首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exhausted Reactive dye bath samples of Turquoise Blue, Olive Green and Navy Blue shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. Complete decolorization of the effluent was achieved in 10 min contact time and ozone consumption of 153 mg/ L for Turquoise Blue, 128 for Olive Green and 143 for Navy Blue shades effluents respectively. The corresponding COD removal was 43%, 44% and 43% for the three shades while TOC removal efficiency was 45%, 45% and 40% respectively. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant.  相似文献   

2.
The objective of this study was to explore the extent of 2,4,6-trinitrotoluene synthetic solution and red water mineralization by comparing conventional direct ozonation and multi-stage ozonation-biological treatment process. The alkaline hydrolysis was used for remediation 2, 4, 6-trinitrotoluene and red water at pH = 10.9. Nevertheless, the hydroxyl radicals would be generated by ozone decomposition with ozone dose of 0.177 g/L. The samples were subjected to chemical oxygen demand and total organic carbon analysis to monitor pollutants removal. The rate of 2, 4, 6-trinitrotoluene and red water pollutants degradation were quantified using high performance liquid chromatography. 2, 4, 6-trinitrotoluene synthetic solution resulted 55.5 % chemical oxygen demand removal by 3 h direct ozonation. Following direct ozonation the biological treatment twenty four hours chemical oxygen demand reached 98.9 % and 98.7 % removal using humic acid and river water 1 % ( v/v) inoculation singly and respectively. Conventional direct ozonation showed non significant change in total organic carbon degradation. While on using multi-stage ozone-biological treatment process where humic acid and/or river water were used as inoculums singly and respectively, total organic carbon fulfilled 73 % and 98.3 % removal. The process was one hour direct ozonation and followed by three days multi-stage ozone-biological treatment. In multi-stage ozone-biological treatment process, ozonation was effective to decompose total organic carbon and to produce biodegradable dissolved organic carbon easily removed by ozone oxidation up to 98.3 % in 2,4,6-trinitrotoluene synthetic solution. Pollutants removal achieved 99 % in authentic red water effluent using river inoculation 1 % (v/v) in 5 days. Nuclear Magnetic Resonance and Fourier Transformation Infra Red methods were performed to confirm types of pollutants content in red water.  相似文献   

3.
In recent years, concerns about the occurrence and fate of active pharmaceutical ingredients, solvents, intermediates and raw materials that could be present in pharmaceutical industry effluents have gained increasing attention. Conventional treatment methods, such as activated sludge, are not sufficient enough to remove active pharmaceutical ingredients completely. As a result, complementary treatment methods like coagulation and flocculation are often used and play a critical role in industrial and municipal wastewater treatment. The primary goal of these methods is to destabilize and remove colloidal particles along with other organic/inorganic contaminants. Recently empirical works have considered ozone as the most promising oxidant for the removal of micro-pollutants. The current study examined the effectiveness of coagulation/flocculation process using ferric chloride, polyaluminum chloride, and aluminum sulfate as a reasonable approach to tackle the issue of treating pharmaceutical wastewater. In addition, the results were compared with the process using only ferric chloride that was the coagulant of an actual treatment plant. Then, improvement of the process performance was investigated using ozone as an oxidant. In conclusion, it was found out that polyaluminum chloride presented better performance among two other coagulants and also adding 200 mg/L of polyaluminum chloride can lead to 97–98 % turbidity removal efficiency. Moreover, polyaluminum chloride was capable of reducing most of the environmental parameters such as chemical oxygen demand and total dissolved solid with the removal efficiency of 70 and 68 %, respectively. Additionally, ozonation improved the coagulation process, especially iron ion removal, and dramatically decreased the concentration from 5.68 to 0.19 mg/L.  相似文献   

4.
为研究双金属催化剂去除有机污染物的效果,采用自制Fe/Ag催化剂对模拟苯酚废水进行了臭氧催化氧化处理。通过扫描电子显微镜(SEM)、比表面积分析仪(BET)和X射线衍射(XRD)对催化剂进行表征,并考察了催化剂类型、催化剂投加量和溶液初始pH值对降解效果的影响规律。结果表明:与Fe相比,Fe/Ag比表面积减少了22.8%,在Fe/Ag/O3与含苯酚废水的反应体系中,反应遵循臭氧直接作用和活性自由基(·OH、·O2、H2O2)共同作用的机理;Fe/Ag在反应过程中体现出良好的协同作用;300 mg/L的苯酚模拟废水在pH=6.3、Fe/Ag投加量为1.00 g的最优反应条件下经60 min反应,苯酚与化学需氧量(COD)去除率比单独臭氧氧化分别提高了18.4%和29.4%。  相似文献   

5.
Removal of Congo red from textile wastewater by ozonation   总被引:7,自引:6,他引:1  
Congo red, which has a complex molecular structure with various diazo aromatic groups, is widely used in textile industry as an anionic dye. The purpose of this study was to investigate the degradation of Congo red in laboratory solution which had the chemical properties of the rinse waters of textile manufacturing dye-houses and the samples with Congo red alone wastewater by ozonation and to optimize the reaction parameters such as pH and time which influence the efficiencies of total organic carbon, total kjeldahl nitrogen and chemical oxygen demand removal. Ozonation of Congo red dye were carried out in a semi-batch reactor with constant ozone flow rate and concentration of 23 mL/sec and 13.6 mg/L, respectively. Decolorization was complete within a few minutes of ozonation possibly due to the cleavage of chromophore groups. It was observed that its structural destruction occurs predominantly at higher pHs. The reduction of chemical oxygen demand and destruction of the dye was more than 60 % and 42 %, respectively. Total kjeldahl nitrogen removal was accompanied by slight changes in nitrogen oxides. It can be deduced from the experimental results that: (a) the mineralization is very weak; (b) the reaction follows the indirect mechanism; i.e., the interaction of hydroxyl radicals with the dye and (c) the nitrification is rather predominant. Biological oxygen demand is declined in simulated alkalic and neutral samples respectively. At 13.6 mg O3/L, the biological oxygen demand levels were significantly enhanced. This might be attributable to the enhancement of its biodegradation at alkaline pHs.  相似文献   

6.
催化臭氧化降解有机废水及影响因素   总被引:2,自引:0,他引:2  
主要论述了自制的V-O型催化荆催化臭氧化降解有机废水的研究。试验表明,以TiO2,SiO2,ZrO2作栽体,在氮气或氧气中焙烧,而制得的6种催化荆中,V-O/SiO2/N2显示了较好的催化性能和活性;通过催化荆吸附试验和在反应体系中加入一定量的自由基猝灭荆,初步探讨了其催化机理,即催化荆和臭氧反应,生成了氧化性极强的羟基自由基;催化臭氧化时间、催化荆用量、进气臭氧浓度、体系pH值等因素均对降解产生一定的影响。  相似文献   

7.
The remediation of soil, contaminated by organic pollutants, in a cylinder-to-plane dielectric barrier discharge reactor at atmospheric air pressure was reported. Two model organic pollutants were selected; a solid pollutant (2,6-dichloropyridine) and a liquid pollutant (n-dodecane). The effects of the contaminant’s initial concentration and state, the energy consumption, and the soil type on the pollutant removal efficiency were investigated. To that scope, various contaminated samples of both quartz sand and loamy sandy soil were treated by plasma for various treatment times and initial 2,6-dichloropyridine/n-dodecane concentrations. The results revealed that (1) the removal efficiency of 2,6-dichloropyridine was higher compared to that of n-dodecane at a given plasma treatment time and (2) the removal efficiency increased with the energy density increasing, but decreased as the soil heterogeneity, organic matter and pollutant concentration were enhanced. The main removal mechanism proposed is the evaporation of pollutant molecules coupled with their oxidation by plasma species in the gas and solid/liquid phase.  相似文献   

8.
Nanoscale zero-valent iron particles(NZVI) produced by using green tea(GT) extract as a reductant can remove Cr(Ⅵ) from water effectively,which can be utilized in groundwater remediation.In order to define the reaction mechanism and removal effect in the aquifer,in this study,GT-NZVI particles were prepared and measured by some characterization methods to define their surface performance,and then batch and one-dimensional experiments were carried out to reveal the reaction properties of GT-NZVI ...  相似文献   

9.
The objective of this study was to propose a method for efficient degradation of tetracycline as a water contaminant. UV-C rays, ozonation, and iron chelates were used for removal of tetracycline from water. Aqueous solution of tetracycline (5 × 10?5 M) was exposed to UV-C rays (in two doses—6 and 12 W), ozonation (at 6–12 mg ozone), or iron chelates: iron(III) sodium ethylenediaminetetraacetate, iron(III) trisglycinate, and iron(III) citrate. For each of iron compounds, three doses were studied: 2.5 × 10?5 M, 5 × 10?5 M, 10 × 10?5 M. The experiments have shown that aqueous solution of tetracycline (5 × 10?5 M) is immediately degraded as a result of ozonation with 12 mg ozone. Absorbance of tetracycline decreased from A = 0.78 to A = 0.35 after 20-min ozone treatment of sample. The fluorescence spectra revealed the presence of two ozone-induced TC degradation products with fluorescence maxima at 523 and 531 nm appearing immediately after the ozonation treatment. On the other hand, iron(III) sodium ethylenediaminetetraacetate and iron(III) trisglycinate gave rise to a single TC degradation product with a fluorescence maximum at 531 nm, observed after 10 days of the experiment. On application of iron(III) trisglycinate, at any studied concentration, tetracycline becomes degraded faster—in 4 days. Iron(III) citrate degraded 90 % of tetracycline, when used at the level 10 × 10?5 M. The biggest changes in tetracycline concentration were obtained as a result of ozonation and iron(III) citrate treatments.  相似文献   

10.
臭氧-超声联用处理聚乙烯醇废水   总被引:2,自引:0,他引:2  
本研究采用臭氧-超声(O3/US)联用技术处理聚乙烯醇(PVA)废水,分别考察了PVA初始质量浓度、初始pH、臭氧通入速率、超声功率、超声频率及反应时间对PVA和COD去除效率的影响,并在此基础上通过正交实验确定了降解PVA和COD的最佳实验条件。研究结果表明,超声频率对去除率有显著影响,PVA初始质量浓度对去除效率的影响较大,反应时间、超声功率、臭氧通入速率和初始pH的影响相对较小。通过影响实验和正交实验确定的最佳降解条件为:PVA初始质量浓度100 mg/L、初始pH=9、臭氧通入速率4 g/h、超声功率320 W、超声频率40 kHz、反应时间20 min,此时COD和PVA的去除效率分别为86.4%和99.3%。超声对臭氧降解聚乙烯醇废水具有明显的协同作用,在最佳条件下,臭氧-超声联用技术比单独臭氧技术对PVA的去除率增加了5.1%,对COD去除率增加了19.4%。  相似文献   

11.
污染河流中苯系物对浅层地下水影响的室内模拟试验   总被引:1,自引:0,他引:1  
为了研究污染河流中苯系物对浅层地下水的影响,室内试验选用3种天然砂土作为渗透介质,以生活污水模拟污染河流,68d以后发现,苯、甲苯和苯系物总量的总去除率在粗砂中分别为32.06%、21.39%和27.13%。在两种中砂中总去除率2号柱为76.26%、81.40%和87.99%,3号柱为68.94%、74.41%和81.69%,粗砂小于中砂,并且由于2号柱的粘粒物质含量大,其总去除率大于3号柱和1号柱。苯系物各组分浓度随深度呈递减趋势,苯系物的净化作用主要发生在地表以下0.4m范围内。水动力特征的改变影响污染物的迁移和转化特征,苯系物的去除机理为挥发、吸附和生物降解,其中最主要的是厌氧条件下的微生物降解。  相似文献   

12.
A considerable increase in nitrate concentration in groundwater has been observed in many countries. This research focuses on nitrate removal using biodegradable snack ware (BSW) as both carbon source and biofilm support for denitrifiers. The denitrification efficiency of a laboratory-scale denitrification reactor packed with BSW was examined in a low-temperature condition. The nitrate removal efficiency supported by BSW decreased to approximately 40% at 12°C from nearly 100% at 25°C with 50?mg/L of nitrate-nitrogen in the influent and 2?h of hydraulic retention time (HRT). The complete nitrate removal was obtained when nitrate-nitrogen concentration was no more than 15?mg/L at 2?h of HRT and at 12°C. If the initial concentration of nitrate-nitrogen was 50?mg/L, 5?h of HRT was needed for the complete nitrate removal. Nitrite concentration in the treated water decreased evidently as HRT was increased from 2 to 5?h, or as nitrate-nitrogen concentration in the influent decreased to 15?mg/L from 50?mg/L. It was observed that varying HRT and nitrate concentration in the influent had no noticeable effect on dissolved organic carbon content in the effluent under the experimental conditions. This study indicated that the complete nitrate removal could be achieved readily even at 12°C using BSW as carbon source by changing HRT or the initial concentration of nitrate in the influent, which has some useful implications in environmental engineering practice.  相似文献   

13.
In this research, physical, chemical and biological treatability of Tehran solid waste leachate was studied. Results indicate that the amount of COD for the fresh raw leachate of Tehran is equal to 66,608 mg/l. The leachate is transferred to an equalization tank for storage and pH control process. After neutralization, leachate is introduced to an up flow and down flow anaerobic reactor. The effluent of anaerobic reactor is conducted to a sequencing batch reactor. Sequence batch reactor (SBR) effluent was pumped in to sand and activated carbon filters, after chemical coagulation and clarification. Results showed that anaerobic reactor with detention time of 3 days had a 35% COD removal and increasing the detention time to 4.5 days would improve the COD removal to 45%. Nutrient adjustment with phosphorus and nitrogen increased the initial 23% efficiency of sequence batch reactor to 44%. The effluent COD of SBR reactor was 21,309 mg/l. Recycling of aerobic reactor effluent with incoming feed to anaerobic reactor reduced the anaerobic reactor influent COD to 20,000 mg/l and this caused 53% and 57% COD removal in the anaerobic and aerobic effluent, respectively. The total systems COD performance increased to 80% and SBR effluent COD eventually reduced to 4,000 mg/l. Coagulation, flocculation and sedimentation processes were practiced to make the 4,000 mg/l effluent COD comply with environmental standards of Iran. The optimum coagulant found to be ferric chloride with the dosage of 50 mg/l at pH of 12, which reduced 10% of COD to an amount of 3,676 mg/l. The effluent was stored in a tank and then pumped in to pressure sand filter and afterwards to activated carbon filter. The COD removal was three and 90% for sand and activated carbon filters, respectively. The total process reduced the remaining COD to 36 mg/l, which is in compliance with environmental standards of Iran.  相似文献   

14.
Number 6 fuel oil is one of the most used energy sources for electricity generation. However, leaks can contaminate soil and also groundwater due to leaching. At old sites, the oil may have low toxicity but still contaminate groundwater with foul-tasting compounds even at low concentrations. The purpose of this study was to evaluate the feasibility of applying H2O2 to reduce the leaching potential of a fuel oil contaminated soil. A silt-loam soil was collected from a contaminated thermal-electric plant with a hydrocarbon concentration of 3.2% in soil producing 4.3 mg/l in leachate. Hydrogen peroxide was applied (0.1, 0.2, 0.3, 0.6, 1.2% dry weight basis), and petroleum hydrocarbons were measured in soil and leachate pre- and post-treatment (72 h). At first, the soil and leachate concentrations diminished linearly (24.4 and 27.3% in soil and leachate, respectively). This was followed by a phase in which the concentration in leachate diminished greatly (75.8%) although the concentration in soil was reduced only moderately (15.1%). Overall, hydrocarbons in leachates were reduced 82.4% even though concentrations in soil were only reduced 35.8%. Correlation analysis showed that at only 1.0% w/w H2O2 a concentration of petroleum hydrocarbons in leachate safe for human consumption (≤ 1 mg/l) could be obtained even with a final hydrocarbon concentration in soil > 2%. Thus, this study presents an alternative strategy for remediation of fuel oil contaminated soils in urban environments that protects water sources by focusing on contamination in leachates, without spending extra financial resources to reduce the hydrocarbon concentration in low-toxicity soil.  相似文献   

15.
The development of the bioaugmentation during the phytoremediation of contaminated water with diesel in pilot horizontal subsurface flow constructed wetlands was investigated for 63 days. The objective of this study was to examine the enrichment of rhizobacteria in a pilot-scale system for efficient treatment of total petroleum hydrocarbon (TPH) effluent. A consortium of three rhizobacteria strains (Bacillus aquimaris, Bacillus anthracis and Bacillus cereus), which were able to utilize hydrocarbon compounds as sole carbon sources, was injected into the constructed wetlands (batchwise operation) planted with Scirpus grossus. The TPH removals from water, without or with the addition of rhizobacteria, were found to be 72 and 84%, while from sand was found to be 59 and 77%, for each treatment, respectively. These results showed that the rhizobacteria strains could enhance S. grossus growth by decreasing diesel stress and protecting S. grossus against diesel, with 12 and 18% additional TPH removal from water and sand, respectively. Our results demonstrate that S. grossus is potential to improve the phytoremediation of hydrocarbon contaminants through inoculation with effective rhizobacterial strains.  相似文献   

16.
Landfill leachate treatment was investigated using two anaerobic/aerobic sequencing batch reactors inoculated with suspended growth-activated sludge (ASBR) and aerobic granular sludge (GSBR). The total ammonium nitrogen (TAN) concentration in the GSBR influent was as high as 1200 mg/L with an average TAN removal efficiency of 99.7%. However, the ASBR treatment did not show a consistent performance in TAN removal. The TAN removal efficiency decreased with increasing ammonium concentration in the influent. Aerobic granular sludge was found to be more resistant to free ammonia (FA). In the GSBR, nitrification was partially inhibited at FA concentration from 48 to 57 mg/L, which was two times more than the FA concentration that inhibited nitrification in the ASBR. Low chemical oxygen demand removal efficiencies were obtained in both reactors, which was associated with the refractory organic content of the leachate used in this study. This resulted in poor phosphorous removal in both treatments. The results prove that aerobic granular sludge is a robust method as compared to suspended-activated sludge to treat leachate containing high levels of TAN and FA.  相似文献   

17.
Plasma technology has some shortcomings, such as higher energy consumption and byproducts produced in the reaction process. However non-thermal plasma associated with catalyst can resolve these problems. Therefore this kind of technology was paied more and more attention to treat waste gas. A hybrid system comprising a non-thermal plasma reactor and nanometer titanium dioxide catalyst was used for benzene removal in the air. The paper described the synergistic effect of ozone and photocatalyst in the plasma reactor. Except of electric field strength, humidity and flow velocity, the synergistic behavior of ozone and photocatalyst was tested. The removal efficiency of benzene reaches nearly 99% when benzene concentration is 600 mg/m3, and the removal efficiency of benzene also reaches above 90% when benzene concentration is 1500 mg/m3. The plasma reactor packed with photocatalyst shows a better selectivity of carbon dioxide than that without photocatalyst. The final products is mostly carbon dioxide, water and a small quantity of carbon monoxide.  相似文献   

18.
Processes that control the distribution and natural attenuation (NA) of petroleum hydrocarbons dissolved from the released diesel fuel in a bench-scale model aquifer were evaluated. The experimental results obtained in two-dimensional aqueous-phase petroleum hydrocarbon concentrations indicated that the total petroleum hydrocarbon (TPH) in the aquifer migrated in longitudinal and lateral directions. The TPH plume of 2 mg L?1 spread to the entire area of the aquifer, and the maximum concentration at the center of the plume was 44.15 mg L?1 after 90 days of release. After diesel fuel release, the NA of TPH was evaluated and quantified. Experimental data indicated that the NA of TPH was immediately implemented to prevent migration of the plume into the downgradient of the aquifer, but controlling the TPH plumes using NA mechanisms requires a long time.  相似文献   

19.
Bioremediation is an effective measure in dealing with such contamination, particularly those from petroleum hydrocarbon sources. The effect of soil amendments on diesel fuel degradation in soil was studied. Diesel fuel was introduced into the soil at the concentration of 5 % (w/w) and mixed with three different organic wastes tea leaf, soy cake, and potato skin, for a period of 3 months. Within 84 days, 35 % oil loss was recorded in the unamended polluted soil while 88, 81 and 75 % oil loss were recorded in the soil amended with soy cake, potato skin and tea leaf, respectively. Diesel fuel utilizing bacteria counts were significantly high in all organic wastes amended treatments, ranging from 111 × 106 to 152 × 106 colony forming unit/gram of soil, as compared to the unamended control soil which gave 31 × 106 CFU/g. The diesel fuel utilizing bacteria isolated from the oil-contaminated soil belongs to Bacillus licheniformis, Ochrobactrum tritici and Staphylococcus sp. Oil-polluted soil amended with soy cake recorded the highest oil biodegradation with a net loss of 53 %, as compared to the other treatments. Dehydrogenase enzyme activity, which was assessed by 2,3,5-triphenyltetrazolium chloride technique, correlated significantly with the total petroleum hydrocarbons degradation and accumulation of CO2. First-order kinetic model revealed that soy cake was the best of the three organic wastes used, with biodegradation rate constant of 0.148 day?1 and half life of 4.68 days. The results showed there is potential for soy cake, potato skin and tea leaf to enhance biodegradation of diesel in oil-contaminated soil.  相似文献   

20.
Degradation of 4-chloro-2-nitro phenol by ozonation in aqueous solution was studied in a semi batch reactor under constant ozone dosage and variable pH conditions. The effectiveness of the process was estimated based on the degree of conversion of 4-chloro-2-nitro phenol. It was observed that ozonation is more effective at alkaline reaction of medium than other conditions. The degree of conversion achieved (at the first 5 minutes of the process)at pH 9 was 99.64% compared to 99.03% and 77.35% at pH 7 and 3, respectively. Another parameter used to quantify the 4-chloro-2-nitrophenol during ozonation was the pseudo first order rate constant k [min?1]. Results showed that the rate constant of the process was approximately much higher at the alkaline pH compared to acidic ones. A considerable improvement in chemical oxygen demand removal was observed at pH above 7. At pH 9, the reduction in chemical oxygen demand at the end of the process reached 56.9 %. The degree of organically bounded nitrogen conversion to nitrate was higher at pH 3. Of the total organic carbon reduction, 15.89 % was observed at pH 9. The 4-chloro-2-nitro phenol degradation intermediate products were analyzed by mass- spectrometry. The main intermediate product was chlorophenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号