首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Changes in water chemistry along the High Arctic fluvial–lacustrine system located in Wedel Jarlsberg Land in the SW Spitsbergen (Svalbard) were investigated during the summer season of 2010 and 2011. The newly formed river–lake system consists of three lakes connected with the Brattegg River. The first bathymetric measurements of these lakes were made by the authors in 2010. The Brattegg River catchment represents a partly glaciered Arctic water system. The studied lakes are characterized by low mineralization and temperature of water. The value of the electrolytic conductivity (EC) ranges from 30.2 to 50.5 μS cm?1 and the temperature of surface water from 1.5 to 7.8 °C. The temperature increase takes place downstream starting from Upper Lake to the outflow from Myrktjørna Lake. The waters of lakes have higher temperatures than the stream. The predominant ions are HCO3 ? (up to 16.5 mg L?1), Cl? (6.66–8.53 mg L?1), Ca2+ (2.40–4.45 mg L?1) and Na+ (2.65–3.36 mg L?1). The highest values of ammonium and DOC found in the lowest Myrktjørna Lake seem to be related to the presence of aquatic organisms and also birds. From the group of 10 analyzed microelements, increased concentrations of aluminum, up to almost 500 μg L?1, are present in the lakes’ water. Water isotopic composition ranges for δ18O and δ2H, from ?10.6 to ?10.9‰ and from ?70.8 to ?72.3‰, respectively. The vertical zonality of lake waters is manifested in a decrease in the temperature and increase in EC and chemical elements concentrations.  相似文献   

2.
Geospatial studies carried out in two major proglacial lakes of Samudra Tapu and Gepang Gath (Chandra Basin, Western Himalaya) showed substantial expansion in their area and volume over the last four decades (1971–2014). The linear and areal expansions for the lakes Samudra Tapu and Gepang Gath were 1889, 1509 m and 1, 0.6 km2, respectively. The results show that increased melting of the feeder glaciers over this period is major contributor to expand the volumes approximately 20 times of both the lakes Samudra Tapu and Gepang Gath. This expansion of lakes volume of Samudra Tapu and Gepang Gath from 3.4 × 106 to 67.7 × 106 and 1.5 × 106 to 27.5 × 106 m3, respectively, is quite significance in terms of hazards generated from glacial lake outburst floods (GLOF). This kind of climate change induced increase in the rate of glacial melting is a cause of concern, as the Himalaya Mountains may turn out to be vulnerable to natural hazards like GLOF.  相似文献   

3.
Region warming and the resulting ongoing deglaciation have led to the formation of new glacial lakes and expansion of existing glacial lakes. For giving an overview of the distribution and expansion of glacial lakes in the Koshi River Basin (KRB) between the Central China and Nepal Himalayas in the recent 10 years, this paper aimed to analyze and assess recent spatial variability of glacial lake changes in the KRB, Central Himalayas using two inventory data of glacial lake in 2001 and 2010 in Nepal and Landsat TM/ETM+ data for the 1990s, 2000 and 2009 on the Chinese section of the KRB. The datasets show that there are 1,203 glacial lakes with a total area of 118.54 km2 in the KRB in 2009, in which 599 lakes are mapped in the Nepalese section of the KRB with a total of 25.92 km2, and 604 lakes in the Chinese section of the KRB with a total area of 92.62 km2. From 2000 to 2009, the total number of glacial lakes decreased from 1,668 to 1,203 with a reduction of 45.86 % in the KRB, whereas the total lake areas expanded by 10.60 % (i.e. 0.72 km2/a), from 111.35 to 118.54 km2 between 2000, 2001 and 2009, 2010. Especially, 17 lakes are identified as potentially dangerous glacial lakes (PDGLs) by International Centre for Integrated Mountain Development (ICIMOD) on the Nepalese section of the KRB in 2009. In the same period, 23 PDGLs are also identified on the Chinese section of the KRB and the total area increased by 77.46 % (i.e. 0.37 km2/a) from 1990 to 2010 and the expansion rate is significantly higher than 39 % (0.19 km2/a) of non-PDGLs. Therefore, there is a need for promoting the awareness of the hazard potential of glacier lakes to support proper planning of mitigation and adaptation strategies in this context.  相似文献   

4.
One of the most far-reaching glacier-related hazards in the Tian Shan Mountains of Kyrgyzstan is glacial lake outburst floods (GLOFs) and related debris flows. An improved understanding of the formation and evolution of glacial lakes and debris flow susceptibility is therefore essential to assess and mitigate potential hazards and risks. Non-stationary glacier lakes may fill periodically and quickly; the potential for them to outburst increases as water volume may change dramatically over very short periods of time. After the outburst or drainage of a lake, the entire process may start again, and thus these non-stationary lakes are of particular importance in the region. In this work, the Teztor lake complex, located in Northern Kyrgyzstan, was selected for the analysis of outburst mechanisms of non-stationary glacial lakes, their formation, as well as the triggering of flows and development of debris flows and floods downstream of the lakes. The different Teztor lakes are filled with water periodically, and according to field observations, they tend to outburst every 9–10 years on average. The most important event in the area dates back to 1953, and another important event occurred on July 31, 2012. Other smaller outbursts have been recorded as well. Our study shows that the recent GLOF in 2012 was caused by a combination of intense precipitation during the days preceding the event and a rapid rise in air temperatures. Analyses of features in the entrainment and depositional zones point to a total debris flow volume of about 200,000 m3, with discharge ranging from 145 to 340 m3 s?1 and flow velocities between 5 and 7 m s?1. Results of this study are key for a better design of sound river corridor planning and for the assessment and mitigation of potential GLOF hazards and risks in the region.  相似文献   

5.
The changes in annual runoff of the three original rivers and the mainstream of Tarim River were analyzed by the non-parametric tests based on the hydrologic data during the period of 50 years. Using hydrologic data, meteorological data and the fitted equation, the impacts of climate change and human activities on annual runoff of the mainstream were assessed. Based on the analysis, the following conclusions can be drawn: (1) headstream runoff has increased in the past 50 years, and has sharply jumped after 1990; (2) mainstream runoff decreased progressively in the past 50 years, which indicated that interference from human activities was the main cause for the decreasing runoff. This had greater negative influence than positive influence, which caused the mainstream average runoff to decrease by 5.4 × 10m3 from 1990 to 2008 as compared to 1957–2008; (3) if human activities remained at pre-1990 levels, climate change alone would have caused the runoff of mainstream of Tarim River to increase by 5.4 × 10m3 annually in the past 20 years; (4) if the climate had remained at pre-1990 conditions, human activities alone would have caused the runoff of mainstream of Tarim River to increase by 5.4 × 10m3 annually over the past 20 years. However, mainstream average runoff was 42.6 × 10m3 from 1990 to 2008 with the negative effects of human activities masked by the larger, positive effect of climate changes. The results in this paper provide a scientific basis for conservation strategies, sustainable management, and ecological restoration of the Tarim River Basin.  相似文献   

6.
Debris-covered glaciers are common in the Himalayas and play a key role in understanding future regional water availability and management. Previous studies of regional glacial changes have often neglected debris-covered glaciers or have mixed them with debris-free glaciers. In this study, we generated a new glacier data set that includes debris-covered and debris-free glaciers to study the glacial surface area change in the Koshi River Basin in the central Himalayas. Long time-series Landsat data were used to extract the glacier boundaries using automatic and manual classification methods. The glacial area decreased by 10.4% from 1975 to 2010 at a rate of 0.30% a?1, with accelerated melting since 2000 (0.47% a?1). Small glaciers melted faster than large glaciers. In terms of distinctive glacier types, debris-free glaciers shrank at a rate of 0.45% a?1, faster than debris-covered glaciers (0.18% a?1), while debris-covered glaciers larger than 5.0 km2 retreated at a rate faster than debris-free glaciers of the same-sized group. We also studied the potential interactions between 222 supraglacial lakes and debris-covered glaciers. Debris-covered glaciers with glacial lakes melt faster than glaciers without lakes. This study can improve our understanding of the differences in the changes between debris-covered and debris-free glaciers in the central Himalayas and help evaluate water resource changes in the Himalayas.  相似文献   

7.
Natural dams are caused by the blockage of streams as a result of the sudden arrival of detritus material during a glacial surge advance or fast slope collapse threatening downstream populations. Nevertheless, origin, morphological characteristics and stability of dammed lakes are frequently ignored. Six impounded palaeo-lakes were geomorphologically studied in the Benjamin Matienzo gully (32°14′ S–70°02′ W), denominated, from north to south: Goyete, Negro, Casa de Piedra, Lagunita, Susanita and Matienzo. We determined the origin, morphometric parameters, stability index and rate of streamflow rupture for these dammed ancient lakes in order to shed light on the potential outburst flood hazard in this Andean mountain region. According to our findings, we concluded that palaeo-lakes would have had a short life as they turned out to be unstable, except for the Goyete Lake, matching with the lack of fine lacustrine sediments in all river blockages. We also estimated the maximum peak discharge of a probable outburst flow generated during a drastic collapse of these dams. Obtained values range between 22 and 151 m3/s being notably higher than the average annual streamflow of Las Cuevas River (6.6 m3/s), but similar to the instantaneous streamflow of this river (157 m3/s, 2-year recurrence time).  相似文献   

8.
Red mud (RM) was produced during alumina production from bauxite known as the Bayer process. Arsenic was detected in the solid phase of RM (RMsf) which was disposed in the disposal area. This study investigates the effectiveness of using Zero-valent iron (ZVI), ferrihydrite, ferrous sulfate (FeSO4), waste acid (WA) or CO2 for immobilization of arsenic in the RMsf. To test the effect of the amendments on the arsenic leachability, the RMsf samples were amended with the iron-based materials or acidifiers at various w/w (weight/weight) ratios (1–10 %) for 30 days. The leachability of arsenic in the RMsf was evaluated by a 4-step water elusion process. After 30-day treatment of the RMsf, the leachability of As decreased from an initial (12.7 %) to (7.0 %) with a w/w ratio of 5 % ZVI (0 %) with 5 % FeSO4·7H2O, (3.4 %) with 5 % ferryhydrite, (2.0 %) with 6 % WA and (11.8 %) with 6 % CO2. FeSO4·7H2O and WA showed more effectively than other amendments for immobilizing arsenic. Arsenic fractionation with a sequential extraction procedure was used to evaluate the arsenic migration potential in the RMsf. FeSO4 and WA were effective in increasing the hydrous oxide combined arsenic in the RMsf. The leachable Cl? and SO4 2? in the RMsf increased from 2.9 to 14.1 mg/g and 19.9–44.4 mg/g with 6 % WA and 5 % FeSO4·7H2O added, respectively. The estimated cost of the FeSO4 and WA treatment was 0.47 and 0.49 USD per ton, respectively.  相似文献   

9.
The Holocene carbonate sequence of perennial North Stromatolite Lake, located adjacent to the Coorong Lagoon near Salt Creek, South Australia, includes a prominent sapropelic unit (7 – 12% total organic carbon), in places more than 2 m thick, that was sampled for the purpose of radiocarbon dating and documenting its diatom and ostracod biostratigraphy. The recovered ostracods were also subjected to carbon and oxygen isotopic analysis. The bulk organic matter at the base of the sapropel yielded an uncalibrated 14C age of 6080 ± 60 y BP. Diatoms, where preserved, are almost exclusively benthic. Stratigraphic variation of the proportions of key indicator species in diatom assemblages records a marked oscillation between oligosaline and eusaline conditions in the hypolimnion during deposition of the sapropel. Ostracod carbon isotope data indicate that the lake at this time was eutrophic, thereby enriching the dissolved inorganic carbon of the hypolimnion in 13C. However, the observed secular variation in δ13C implies a mid-sapropel drop in productivity, caused by a freshening of the lake. Ostracod δ18O values display an overall increase through the sapropel consistent with the rising salinity of the hypolimnion. The existence of a flourishing benthic ostracod community, together with the valve ornamentation of Osticythere baragwanathi, indicates that the bottom waters were well oxygenated. Thus, anoxia was not a prerequisite for sapropel accumulation. The biostratigraphy and chemostratigraphy of the sapropel concur in suggesting a lack of climatic uniformity during its deposition, a period of ~1200 years. This study therefore highlights the potential of diatoms and ostracods in shallow perennial alkaline lakes along the Coorong coastal plain as proxies for short-term (102 – 103 years) Holocene palaeoenvironmental change in southeastern Australia.  相似文献   

10.
The behavior of the Gimpo #2 landfill, which is an active landfill and the largest in Korea, is analyzed using field measurement data obtained from various field instruments installed within the landfill. The data included in this analysis are the leachate head within the landfill, waste load data using soil pressure plate and settlement data from settlement plate on the surface of the waste of each stage fill including the settlement of the soft foundation clay soil. Landfill blocks are selected both near the embankment and in the center area of the landfill. The analysis of the field-monitored data showed that the leachate head increase was negligible near the embankment. It was significant in the central block as the waste loads increase and reached 15 m at the fourth stage of waste disposal. The reason that the leachate head is higher in the central block than near the embankment is due to the long drainage path and the loss of gradient of drain pipes. The range of unit weight of the waste converted from the measurement data of earth pressure cell was 0.91–1.24 t/m3 and the average value was 1.05 t/m3. The values reflect well the waste compositions recently buried in GML #2, since from 1998 the waste disposed in GML #2 did not contain food waste. The magnitude of final settlements that occurred in each stage loading of 5 m thickness in the peripheral block was very close to 120 cm. The settlement rate of the waste by dividing the thickness of waste was 24 %. This rate can be divided into 10 % by waste loading and 14 % by waste decomposition. The delay of settlements is recognized in each waste layer for second and third loading in the central block due to the accumulation of leachate within the landfill.  相似文献   

11.
The delivery of dissolved carbon from rivers to coastal oceans is an important component of the global carbon budget. From November 2013 to December 2014, we investigated freshwater-saltwater mixing effects on dissolved carbon concentrations and CO2 outgassing at six locations along an 88-km-long estuarine river entering the Northern Gulf of Mexico with salinity increasing from 0.02 at site 1 to 29.50 at site 6 near the river’s mouth. We found that throughout the sampling period, all six sites exhibited CO2 supersaturation with respect to the atmospheric CO2 pressure during most of the sampling trips. The average CO2 outgassing fluxes at site 1 through site 6 were 162, 177, 165, 218, 126, and 15 mol m?2 year?1, respectively, with a mean of 140 mol m?2 year?1 for the entire river reach. In the short freshwater river reach before a saltwater barrier, 0.079 × 108 kg carbon was emitted to the atmosphere during the study year. In the freshwater-saltwater mixing zone with wide channels and river lakes, however, a much larger amount of carbon (3.04 × 108 kg) was emitted to the atmosphere during the same period. For the entire study period, the river’s freshwater discharged 0.25 × 109 mol dissolved inorganic carbon (DIC) and 1.77 × 109 mol dissolved organic carbon (DOC) into the mixing zone. DIC concentration increased six times from freshwater (0.24 mM) to saltwater (1.64 mM), while DOC showed an opposing trend, but to a lesser degree (from 1.13 to 0.56 mM). These findings suggest strong effects of freshwater-saltwater mixing on dissolved carbon dynamics, which should be taken into account in carbon processing and budgeting in the world’s estuarine systems.  相似文献   

12.
On June 24, 2015, Hongyanzi slope located in Wushan County of the Three Gorges Reservoir collapsed, generating 5–6-m-high impulse waves, which overturned 13 boats, killed 2 persons, and injured 4 persons. It is the second incident of landslide-generated impulse waves since the 175-m experimental impoundment in 2008. The emergency investigation shows that Hongyanzi landslide is a bedding soil landslide with a volume of 23?×?104 m3 induced by a series of triggering factors such as rainfall, flooding upstream, and reservoir drawdown. The nonlinear Boussinesq water wave model is used to reproduce the impulse waves generated by the landslide of June 24th. The numerical simulation results suggest that the wave propagation process was influenced by the T-shaped geomorphic conditions of river valley, and the coastal areas in the county seat were the major wave-affected areas, which is opposite to the landslide. The numerical wave process accord well with the observed incident, and the investigation values were in good agreement with the calculated values. Moreover, the worst-case scenario of the 7?×?104 m3 deformation mass beside Hongyanzi landslide is potential to generate impulse waves, which was predicted with the same numerical model. This adjacent deformation mass will probably generate impulse waves with maximum height and run-up of 2.2 and 2.0 m, respectively, and only a very few areas in the water course had waves rising to a height of 1 m or above. The research results provide a technical basis for emergency disposal to Hongyanzi landslide and navigation restriction in Wushan waterway. More importantly, it pushes the risk management of the navigation based on the impulse wave generated by landslide. It is advised that the Three Gorges Reservoir and other reservoirs around the world should put more efforts in performing special surveys and studies on the potential hazards associated with landslide-generated impulse waves.  相似文献   

13.
Can, a county in the province of Canakkale, is one of the most prominent coal mining districts in Turkey. Many mining companies have been operating coal deposits for power generation and district heating in this region since 1980. Generally, small and medium-scale mining companies operate for short periods and abandon the operational land without providing any rehabilitation. Human intervention in the natural structure and topography of the earth surface causes large holes and deterioration in these areas. Artificial lakes occur because of surface discharge and underground leakage into abandoned open pit mines with high lignite sulfur content (0.21–14.36 wt %). Furthermore, these lakes gain acidic character due to acid generation from pyrite oxidation. Acid mine lakes are highly acidic (pH < 3.05) and have elevated concentrations of \({\text{SO}}_{4}^{2 - }\) , Fe and some metals. The main objective of this study is to evaluate the environmental conditions and demonstrate the development of a monitoring system for their possible changes in the acid mine lakes of the open cast lignite mining area on a regional scale. For this purpose, the data received from remote sensing satellites were used. Areal change detection and perimeter changes of nine acid mine lakes caused by coal mining companies in Can from 1977 to 2011, were determined using Landsat, Quickbird and Worldview satellite images. As a case study, an area of 9 km2 was chosen for the variety of acid mine lakes. Using GIS software, satellite images were analyzed in time series, borders of acid mine lakes were digitized and converted into vector data format. At this stage, prior to the digitization, in order to create contrast on the satellite images, “stretch type” and “stretch values” were changed. The areal and perimeter changes were computed and presented via tables and graphics. In addition, thematic maps of the acid mine lakes were created and visualized. The results show that the number of acid mine lakes increased and these caused environmental risks due to their hydrochemical properties and areal increments.  相似文献   

14.
The huge sculptures placed outdoors in the Valley of the Fallen Memorial Park (El Escorial, Madrid) made with blocks of Black-Limestone from Calatorao-Zaragoza, Spain (BLCZ) and disposed on a concrete core exhibit weathering traces, flaking, saline efflorescence and falling fragments, currently represent a danger for visitors. Frost action is important in the Valley of the Fallen by the large number of freeze–thaw cycles produced during Sculptures‘live under a temperate Mediterranean climate with severe seasonality. The formation of fissures facilitates the water transport within the rock and the salt- and ice-induced deterioration. Temperate climates with frequent freezing and thawing cycles can be the most effective drivers of the visible physical weathering. In order to propose a suitable weathering model, collected black-limestones from sculptures and Calatorao quarries were analyzed by optical microscopy, environmental scanning electron microscopy with energy dispersive spectrometry (ESEM-EDS), inductively coupled mass spectrometry (ICP-MS) and X-ray diffraction. Mercury intrusion porosimetry (MIP), nitrogen absorption and helium pycnometry techniques were used for pore analyses of the BLCZ micro-blocks (10 × 10 × 10 cm) described in terms of pore size distribution, pore volume and specific surface area. The appreciable amount of organic matter was isolated by solvent extraction, acid treatment, flotation and perborate degradation followed by Gas Chromatography–Mass Spectrometry (GC–MS), Analytical Pyrolysis (Py-GC/MS), Fourier Transformed Infrared Spectroscopy and Raman techniques. Both weathered and fresh BLCZ samples contained more than 90 % calcite shells with circa 10 % of pyrite (fresh samples) or iron hydroxides (weathered samples), quartz grains, claystone and fossil organic matter consisting of a condensed matrix with polyalkyl chains and polycyclic methoxyl-lacking aromatic structures. The petrophysical analyses revealed volumes of pores, sized <0.025 μm obtained by N2 adsorption, of 3.18 × 10?3 cm3 g?1 while the measured porosity by MIP in the pore range from 0.005 to 200 μm was 3.30 × 10?3 cm3 g?1. These data could be explained by the existence of clay minerals and organic matter in the pore system less than 50 nm of diameter. Concerning BLCZ deterioration it was found that the porous framework of BLCZ was filled with sulphates formed from artificial cement observed in the sculptures inside trough a testing hole and from its intrinsic pyrite. The results suggested that although biological processes were not major agents in rock deterioration, there was also weak compatibility between sculptures‘constituents, (limestone, concrete and oxidized iron clamps) which under, continental Mediterranean conditions, were continuously releasing weathering compounds accelerating disruption of the cut-stone sculptures.  相似文献   

15.
Gaza central seawater desalination plant is a promising solution to alleviate the problem of water crisis in the Gaza Strip. The plant in the short term, phase (I), will desalinate seawater for potable uses with a capacity of 55 million cubic meters per year, while in the long term, phase (II), the plant capacity will be doubled to 110 million cubic meters per year of freshwater. As a product from the reverse osmosis process, a huge amount of brine with salinity reaches to 75,000 mg/L will be redirected to seawater; nearly 12,200 m3/h of brine will be rejected from phase (I) while in the long term, a brine flow rate of 24,400 m3/h will be disposed from phase (II). In order to minimize the negative impacts of the rejected brine on the marine environment, it is urgent to modeling numerically the impact of the discharged brine through various disposal systems to define the most environmental system. Various scenarios were defined and simulated using CORMIX model to study the efficiencies of onshore surface open channel, offshore submerged single port as well as offshore submerged multiport outfalls taking salinity variations as an indicator. Sensitivity analysis was conducted to identify the most influencing input parameters on the simulation results as well as to evaluate the optimal environmental disposal system which can mitigate the adverse impacts of brine on the marine ecosystem as much as possible in the worst seawater conditions. The simulation results showed that the discharge via surface open channel is not environmentally feasible where the seawater salinity rose by more than 2000 mg/L at RMZ. The single-port scenario can meet the regulations at RMZ but the standard at GMZ was not met, where the rejected brine from phase (I) through single port at 1500 m offshore raises the seawater salinity at GMZ by more than 600  mg/L. The staged multiport outfall, capped by 24 ports, achieves acceptable brine dilution at seawater depth of about 7.5  m, and in the worst ambient conditions in the case of phase (II) in operation, the brine’s excess salinity was 536, 497, and 379 mg/L above the salinity of seawater at RMZ, GMZ, and ROI, respectively.  相似文献   

16.
Thermokarst lakes, formed during permafrost thaw in Western Siberia Plain over past tens to hundreds years, cover overall territory close to million km2 and may represent significant source of CO2 and CH4 to the atmosphere. These acidic (3 < pH < 6) and humic [10 < dissolved organic carbon (DOC) < 50 mg/L] lakes are essentially inhabited by heterotrophic bacterioplankton with rare phytoplankton bloom occurring during warm periods. In order to understand possible effects of phytoplankton bloom on thermokarst lake hydrochemistry under climate warming scenario, we cultured pure cyanobacterium (Gloeocapsa sp.) and native cyanobacterial associate separated from the natural lake water. As substrates, sterilized thermokarst lake water and peat leachate from western Siberia were used. In these laboratory microcosm experiments which lasted 10 days, we monitored daily pH, biomass, DOC, and 40 major and trace elements. Despite significant variation of pH (4 to ~10.5) and biomass (a factor of 3–5), very few dissolved elements responded to massive cyanobacterial growth. The DOC varied within a factor of 1.2–1.5, exhibiting slow increase due to exometabolite production in thermokarst lake water and an initial decrease due to photodegradation in peat leachate. Elements appreciably affected by photosynthesis in both lake water and peat leachate substrates were P, Zn, Mn, and, in a lesser degree, Cd, K, Rb, Sr, Ba, Cr, Al, and U. While P, K (Rb), Mn, and Zn removal from solution during cell growth could be linked to biological demand by cyanobacteria, the adsorption of Cd, Sr, Ba, Al, Cr, U on the cell surface in response to the pH rise is most likely. Many other trace elements did not exhibit any significant evolution of the concentration during 10-day experiment either due to their strong complexation with allochthonous organic matter and essentially organic/organo-mineral colloidal status (Fe, Ni, Co, Cu, Pb, REEs, Ti, Zr, Hf, Th) or due to the lack of element interaction with cyanobacterial cells, via both adsorption and intracellular uptake (B, Si, V, Mo, As, Sb, Cs). Therefore, possible intensification of cyanobacterial bloom in thermokarst lakes caused by leaching of thawing peat will likely affect only few macronutrients and micronutrients such as P, K, Mn, and Zn, while the majority of trace elements bound to allochthonous DOC in the form of organic and organo-mineral colloids will not be affected by cyanobacterial biomass production and pH rise due to photosynthesis. Cyanobacterial bloom in organic-rich (20 mg DOC/L) thermokarst lakes exhibited significant potential of carbon sequestration from the atmosphere, which is more than an order of magnitude higher than the CO2 evasion due to heterotrophic plankton respiration of allochthonous DOC.  相似文献   

17.
Knowledge of Himalayan cryosphere seems to be an outstanding requirement for assessment of glacier storage, water balance analysis, planning of water resources and flood hazard monitoring. A stepwise approach through mapping glaciers and glacial lakes using satellite remote sensing data and investigating potential glacial lake outburst flood (GLOF) hazards was adopted for the three Hindukush, Karakoram and Himalayan (HKH) ranges of Pakistan. The findings of the study revealed 5,218 glaciers in the cryosphere of HKH ranges. The cumulative glacial cover of over 15,000 km2 contains ice reserves of about 2,738 km3. About 46 % of the Karakoram glaciers are contributing 77 % to the total glacial cover and 87 % to the cumulative ice reserves of the country. The 33 % Himalayan glaciers and 21 % Hindukush glaciers contribute only 3 and 10 % ice reserves, respectively. Among 2,420 glacial lakes identified in the three HKH ranges, 52 were classified as critical lakes that can pose GLOF hazard for the downstream communities. Most of the potential hazardous lakes lie in the Karakoram and Himalayan ranges, the monitoring of which is crucial to reduce high risk of future floods hazard in this fragile mountain ecosystem of the Himalayan region.  相似文献   

18.
Alcaligenes species capable of degrading highly recalcitrant, carcinogenic, water-soluble dye—Congo red—were isolated from Indian West coastal sediments. Individual strains showed decolorization rates ranging from 76.49 to 98.76% within 24–48 h. Decolorization was most efficient at anoxic conditions catalyzed by intracellular azoreductase enzyme with an activity of 0.032 µmol min?1 mg?1 of protein. Degradation was confirmed by HPLC and FTIR analysis. LC/MS analysis of degraded metabolites established the cleavage of the azo bond-producing biphenyl diamine and 1,2′-diaminonapthalene-4-sulfonic acid. These results signify the effectiveness and ease to engineer processes such as feed batch/immobilized cell systems using these strains as biocatalysts to address the problem of global coastal water pollution caused by increased disposal of azo dye-containing industrial effluents.  相似文献   

19.
The authors have carried out scientific investigations of salt lakes on the Qinghai-Tibet Plateau since 1956 and collected 550 hydrochemical data from various types of salt lakes. On that basis, combined with the tectonic characteristics of the plateau, the hydrochemical characteristics of the salt lakes of the plateau are discussed. The salinity of the lakes of the plateau is closely related to the natural environment of lake evolution, especially the climatic conditions. According to the available data and interpretation of satellite images, the salinity of the lakes of the plateau has a general trend of decreasing from north and northwest to south and southeast, broadly showing synchronous variations with the annual precipitation and aridity (annual evaporation/annual precipitation) of the modern plateau. The pH values of the plateau salt lakes are related to both hydrochemical types and salinities of the lake waters, i.e., the pH values tend to decrease from the carbonate type → sodium sulfate subtype → magnesium sulfate subtype → chloride type; on the other hand, a negative correlation is observed between the pH and salinities of the lakes. Geoscientists and biological limnologists generally use main ions in salt lakes as the basis for the hydrochemical classification of salt lakes. The common ions in salt lakes are Ca2+, Mg2+, Na+, K+, Cl? SO4 2?, CO3 2?, and HCO3 ?. In this paper, the Kurnakov-Valyashko classification is used to divide the salt lakes into the chloride type, magnesium sulfate subtype, sodium sulfate subtype and carbonate type, and then according to different total alkalinities (K C = Na2CO3 + NaHCO3/total salt × 100%) and different saline mineral assemblages, the carbonate type is further divided into three subtypes, namely, strong carbonate subtype, moderate carbonate subtype and weak carbonate subtypes. According to the aforesaid hydrochemical classifications, a complete and meticulous hydrochemical classification of the salt lakes of the plateau has been made and then a clear understanding of the characteristics of N–S hydrochemical zoning and E-W hydrochemical differentiation has been obtained. The plateau is divided into four zones and one area. There is a genetic association between certain saline minerals and specific salt lake hydrochemical types: the representative mineral assemblages of the carbonate type of salt lake is borax (tincalconite) and borax-zabuyelite (L2CO3) and alkali carbonate-mirabilite; the representative mineral assemblages of the sodium sulfate subtype are mirabilite (thenardite)-halite and magnesium borate (kurnakovite, inderite etc.)-ulexite-mirabilite; the representative mineral assemblages of the magnesium sulfate subtype are magnesium sulfate (epsomite, bloedite)-halite, magnesium borate-mirabilite, and mirabilite-schoenite-halite, as well as large amount of gypsum; The representative mineral assemblages of the chloride type are carnallite-bischofite-halite and carnallite-halite, with antarcticite in a few individual salt lakes. The above-mentioned salt lake mineral assemblages of various types on the plateau have features of cold-phase assemblages. Mirabilite and its associated cold-phase saline minerals are important indicators for the study of paleoclimate changes of the plateau. A total of 59 elements have been detected in lake waters of the plateau now, of which the concentrations of Na, K, Mg, Ca, and Cl, and SO4 2?, CO3 2?, and HCO3 ? ions are highest, but, compared with the hydrochemical compositions of other salt lake regions, the plateau salt lakes, especially those in the southern Qiangtang carbonate type subzone (I2), contain high concentrations of Li, B, K, Cs, and Rb, and there are also As, U, Th, Br, Sr, and Nd positive anomalies in some lakes. In the plateau lake waters, B is intimately associated with Li, Cs, K and Rb and its concentration shows a general positive correlation with increasing salinity of the lake waters. The highest positive anomalies of B, Li, Cs, and K center on the Ngangla Ringco Lake area in the western segment of the southern Qiangtang carbonate type subzone (I2) and coincide with Miocene volcanic-sedimentary rocks and high-value areas of B, Li, and Cs of the plateau. This strongly demonstrates that special elements such as B, Li, and Cs on the plateau were related to deep sources. Based on recent voluminous geophysical study and geochemical study of volcanic rocks, their origin had close genetic relation to anatectic magmatism resulting from India–Eurasia continent–continent collision, and B–Li (-Ce) salt lakes in the Cordillera Plateau of South America just originated on active continental margins, both of which indicate that global specific tectonically active belts are the main cause for the high abundances of B, Li, and Cs (K and Rb) in natural water and mineralization of these elements.  相似文献   

20.
The regional inequalities in socio-economical characteristics such as income, population density, age composition, unemployment rate and the education level may bring about variation in waste generation, recycling and collection. Using environmental Kuznets curve, the factors affecting municipal solid waste disposal are examined. The results demonstrate that an inverted N-shaped curve executes on municipal solid waste disposal for all regions. As personal disposable income increases, per capita municipal solid waste disposed firstly declines, then grows at the second stage and finally decreases again. All the explanatory variables including economic factors, social characteristics and geographical barriers are found to influence municipal solid waste disposal significantly. Each person increase in population density leads to an increase in municipal solid waste disposed by approximately 1.17 ×10?4 kg/day. Each percent increase in age composition results in a decrease in municipal solid waste disposed by approximately 0.0224 kg/day; in the unemployment rate causes a decrease of 0.0901 kg/day and in the education level results in a decrease of 0.01556 kg/day. In general, municipal solid waste disposal starts to increase at the first turning point of personal disposable income NT$ 198,000 (about US$ 6,280) and to decrease at the second point of NT$ 389,000 (about US$ 12,350) for all regions (pooled data). The rural regions, however, cannot support the inverted N-shaped curve by the ‘reduced form’ while urban regions have a significant outcome. This result implies that income can only explain a portion of variation while other social and geographical factors contribute a lot to identify the variation in municipal solid waste disposal between urban and rural regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号