐related accretionary processes led to the development and evolution of sedimentary basins of widely varied tectonic character along this margin. A number of north–south‐trending dismembered ophiolite slices of Cretaceous age, occurring at different structural levels with Eocene trench‐slope sediments, were uplifted and emplaced by a series of east‐dipping thrusts to shape the outer‐arc prism. North–south and east–west strike–slip faults controlled the subsidence, resulting in the development of a forearc basins and record Oligocene to Miocene–Pliocene sedimentation within mixed siliciclastic–carbonate systems. The opening of the Andaman Sea back‐arc occurred in two phases: an early (~11 Ma) stretching and rifting, followed by spreading since 4–5 Ma. The history of inner‐arc volcanic activity in the Andaman region extends to the early Miocene, and since the Miocene arc volcanism has been associated with an evolution from felsic to basaltic composition.  相似文献   

18.
Gorringe Bank is situated on the Europe-Africa plate boundary at the eastern end of the Azores-Gibraltar fracture zone. It has two summits, Gettysburg Bank to the Southwest and Ormonde Bank to the northeast.We applied the40Ar/39Ar stepwise heating method to date six samples of the alkaline volcanic rocks, two gabbros from the Ormonde Bank and a dolerite from the Gettysburg Bank. The results that the alkaline volcanism lasted probably for less than 6 Ma(66-60 Ma).Although the nature of this volcanism precludes any subduction feature during its setting, the alkaline volcanism of Ormonde is probably linked to Upper Cretaceous/Eocene compressive tectonic events.The basement rocks of Gorringe Bank reveal distrubed40Ar/39Ar age spectra. One plagioclase and one biotite from a gabbro give evidence for a thermic event whose age is tentatively estimated at about 75 Ma, and related to a variation in the direction of the relative movement between Europe and Africa. The more probable age given by a plagioclase of another gabbro and by a dolerite (110 Ma) corresponds to tilting northeastward of the Gorringe massif.  相似文献   

19.
The International Ocean Discovery Program Expedition 350 drilled between two Izu rear‐arc seamount chains at Site U1437 and recovered the first complete succession of rear‐arc rocks. The drilling reached 1806.5 m below seafloor. In situ hyaloclastites, which had erupted before the rear‐arc seamounts came into existence at this site, were recovered in the deepest part of the hole (~15–16 Ma). Here it is found that the composition of the oldest rocks recovered does not have rear‐arc seamount chain geochemical signatures, but instead shows affinities with volcanic front or some of the extensional zone basalts between the present volcanic front and the rear‐arc seamount chains. It is suggested that following the opening of the Shikoku back‐arc Basin, Site U1437 was a volcanic front or a rifting zone just behind the volcanic front, and was followed at ~ 9 Ma by the start of rear‐arc seamount chains volcanism. This geochemical change records variations in the subduction components with time, which might have followed eastward moving of hot fingers in the mantle wedge and deepening of the subducting slab below Site U1437 after the cessation of Shikoku back‐arc Basin opening.  相似文献   

20.
A magnetic anomaly map of the northern part of the Philippine Sea plate shows two conspicuous north–south rows of long-wavelength anomalies over the Izu–Ogasawara (Bonin) arc, which are slightly oblique to the present volcanic front. These anomalies are enhanced on reduced-to-pole and upward-continued anomaly maps. The east row is associated with frontal arc highs (the Shinkurose Ridge), and the west row is accompanied by the Nishi-Shichito Ridge. Another belt of long-wavelength anomalies very similar to the former two occurs over the Kyushu–Palau Ridge. To explain the similarity of the magnetic anomalies, it is proposed that after the spreading of the Shikoku Basin separated the Izu–Ogasawara arc from the Kyushu–Palau Ridge, another rifting event occurred in the Miocene, which divided the Izu–Ogasawara arc into the Nishi-Shichito and Shinkurose ridges. The occurrence of Miocene rifting has also been suggested from the geology of the collision zone of the Izu–Ogasawara arc against the Southwest Japan arc: the Misaka terrain yields peculiar volcanic rocks suggesting back-arc rifting at ~ 15 Ma. The magnetic anomaly belts over the Izu–Ogasawara arc do not extend south beyond the Sofugan Tectonic Line, suggesting a difference in tectonic history between the northern and southern parts of the Izu–Ogasawara arc. It is estimated that the Miocene extension was directed northeast–southwest, utilizing normal faults originally formed during Oligocene rifting. The direction is close to the final stage of the Shikoku Basin spreading. On a gravity anomaly relief map, northeast–southwest lineaments can be recognized in the Shikoku Basin as well as over the Nishi-Shichito Ridge. We thus consider that lines of structural weakness connected transform faults of the Shikoku Basin spreading system and the transfer faults of the Miocene Izu–Ogasawara arc rifting. Volcanism on the Nishi-Shichito Ridge has continued along the lines of weakness, which could have caused the en echelon arrangement of the volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号