首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leachate levels in the landfills in southern China are generally high. Field monitoring was carried out in the Suzhou landfill to investigate the leachate mound. The saturated hydraulic conductivity and soil–water characteristic curve (SWCC) of municipal solid waste were measured using samples taken from different depths of the landfill. Field monitoring reveals that a perched leachate mound and a substantial main leachate mound existed in the landfill. The saturated hydraulic conductivities of wastes in shallow, middle and deep depth were measured to be 4.81 × 10?2, 3.50 × 10?3 and 3.56 × 10?4 cm/s, respectively. The results of SWCC tests show that the SWCC curve was steep when matric suction was low, and the shallower the waste the steeper would be the curve. In addition to the field and laboratory tests, an unsaturated–saturated seepage analysis was conducted to simulate the development of the high leachate mound and to calculate the annual leachate production. The simulated volumetric water content in the unsaturated zone was about 40 %, which agreed well with the test result. The calculated leachate mound was consistent with the field measurement. The calculated annual and daily leachate productions were all more reasonable than the results of the HELP model.  相似文献   

2.
The behavior of a municipal waste landfill on marine clay was analyzed from field measurement data. Instruments, e.g., a groundwater level sensor, piezometer, earth pressure gauge, settlement plates, inclinometer, etc., were installed and operated during the disposal period from October 1992 to November 2000. A database system was developed to manage the data from this landfill using Access (Microsoft) with Delphi programs. From the analyses, it was determined that the settlement of the landfill during the initial period of waste disposal was small because of the high leachate level in the landfill. As the level of waste became higher than the leachate level, the settlement of the landfill increased significantly due to the increasing effective pressure within the landfill. From a stability point of view, the critical time for the landfill in this study was the initial period of landfill disposal, which was caused by either the impact load of waste disposal or the time schedule of waste disposal, which was faster than the consolidation of foundation clay caused by the waste load.  相似文献   

3.
Magnetic properties and heavy metal content of landfill leachate sludge samples from two municipal solid waste disposal sites near Bandung, West Java, Indonesia, and their correlation with heavy metals are studied in the present work. Leachate was found to be sufficiently magnetic with mass-specific magnetic susceptibility that varies from 64.8 to 349.0 × 10−8 m3 kg−1. It is, however, less magnetic than the soils around the landfill sites. The magnetic minerals are predominantly pseudo-single domain and multidomain magnetite. Leachate samples from the older but inactive disposal site, Jelekong, are found to be more magnetic than that from Sarimukti, the younger and active site. The enhancement of leachate due to the soil-derived ferrimagnetic particles is possibly the same for both Sarimukti and Jelekong. The fact that strong correlation between magnetic parameters and heavy metals is observed in Jelekong but is absent in Sarimukti suggests that the use of magnetic measurement as a proxy measurement for heavy metal content in leachate is plausible provided that the magnetic susceptibility exceeds certain threshold value. Moreover, the accumulation of magnetic minerals and heavy metals in leachate might depend on the activity and the age of landfill site.  相似文献   

4.
The potential of the autoclaved Tunisian landfill leachate treatment using microalgae (Chlorella sp.) cultivation was investigated in this study. Landfill leachate was collected from Borj Chakir landfill, Tunisia. A full factorial experimental design 22 was proposed to study the effects of the incubation time and leachate ratio factors on the organic matter removal expressed in chemical oxygen demand (COD) and ammoniacal nitrogen (NH4─N) and on the biological response of Chlorella sp. expressed by the cell density and chlorophyll content. All experiments were batch runs at ambient temperature (25 ± 2 °C). The Chlorella sp. biomass and chlorophyll a concentrations of 1.2 and 5.32 mg L?1, respectively, were obtained with 10% leachate spike ratio. The obtained results showed that up to 90% of the ammoniacal nitrogen in landfill leachate was removed in 10% leachate ratio spiked medium with a residual concentration of 40 mg L?1. The maximum COD removal rate reached 60% within 13 days of incubation time indicating that microalgae consortium was quite effective for treating landfill leachate organic contaminants. Furthermore, with the 10% leachate ratio spiked medium, the maximum lipid productivity was 4.74 mg L?1 d?1. The present study provides valuable information for potential adaptation of microalgae culture and its contribution for the treatment of Tunisian landfill leachate.  相似文献   

5.
This paper aims at determining of inorganic leachate contamination for a capped unsanitary landfill in the absence of hydrogeological data. The 2D geoelectrical resistivity imaging, soil physicochemical characterization, and surface water analysis were used to determine contamination load and extent of selective heavy metal contamination underneath the landfill. The positions of the contaminated subsoil and groundwater were successfully delineated in terms of low resistivity leachate plumes of <10 Ωm. Leachate migration towards the reach of Kelang River could be clearly identified from the resistivity results and elevated concentrations of Fe in the river downslope toe of the site. Concentration of Fe, Mn, Ca, Na, K, Mg, Cu, Cr, Co, Ni, Zn, and Pb was measured for the subsoil samples collected at the downslope (BKD), upslope (BKU), and the soil-waste interface (BKI), of the landfill. The concentration levels obtained for most of the analyzed heavy metals significantly exceed the normal range in typical municipal solid waste landfill sites. The measured heavy metal contamination load in the subsoil is in the following order Fe ? Mn > Zn > Pb > Cr > Cu. Taking into consideration poor physical and chemical characteristics of the local soil, these metals first seem to be attenuated naturally at near surface then remobilize unavoidably due to the soil acidic environment (pH 4.2-6.18) which in turn, may allow an easy washing of these metals in contact with the shallow groundwater table during the periodic fluctuation of the Kelang River. These heavy metals are believed to have originated from hazardous industrial waste that might have been illegally dumped at the site.  相似文献   

6.
Landfilling is a common practice worldwide for solid waste management. The leachate generated at landfill sites contains various organic and inorganic pollutants while it should be treated properly. In this study, the electrocoagulation (EC) process was recognized for its simplicity and effectiveness which was used for the treatment of leachate from the Djebel Chakir landfill site in northern Tunisia. In addition, we investigated the effect of microorganisms (e.g., bacteria, fungi, spore) on sludge production by the application of autoclaving treatment on raw leachate. The application of low current density (15 mA/cm2) within 2 h of treatment and using Al-Al electrodes revealed significant improvement of performance when autoclaving was applied. The chemical oxygen demand (COD) and nitrogen removal increased from 39 to 64% and from 13 to 30%, respectively. The sludge volume was reduced from 40 to 10%, and thus, its handling and disposal costs would be significantly decreased. The energy consumption rate was stable after 40 min of treatment at about 0.8 kWh/kg COD removed. Our study shows that removal of microorganisms by autoclaving prior to the EC process is promising for landfill leachate treatment. However, since autoclaving is far from being practical and cost-effective at full-scale plant, research on coupling EC with an alternative disinfecting process might be of great interest.  相似文献   

7.
Earth-fill structures such as embankments, which are constructed for the preservation of land and infrastructure, show significant amount of settlement during and after construction in lowland areas with soft grounds. Settlements are often still predicted with large uncertainty and frequently observational methods are applied using settlement monitoring results in the early stage after construction to predict the long term settlement. Most of these methods require a significant amount of measurements to enable accurate predictions. In this paper, an artificial neural network model for settlement prediction is evaluated and improved using measurement records from a test embankment in The Netherlands. Based on a learning pattern that focuses on convergence of the settlement rate, the basic model predicted settlements which were in good agreement with the measurements, when the amount of measured data used as teach data for the model exceeded a degree of consolidation of 69 %. For lower amounts of teach data the accuracy of settlement prediction was limited. To improve the accuracy of settlement prediction, it is proposed to add short-term predicted values that satisfy predefined statistical criteria of low coefficient of variance or low standard deviation to the teach data, after which the model is allowed to relearn and repredict the settlement. This procedure is repeated until all predicted values satisfy the criterion. Using the improved network model resulted in significantly better predictions. Predicted settlements were in good agreement with the measurements, even when only the measurements up to a consolidation stage of 35 % were used as initial teach data.  相似文献   

8.
 This paper presents the results of field tests of hydrologic parameters in a landfill and the results of numerical simulation to find the efficiency of the pumping method to reduce leachate levels in the landfill. The field hydraulic conductivity and storativity of waste and buried cover soils in the landfill are measured by pumping and slug tests. The hydrologic condition inside the landfill is first calibrated using the drawdown-time curve obtained from the pumping test, and the flow behavior of leachate during pumping in the landfill, when various layers of waste and buried cover soil exist, is analyzed through three-dimensional numerical simulation of flow. The results of the field investigation show that the buried cover soil of low hydraulic conductivity forms an impermeable layer preventing the downward flow of leachate and upward flow of landfill gas. The hydraulic conductivities of the pumping test and slug tests were quite close on the same order of magnitude. It was also possible to match the drawdown-time data of the field tests with those of the model using input data close to the hydrologic property obtained from the field tests. The numerical flow analysis showed that pumping was possible up to 120 tons/day for a single well without a drain, while the pumping rate could be increased to 300 tons/day for the same well with the drain. From the vertical section of the flow vector with a horizontal drain, the barrier role of buried cover soil is identified, which was proposed by examining the water contents of the disposed cover soil and waste in the field. Received: 15 May 1998 · Accepted: 4 January 1999  相似文献   

9.
The plastic tube cast-in-place concrete pile (TC pile) with a small diameter consists of pre-driven plastic tube filled with concrete. Based on the case of TC pile-reinforced embankment on soft ground, and according to the monitoring data of the TC pile-reinforced embankment system, the treatment effect and reinforcement characteristics for this system were analyzed. The field monitoring results indicates that the critical height of embankment is about 1.1 times the pile net spacing, and the small-spacing arranged TC piles can be applied to low embankment engineering; the load share rate can reflect the degree of soil arching more better and steadily and exceeds 70 % at the end of monitoring period; the settlements of pile cap and soil between piles mainly occurs in the embankment construction period; the different settlement between pile cap and soil approaches the maximum and then reduces gradually when the embankment height is about 2.2 times the pile net spacing. The variation of layered settlement and pore water pressure illustrates that the embankment settlement is mainly caused by the compression of soils within pile length, which is about 90 % of the total settlement; the influence depth of pore water pressure is about 1/3 pile length.  相似文献   

10.
 An instrumented trial-fill dike was constructed on soft, laminated soils of the Lisan Peninsula foreshore of the Dead Sea. The earthwork had base dimensions of 180 m by approximately 70 m wide and was raised in two stages to a maximum height of 12.5 m above original ground level. The geotechnical data of the dike were monitored in order to: assess the short- and long-term strength of the foundation, obtain and analyze the pore-pressure response of the foundation soils for potential use in construction control, obtain data on embankment settlement in order to refine end-of-construction and post-construction settlement assessments, and optimize the height of the dike to be constructed by providing information on the construction sequence for use in calculation of capital costs and alternative layouts and dike heights. The successful completion of the trial dike has demonstrated that steep-side dikes up to 12.5 m high can be constructed rapidly on soft soils. The construction of the trial dike has therefore proved a very substantial benefit to the evaluation of the likely performance of a dike constructed along the Lisan shore. The key factor which made this fast construction possible was the unexpected, very rapid consolidation of the majority of the foundation soil which has been shown to occur. The principal observations from the trial dike were: (1) end of construction settlements may be calculated using drained stiffnesses where E′/su initial has a value of around 65; (2) post-construction settlements can be calculated using a coefficient of secondary compression, Cα equal to 0.015; (3) a rapid increase in undrained shear strength occurred when loading the soil up to a value of su equal to around 30 kPa. The value of suv′ was as high as 0.5 at this stage. With further loading the strength increase was more modest and suv fell to around 0.25 for a vertical effective stress of 160 kPa; (4) for the undrained stability analyses of the trial dike, the mean vane shear-strength profile provided an appropriate assessment of the short-term factor of safety against failure, 5) For the drained stability analyses of the trial dike, lower bound effective strength parameters for the foundation and embankment fill (c′=0, φ′=30° and c′=2 kN/m2, φ′=33°, respectively), combined with field measurements of end of construction pore water pressures provided an analysis which was broadly compatible with the undrained analysis; and (6) the trial dike has been stable, pre- and post-construction, because of the well drained nature of its foundation which prevented the build up of high pore water pressures and led to rapid consolidation. Received: 22 June 1998 · Accepted: 30 October 1998  相似文献   

11.
During leachate recirculation, a bioreactor landfill will experience more rapid and complete settlement, which is mainly attributed to the weight of municipal solid waste (MSW) and its biodegradation. The settlement of MSW may cause the decrease of void ratio of MSW, which will influence the permeability of MSW and the leachate quantity that can be held in bioreactor landfills. In this study, a new one-dimensional model of leachate recirculation using infiltration pond is developed. The new method is not only capable of describing leachate flow considering the effect of MSW settlement, but also accounting separately leachate flow in saturated and unsaturated zones. Moreover, the effects of operating parameters are evaluated with a parametric study. The analyzing results show that the influence depth of leachate recirculation considering the effect of MSW settlement is smaller than the value without considering the effect. The influence depth and leachate recirculation volume increase with the increase of infiltration pond pressure head and MSW void ratio. This indicates that the field compaction of MSW has a great influence on the leachate recirculation.  相似文献   

12.
The Luhuagang landfill site (LLS) in Kaifeng, China, lacks liner and leachate collection systems. Thus, leachate generated from the waste dump has contaminated the surrounding subsoil and shallow aquifer with various chemicals, including 1,2,4-Trichlorobenzene (1,2,4-TCB). This paper is a part of a series of studies on adsorption, transport and biodegradation and fate of 1,2,4-TCB in the shallow aquifer beneath LLS. Here, adsorption of 1,2,4-TCB onto silt, fine sand and medium sand aquifer deposits collected at LLS was conducted by performing batch experiments involving four common adsorption kinetic models. The results of the analyses showed that the pseudo-second-order adsorption kinetic model provided the best fit for the equilibrium data with a coefficient of determination (R 2) greater than 0.99. Least squares analysis of Henry, Freundlich and Langmuir linearly transformed isotherm models was used to establish the best isotherm for 1,2,4-TCB adsorption onto the three aquifer materials. The Freundlich isotherm provided the best fit for experimental data with R 2 > 0.99. The results further suggested that the highest adsorption rate of 1,2,4-TCB (27.55 μg/g) was onto silt deposit, followed by fine sand (21.65 μg/g) and medium sand (14.88 μg/g). This showed that silt layer beneath the LLS was critical for retarding the downward percolation and migration of 1,2,4-TCB into the shallow aquifer systems under the landfill. The findings of the study were adopted as basis for designing the slated transport and biodegradation study of 1,2,4-TCB in aquifer system at LLS.  相似文献   

13.
The role of municipal solid waste (MSW) landfill leachate on the genesis of minor amounts of pyrite associated with gypsum in an otherwise predominantly evaporitic sequence was studied in geological and geochemical terms. The potential association between landfill leachate and the conditions required for bacterial reduction of sulfate and fixation of H2S as pyrite were examined. The lithological column was generally found to contain little or no Fe. The δ34S values for sulfates were consistent with previously reported data; however, the measured δ18O values were slightly higher. Sulfides disseminated in the marl/lutite exhibited higher δ34S values (≈−8‰) than gypsum-coating pyrite crystals (δ34S < −30‰). Dissolution of gypsum to sulfate and the supply of metabolizable organic matter and Fe required for H2S fixation as sulfides may have originated from landfill leachate. Intermittent availability of leachate, a result of the precipitation regime, can facilitate sulfur disproportionation and lead to fractionations as high as   相似文献   

14.
Bioreactor landfills are operated for rapid stabilization of waste, increased landfill gas generation for cost-effective energy recovery, gain in landfill space, enhanced leachate treatment, and reduced post closure maintenance period. The fundamental process of waste stabilization in bioreactor landfill is recirculation of generated leachate back into the landfills. This creates a favorable environment for rapid microbial decomposition of the biodegradable solid waste. In order to better estimate the generated leachate and design of leachate recirculation system, clear understanding of the permeability of the Municipal Solid Waste (MSW) with degradation and the factors influencing the permeability is necessary. The objective of the paper is to determine the changes in hydraulic properties of MSW in bioreactor landfill with time and decomposition. Four small-scale bioreactor landfills were built in laboratory and samples were prepared to represent each phase of decomposition. Then, the changes in hydraulic properties of MSW in bioreactor landfill with time and decomposition were determined. A series of constant head permeability tests were performed on the samples generated in laboratory scale bioreactor landfills to determine variation of permeability of MSW with degradation. The test results indicated that the permeability of MSW in bioreactor landfills decreases with decomposition. Based on the test results, the permeability of MSW at the first phase of degradation was estimated as 0.0088 cm/s at density 700 kg/m3. However, with degradation, permeability decreased to 0.0013 cm/s at the same density, for MSW at Phase IV.  相似文献   

15.
 Between March 1994 and April 1997, the physical and chemical parameters and chemical composition of the urban solid waste leachate of the Marbella landfill (southern Spain) were determined. The data obtained show an ammonium and sodium chloride and bicarbonate type, a pH>7 and high mineralization, effectively described by the following parameters: Na+, K+, NH4 +, Cl and alkalinity. The chemical composition depends on the rainfall: in dry years, the mineralization and component concentrations have values as much as double those found in normal rainfall years. After storm events, a major and rapid dilution (within several hours) is seen in the leachate. Received: 28 January 1998 · Accepted: 2 June 1998  相似文献   

16.
Annual variation in the amount and composition of waste deposited in the Gimpo #2 landfill, the largest landfill around Seoul, Korea, is reviewed, and the stability of the same landfill is analyzed during waste disposal. For the stability analysis, three empirical stability prediction methods, i.e., linear stability, displacement velocity, and curve stability methods, are used to analyze field-measured settlement and horizontal displacement data. The analysis indicated that national waste management policy has greatly influenced the annual variation in the amount and composition of waste deposited in the landfill. Continuous measurement of geotechnical data and the use of stability analysis based on these data are necessary for landfills on seashore clay foundation. Stability of the landfill must be examined with various methods to ensure accurate determination of its stability.  相似文献   

17.
 The Nanjido Landfill is the largest uncontrolled landfill in Korea and it causes various kinds of environmental problems. Landfill gases and leachate are recognized as the most serious environmental problems associated with the landfill. This study employs a series of numerical models and uses test data to interpret the distribution and flow of landfill gases and leachate. Leachate seepage appears about 40–60 m higher than the estimated basal groundwater table. Thus, seepage data indicate that perched or floating leachate layers are formed in the unsaturated zone of the landfill. The leachate production rate is estimated using infiltration test data and a model for unsaturated groundwater flow. Geochemical data indicate that the landfill leachate degrades the basal groundwater quality along the downgradient zone. The environmental impact of the leachate on river water is estimated. Received: 17 June 1996 · Accepted: 2 October 1996  相似文献   

18.
Modern waste management tends towards greater sustainability in landfilling, with the implementation of strategies such as the pretreatment of solid waste. This work assesses the behaviour of rejects from a refining stage of mechanically biologically treated municipal solid waste at the landfill. The main results of 18 months’ monitoring of an experimental pilot cell with waste from a full-scale plant are presented. This first stage is expected to be the most problematic period for this type of waste. The evolution of the temperature and the composition of leachate and gas at various points within the cell are included. During the first weeks, pollutant concentrations in the leachate exceeded the reference ranges in the literature, coinciding with a rapid onset of methanogenic conditions. However, there was a quick wash, reducing concentrations to below one-third of the initial values before the first year. pH values influenced concentrations of some pollutants such as copper. These results indicate that, right from the beginning of disposal, such facilities should be prepared to treat a high pollution load in the leachate and install the gas emissions control elements due to the rapid onset of methanogenesis.  相似文献   

19.
20.
The effect of the Ruseifa municipal landfill on the shallow groundwater aquifers in the area was investigated in two separate sites. The first one was not used since 1994, whereas the other is still being used for dumping. Fourteen electrical resistivity soundings were performed to detect the leachate and its effect on the quality of the groundwater. Results indicated that the solid waste thickness of the landfill was ranged from 3 to 20 m with resistivity value less than 10 Ω m. Based on the resistivity decreases of values less than 5 Ω m, the leachate was detected in the landfill sites at depths ranged from 10 to 50 m. However, the flow direction of the leachate at depth ranging 10–20 m in the terminated site was toward north, whereas the flow direction of the leachate in the site still used for dumping was toward east–northeast which causes the major source of groundwater pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号