首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Modern bone and enamel powders have reacted at 301 K with 13C- and 18O-labelled waters under inorganic and microbial conditions. The aim of the study is to investigate the resistance of stable isotope compositions of bioapatite carbonate (δ13C, δ18Oc) and phosphate (δ18Op) to isotopic alteration during early diagenesis. Rapid and significant carbon and oxygen isotope changes were observed in the carbonate and phosphate fractions of bone apatite before any detectable change occurred in the crystallinity or organic matter content. These observations indicate that chemical alterations of bone apatite are likely to start within days of death. Enamel crystallites are much more resistant than bone crystallites, but are not exempt of alteration. Non removable carbon and oxygen isotope enrichments were measured in the carbonate phase of bone (50-90%) and enamel (40%) after the acetic acid treatment. This result indicates that a significant part of 13C and 18O-labelled coming from the aqueous fluid has been durably incorporated into the apatite structure, probably through isotopic exchange or secondary carbonate apatite precipitation. As a result, acetic acid pre-treatments that are currently used to remove exogenous material by selective dissolution, are not adequate to restore pristine δ13C and δ18Oc values of fossil apatites. Under inorganic conditions, kinetics of oxygen isotope exchange are 10 times faster in carbonate than in phosphate. On the opposite, during biologically-mediated reactions, the kinetics of oxygen isotope exchange between phosphate and water is, at least, from 2 to 15 times faster than between carbonate and water. Enamel is a more suitable material than bone for paleoenvironmental or paleoclimatical reconstructions, but interpretations of δ18Op or δ13C values must be restricted to specimens for which no or very limited trace of microbial activity can be detected.  相似文献   

2.
Intra-tooth δ18O variations within the carbonate (δ18Oc) and phosphate (δ18Op) components of tooth apatite were measured for Miocene and Pliocene hypsodont mammals from Afghanistan, Greece and Chad in order to evaluate the resistance of enamel to diagenetic alteration. Application of water-apatite interaction models suggest that the different kinetic behaviours of the phosphate-water and carbonate-water systems can be used to detect subtle oxygen isotope disequilibria in fossil enamel when intra-individual variations are considered. Selective alteration of the oxygen isotope composition from the carbonate component of Afghan and Greek enamels suggests inorganic isotopic exchange processes. Microbially-induced isotopic exchange for phosphate is demonstrated for the first time in enamel samples from Chad, in association with extensive recrystallization. In Chad, δ18Op values were derived from partial isotopic exchange with fossil groundwater during early diagenesis. Mass balance calculations using average carbonate content in enamel as a proxy for recrystallization, and the lowest δ18Op value of dentine as a proxy for the isotopic composition of the diagenetic fluid, indicate that diagenesis can alter δ18Op by as much as 3‰ in some enamel samples. This diagenetic alteration is also responsible for a decrease in intra-individual variations of up to 1‰ in affected specimens. The effects of diagenesis on δ18Op values of fossil enamel are not systematic, however, and can only be estimated if sequential δ18Op and δ18Oc analyses are performed on fossil enamel and dentine. Reconstruction of large temporal- or spatial-scale paleoclimates based on δ18Op analyses from mammalian teeth cannot be considered valid if enamel has been affected by bacterial activity or if the data cannot be corrected for diagenetic effects.  相似文献   

3.
Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north–south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.  相似文献   

4.
Recent and fossil (prehistoric, Natufian) gazelle bones, dentin and enamel were analyzed for their oxygen isotopic composition (δ18O) of the phosphate and carbonate, as well as their crystallinity. Fossil bones and dentin have better crystallinity than recent specimens, indicating diagenetic change. Fossil enamel, on the other hand, is identical in crystallinity to recent enamel, indicating the lack of diagenetic alteration. Comparison of δ18O of carbonate and phosphate of the skeletal elements suggests that the coexisting phosphate and carbonate of both the recent and fossil specimens are close to isotopic equilibrium. This might suggest that both phases were affected by the same degree of diagenetic alteration, and that comparison of their δ18O is not useful for the selection of pristine material for paleoclimatic reconstruction purposes. Oxygen isotope analysis of gazelle enamel from the Natufian period from Hayonim Cave, Israel, show depletion in δ18O in comparison with recent enamel. This depletion is interpreted to represent a colder and/or wetter climate in the Natufian of northern Israel. © 1999 John Wiley & Sons, Inc.  相似文献   

5.
Oxygen and hydrogen isotope signatures of animal tissues are strongly correlated with the isotope signature of local precipitation and as a result, isotope signatures of tissues are commonly used to study resource utilization and migration in animals and to reconstruct climate. To better understand the mechanisms behind these correlations, we manipulated the isotope composition of the drinking water and food supplied to captive woodrats to quantify the relationships between drinking water (δdw), body water (δbw), and tissue (δt). Woodrats were fed an isotopically constant food but were supplied with isotopically depleted or enriched water. Some animals were switched between these waters, allowing simultaneous determination of body water turnover, isotope change recorded in teeth and hair, and fractional contributions of atmospheric O2, drinking water, and food to the oxygen and hydrogen budgets of the animals. The half-life of the body water turnover was 3-6 days. A mass balance model estimated that drinking water, atmospheric O2, and food were responsible for 56%, 30%, and 15% of the oxygen in the body water, respectively. Drinking water and food were responsible for 71% and 29% of the hydrogen in the body water, respectively. Published generalized models for lab rats and humans accurately estimated δbw, as did an updated version of a specific model for woodrats. The change in drinking water was clearly recorded in hair and tooth enamel, and multiple-pool and tooth enamel forward models closely predicted these changes in hair and enamel, respectively. Oxygen and hydrogen atoms in the drinking water strongly influence the composition of the body water and tissues such as hair and tooth enamel; however, food and atmospheric O2 also contribute oxygen and/or hydrogen atoms to tissue. Controlled experiments allow researchers to validate models that estimate δt based on δdw and so will increase the reliability of estimates of resource utilization and climate reconstruction.  相似文献   

6.
The paper gives a mineralogical and geochemical characterization of the North Gurvunur deposit, which was discovered in the Eravna ore district. The ore is composed of apatite–magnetite paragenesis. Apatite is distinguished by elevated LREE concentrations; some of them are contained in emulsion-type impregnation of monazite. Hematitization, carbonate, quartz, and pyrite veinlets formed at the postore stage, and gypsum–anhydrite mineralization is widespread in the supraore sequence. Two groups of endogenic minerals are distinguished by oxygen isotopic composition. One of them comprises magnetite and apatite, which are characterized by a homogeneous composition throughout the section of the ore lode and are close to the mantle source. The oxygen–isotope temperature calculated for the apatite–magnetite couple (620–800°C) provides evidence for magmatic origin of ore. The δ18O of fluid in equilibrium with hematite is 8.0–8.5‰ and shows a certain enrichment in crustal component; carbonates of postore veinlets reveal participation of meteoric water. The study has made it possible to refer the North Gurvunur deposit to the Kiruna type.  相似文献   

7.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

8.
不同学者用磷酸平衡法分析古哺乳动物牙齿化石碳酸羟基磷灰石中结构碳酸盐的碳、氧稳定同位素组成时,预处理方法和实验条件也不尽相同。实测结果表明,预处理条件与磷酸法制备CO2的反应温度和反应时间均可能对分析结果产生影响,需在综合运用机械和化学手段除净外表附着碳酸盐的前提下,将样品充分研磨,并彻底分解其中的有机组分和非结构碳酸盐,再制备CO2。70℃的恒温水浴可以使化学反应和同位素分馏均在短时间内结束,且较为完全、彻底,测得的同位素数据重现性好;而25℃时反应进行较缓,氧同位素测试结果有时可能不理想  相似文献   

9.
Isotope-geochemical study of the Ermakovskoe fluorine–beryllium deposit was carried out to estimate the ore sources and role of host carbonate rocks in its formation. We analyzed oxygen and carbon isotope compositions in marbles, skarn carbonates, ore and post-ore parageneses; oxygen isotope compositions in oxides, silicates, apatite; and sulfur isotope composition in sulfides and sulfates. Sources of fluids participating in the rock and ore formation were determined using hydrogen and oxygen isotope compositions in hydroxyl-bearing minerals: phlogopite from marbles, vesuvian from skarns, eudidymite and bertrandite from ore parageneses, and bavenite of the post-ore stage. Isotopic studies suggest crustal source of sulfur, oxygen, and carbon dioxide, while oxygen and hydrogen isotope compositions in the hydroxyl-bearing minerals points to the contribution of meteoric waters in the formation of the fluorine-beryllium ores.  相似文献   

10.
磷酸盐氧同位素组成的测定方法及分馏机理研究进展   总被引:4,自引:0,他引:4  
磷酸盐氧同位素组成在古气候和磷的生物地球化学循环研究中都具有十分重要的意义.测定方法和同位素的分馏机理是该类研究的基础.国际上已开展了一系列磷酸盐氧同位素的测定方法和分馏机理研究.在测定方法上,由初期的间接法,经高温还原/裂解法到氟化法,再演化到改进后的高温还原法(包括TC/EA-IRMS法),甚至激光原位技术,样品由实验室纯化学试剂扩展到各种复杂地质样品,在测量精确度、测量速度、样品用量、安全性和技术要求方面都有巨大改进.在分馏机理上,①尽管Longinelli等建立的关系式已获得了天然样品的验证,并认为是平衡分馏,但实验室模拟结果与其还存在较大差异(即没有达到平衡分馏).②在地表温度和pH条件下,无机过程均不会造成水体中溶解态磷酸盐和水之间的氧同位素交换.在高温(>70℃)及不同pH条件下,即使没有生物作用也会造成溶解磷酸盐和水分子之间进行氧的同位素交换,但不同实验室之间结果不一致.③在生物作用存在下,溶解无机磷酸盐和水之间在地表环境会发生强烈氧同位素交换,但除了PPase外,其余均没有达到平衡值.④磷灰石的氧同位素组成要比形成它的溶解态磷酸盐的值高1‰~1.4‰,因此在把Longinelli等关系式用于溶解态磷酸盐和水体系时,需要考虑该因素.同位素平衡分馏和条件有关,认为无机条件下的高温(>70℃)实验结果不一致,以及有生物参与的培养实验结果偏离平衡值,都是实验条件不同所致,包括pH、磷酸盐浓度、生物种类、生物量等.  相似文献   

11.
刘康  周锡强  江茂生 《沉积学报》2022,40(2):396-409
牙形刺是寒武系至三叠系海相地层里常见的磷酸盐质古生物化石,具有分布较广、易于保存等优势,其氧同位素可用于重建同时期海水温度,受到广泛关注和重视.从牙形刺基本特征、氧同位素古温度计原理、氧同位素分析测试方法等方面,对牙形刺氧同位素古温度计的基本特点和原理进行了回顾.在此基础上,进一步讨论了牙形动物生物习性、成岩作用改造、...  相似文献   

12.
The oxygen (δ18Oc) and carbon (δ13Cc) isotope compositions of the structural carbonate group (CO3) in apatites from lateritic profiles were investigated. The weathering profiles, located in southern Brazil and in western Senegal, are developed on three different types of apatite-rich parent rock: carbonatite, metamorphosed marine phosphorite and sedimentary marine phosphorite. The parent rock apatites are of magmatic, hydrothermal, metamorphic and sedimentary origins. The in situ formation of apatite of weathering origin in the profiles is well documented petrographically and geochemically.The overall range of measured δ18Oc and δ13Cc values of apatites of weathering origin (22 to 27 SMOW for δ18Oc and −15 to −10 PDB for δ13Cc) is much smaller than the range of measured and/or published isotope compositions of parent rock apatites (4–35 for δ18Oc and −11 to +1 for δ13Cc). In any profile, the apatites of weathering origin can exhibit lower, similar or higher δ18Oc values than parent rock apatites. In contrast, their δ13Cc values are systematically and significantly lower than those of the parent rock apatites. Apatites formed as a result of weathering in laterites can therefore be readily distinguished from apatites of other origin on the basis of their isotope composition.Assuming that apatite CO3 fractionates O in a way similar to calcite CO3, the structural carbonate group of the apatites of weathering origin appears to form in approximate isotopic equilibrium with the weathering solutions. The very low δ13Cc values exhibited by these apatites indicate that the dominant sources of dissolved CO2 in the soil water are organic. The isotope composition of structural carbonate in apatite of weathering origin in lateritic profiles may provide useful information for paleoenvironmental studies.  相似文献   

13.
赵东旭 《地质科学》1985,(4):381-390
泥晶磷块岩(micritic phosphorite)是磷块岩的主要类型之一。我国的磷块岩矿床也多有这种矿石。过去往往把组成泥晶磷块岩的磷酸盐矿物叫做胶磷矿(collophane)。扫描电镜、X-射线衍射等观察结果表明,胶磷矿实际上也是结晶质磷灰石,只是由于颗粒极其微小而已。由这种泥晶磷灰石组成的泥晶磷块岩也同样不像过去描述的那样单调,而是具有比较复杂的结构、构造。  相似文献   

14.
Paleo-environmental implication of clumped isotopes in land snail shells   总被引:1,自引:0,他引:1  
Clumped isotopes analyses in modern land snail shells are reported and used to interpret shell oxygen isotopes within the context of terrestrial paleo-climatology. Carbonate clumped isotopes thermometry is a new technique for estimating the temperature of formation of carbonate minerals. It is most powerful as an indicator of environmental parameters in combination with δ18O, allowing the partitioning of the δ18O signal into its temperature and water components. Results indicate that snail shell calcification temperatures are typically higher than either the mean annual or the snail activity season ambient temperatures. Small inter- and intra-snail variability suggests that shell aragonite forms at isotopic equilibrium so that the derived temperatures are an eco-physiological parameter reflecting snail body temperature at the time of calcification. We attribute these higher body temperatures to snail eco-physiological adaptations through shell color, morphology, and behavior. In combination with shell oxygen isotope composition, these temperatures allow us to calculate snail body water composition, which is in turn interpreted as a paleo-hydrological indicator, reflecting isotopic composition of local precipitation modified by local evaporation.  相似文献   

15.
Eclogite formation on the island of Holsnøy required the addition of water to anhydrous granulite-facies protoliths. In order to assess this process, oxygen and carbon isotope ratios of whole rock powders and mineral separates from eclogites and granulites have been measured. Whole rock oxygen isotope ratios range from 7.3 to 6.0%. SMOW in granulites (average = 6.38%.) and 7.2 to 6.1%. in eclogites (average = 6.55%.). Field relations permit identification of the granulite protolith of eclogites. Oxygen isotope measurements show shifts of up to 0.5%. between some eclogites compared to their corresponding granulite protoliths, indicating open system and locally heterogeneous fluid behavior. Mineral pair fractionations in the eclogites show disequilibrium, are incompatible with slow cooling and diffusive exchange between phases, and suggest that open system fluid movement continued after eclogite-facies metamorphism. Carbonate is also present in some of the eclogites as a primary mineral (dolomite) and as part of a retrograde assemblage (calcite). Textural evidence suggests that carbonate formation occurred during and after eclogite formation, however all measured carbonate is out of isotopic equilibrium with eclogite facies minerals, due to the influx of retrograde fluids. Massive calcite marble pods, containing amphibolite facies cale-silicate minerals, have average δ18O of 9.5 ± 0.6%., while calcite in retrograded eclogites has δ18O 17.7 ± 2.7%., The δ13C (≈ −4 ± 0.8%.) is indistinguishable between these two groups.

Both whole rock and carbonate stable isotope data are interpreted as indicating a continued history of fluid infiltration during and after peak eclogite facies metamorphism. The most probable source of fluids are from dewatered sediments tectonically juxtaposed during the Caledonian orogeny.  相似文献   


16.
The Late-Cretaceous Catalão I contains stockworks of thin dykes of phoscorite-series rocks, which can be subdivided into P1 (olivine-bearing, phoscorites) and P2/P3 (olivine-lacking, nelsonites). Dolomite carbonatites (DC) are intimately associated with nelsonites, as pockets and dykes. The P2 apatite nelsonite, the P3 magnetite nelsonite, and, to a lesser extent DC, host the Catalão I niobium mineralization. C–O isotopes signatures in carbonates reveal several distinct magmatic and post-magmatic processes. Limpid carbonates with stable isotopic mantle-like composition show Rayleigh fractionation and are interpreted as primary, while those with brittle-turbid aspect, and higher oxygen isotope composition, probably underwent recrystallization by interaction with H2O-rich fluids. A group of samples shows higher oxygen compositions and lower carbon values, which could be explained by degassing of carbonatite magma during cooling. A degassing pattern, parallel to magmatic degassing but at higher oxygen and lower carbon compositions, observed in carbonate veins, may indicate degassing of fracture filling fluids. Furthermore, C–O isotopes of carbonate from monazite-bearing carbonatite have a positive correlation, indicating a distinct, late-stage carbo-hydrothermal event. Though the Catalão I nelsonites and phoscorites are of igneous origin, they underwent several post-magmatic events, which sometimes overprinted partially or entirely the magmatic isotope signature.  相似文献   

17.
The effects of phosphate speciation on both rates of isotopic exchange and oxygen isotope equilibrium fractionation factors between aqueous phosphate and water were examined over the temperature range 70 to 180°C. Exchange between phosphate and water is much faster at low pH than at high pH, an observation that is similar to what has been observed in the analogous sulfate-water system. Oxygen isotope fractionations between protonated species like H3PO4 and H2PO4 that are dominant at relatively low pH and species like PO43− and ion pairs like KHPO4 that are dominant at relatively high pH, range between 5 and 8‰ at the temperatures of the experiments. In aqueous phosphate systems at equilibrium, 18O/16O ratios increase with increasing degree of protonation of phosphate. This effect can be explained in part by the relative magnitudes of the dissociation constants of the protonated species. Under equilibrium conditions, carbonate in solution or in solid phases concentrates 18O relative to orthophosphate in solution or in solid phases at all temperatures, supporting the traditional view that biogenic phosphate is precipitated in near oxygen isotope equilibrium with body/ambient aqueous fluids with no attendant vital effects.  相似文献   

18.
Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ2H values in the early spring to autochthonous particulate matter with significantly lower δ2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.  相似文献   

19.
To study what dictates oxygen isotope equilibrium fractionation between inorganic carbonate and water during carbonate precipitation from aqueous solutions, a direct precipitation approach was used to synthesize witherite, and an overgrowth technique was used to synthesize aragonite. The experiments were conducted at 50 and 70°C by one- and two-step approaches, respectively, with a difference in the time of oxygen isotope exchange between dissolved carbonate and water before carbonate precipitation. The two-step approach involved sufficient time to achieve oxygen isotope equilibrium between dissolved carbonate and water, whereas the one-step approach did not. The measured witherite-water fractionations are systematically lower than the aragonite-water fractionations regardless of exchange time between dissolved carbonate and water, pointing to cation effect on oxygen isotope partitioning between the barium and calcium carbonates when precipitating them from the solutions. The two-step approach experiments provide the equilibrium fractionations between the precipitated carbonates and water, whereas the one-step experiments do not. The present experiments show that approaching equilibrium oxygen isotope fractionation between precipitated carbonate and water proceeds via the following two processes:
1.
Oxygen isotope exchange between [CO3]2− and H2O:
(1)  相似文献   

20.
By far the commonest consituents of insular phosphate deposits are calcium phosphates of the apatite series of minerals, especially varieties that contain structural carbonate in their crystal lattices, e.g. francolite and dahllite. This reflects the fact that the vast majority of described insular phosphate deposits occur in low latitudes, where they have formed, in a tropical environment, by metasomatic replacement of carbonate in coral substrates by phosphate derived either from avian excrement or from phosphorus-enriched lagoonal/lacustrine waters. Thin, recently-formed guano accumulations on islands of the subantarctic Bounty group differ radically in that they consist principally of struvite, a hydrated ammonium magnesium phosphate that is better known as a component of human/mammalian urinary stones and enteroliths, and of bat guano in sheltered speleothems. Apatite occurs only in an accessory role in the Bounty Islands guano. This contrast in mineralogy, and the somewhat anomalous survival of soft, unstable struvite in a totally exposed environment on the Bounty Islands, are attributed to climatic factors and to the nature of the granodioritic rock substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号