首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Extraction of coastal ocean wave fields from SAR images   总被引:3,自引:0,他引:3  
Wave spectra derived from synthetic aperture radar (SAR) images acquired by ENVISATs are compared to in situ measurements by seven sensors, deployed in a field experiment carried out on the French coast of La Manche (English Channel). The wave spectra inversion scheme is adapted for shallow water from the European Space Agency (ESA)'s operational processing techniques used for level 2 ocean wave products. Under the low to moderate wind speed observed conditions, overall good agreement is found between in situ and SAR observations over a wide range of wave heights and directions, including waves propagating in the radar azimuth direction and incidence angles different from the standard imagette products.  相似文献   

3.
INTRODUCTIONOne of the interesting oceanographic features detected with SAR is the shallow bottom toPOgraphic feature and bathymetry nearshore. The knowledge on sea bottom toPOgraphy is of vitalimPOrtance not only for shipping, fishery and all kinds of offshore activities, but also for the calibration and validation of morphodynamic models which are currently under development. Traditional bathymetric surveys consume time and cost. SAR remote sensing of oceanography may offeran altern…  相似文献   

4.
In the satellite synthetic aperture radar (SAR) images of the Bohai Sea and Huanghai Sea, the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km. Comparing SAR observations with sea surface wind fields and surface weather maps, the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front. The authors define the waves as atmospheric frontal gravity waves. The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008. A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves. The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images. The CMOD-5 (C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV (transmitted vertical and received vertical) for ENVISAT and HH (transmitted horizontally and received horizontally) for RADARSAT-1. A reasonable agreement between the analytical solution and the SAR observation is reached. This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves, coastal lee waves, and upstream Atmospheric Gravity Waves (AGW).  相似文献   

5.
Ocean wave parameters retrieved directly from compact polarimetric SAR data   总被引:1,自引:0,他引:1  
We aim to directly invert wave parameters by using the data of a compact polarimetric synthetic aperture radar(CP SAR) and validate the effectiveness of ocean wave parameter retrieval from the circular transmit/linear receive mode and π/4 compact polarimetric mode. Relevant data from the RADARSAT-2 fully polarimetric SAR on the C-band were used to obtain the compact polarimetric SAR images, and a polarimetric SAR wave retrieval algorithm was used to verify the sea surface wave measurements. Usin...  相似文献   

6.
Five measurement strategies (four in situ, one remote) for estimating directional wave spectra were intercompared in a 1980 experiment at the Coastal Engineering Research Center's Field Research Facility in Duck, NC. The systems included two pressure sensor/biaxial current meter combinations (different manufacturers), a triaxial acoustic current meter, an SXY gauge (square array of four pressure sensors), and a shore-based imaging radar. A detailed error analysis suggests sources for differences in estimated wave spectra from the different instruments; in general, they intercompare favorably. The major deviation among in situ gauges was associated with the triaxial acoustic current meter. Reliance on a vertical velocity measurement (instead of a direct pressure or sea-surface elevation measurement) can contribute additional uncertainty in directional spectral estimates. The imaging radar was successful in distinguishing multiple wave trains at the same frequency, which was not possible with the simple spectral estimation analysis applied to in situ data. However, the radar is not useful in providing accurate estimates of spectral density, nor in distinguishing multiple wave trains of different frequencies coming from the same direction. Selection of a measurement strategy for a particular need depends on the precise data requirements for that application. Although the five tested intercompared well, in practice not all are equally suitable for every application.  相似文献   

7.
Directional wave information from the SeaSonde   总被引:1,自引:0,他引:1  
This paper describes methods used for the derivation of wave information from SeaSonde data, and gives examples of their application to measured data. The SeaSonde is a compact high-frequency (HF) radar system operated from the coast or offshore platform to produce current velocity maps and local estimates of the directional wave spectrum. Two methods are described to obtain wave information from the second-order radar spectrum: integral inversion and fitting with a model of the ocean wave spectrum. We describe results from both standard- and long-range systems and include comparisons with simultaneous measurements from an S4 current meter. Due to general properties of the radar spectrum common to all HF radar systems, existing interpretation methods fail when the waveheight exceeds a limiting value defined by the radar frequency. As a result, standard- and long-range SeaSondes provide wave information for different wave height conditions because of their differing radar frequencies. Standard-range SeaSondes are useful for low and moderate waveheights, whereas long-range systems with lower transmit frequencies provide information when the waves are high. We propose a low-cost low-power system, to be used exclusively for local wave measurements, which would be capable of switching transmit frequency when the waveheight exceeds the critical limit, thereby allowing observation of waves throughout the waveheight range.  相似文献   

8.
利用X波段雷达图像估计有效波高   总被引:1,自引:0,他引:1  
海浪有效波高与雷达的海杂波强度有关,但是无法直接由雷达图像得到.借鉴运用SAR图像计算有效波高的方法,即假设有效波高与雷达回波强度信噪比的平方根成线性关系,可以由X波段雷达图像计算得到海浪的有效波高.将在小麦岛和南海分别进行的岸基试验和船基试验获得的浮标资料和雷达资料结合起来分析,结果表明用X波段航海雷达测量有效波高的最大误差不超过9%.  相似文献   

9.
1 .Introduction1ThisstudywassupportedbyNSCinTaiwanundertheprojectNo .NSC 89 2 611 E 0 0 6 0 4 0 . Correspondingauthor.E mail:djdoong @pchome .com .tw  Oceanwaves ,whichareextremelyrandom ,aredirectlyandindirectlydependentonmeteorologi cal,hydrological,oceanographicandtopog…  相似文献   

10.
全极化合成孔径雷达近岸风场反演研究   总被引:2,自引:2,他引:0  
Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not provide any information about the coastal wind field, as the coarse spatial resolution hampers the radar backscattering. Synthetic aperture radar (SAR) with a high spatial resolution and all-weather observation abilities has become one of the most important tools for ocean wind retrieval, especially in the coastal area. Conventional methods of wind field retrieval from SAR, however, require wind direction as initial information, such as the wind direction from numerical weather prediction models (NWP), which may not match the time of SAR image acquiring. Fortunately, the polarimetric observations of SAR enable independent wind retrieval from SAR images alone. In order to accurately measure coastal wind fields, this paper proposes a new method of using co-polarization backscattering coefficients from polarimetric SAR observations up to polarimetric correlation backscattering coefficients, which are acquired from the conjugate product of co-polarization backscatter and cross-polarization backscatter. Co-polarization backscattering coefficients and polarimetric correlation backscattering coefficients are obtained form Radarsat-2 single-look complex (SLC) data.The maximum likelihood estimation is used to gain the initial results followed by the coarse spatial filtering and fine spatial filtering. Wind direction accuracy of the final inversion results is 10.67 with a wind speed accuracy of 0.32 m/s. Unlike previous methods, the methods described in this article utilize the SAR data itself to obtain the wind vectors and do not need external wind directional information. High spatial resolution and high accuracy are the most important features of the method described herein since the use of full polarimetric observations contains more information about the space measured.This article is a useful addition to the work of independent SAR wind retrieval. The experimental results herein show that it is feasible to employ the co-polarimetric backscattering coefficients and the polarimetric correlation backscattering coefficients for coastal wind field retrieval.  相似文献   

11.
We have developed a scheme to retrieve surface wave parameters (wave height and wave propagation direction) from European Remote-Sensing Satellite (ERS) Synthetic Aperture Radar (SAR) image mode data in coastal seas around Japanese coastlines. SAR spectra are converted to surface wave spectra of swell-dominated or wind-wave dominated cases. The SAR spectrum and SAR-derived wind speed are used to derive the surface wave spectrum. The wind-wave dominated case and swell-dominated case are differentiated by a wind speed of 6 m/s, and processed in different ways because of their different degree of nonlinearity. It is indicated that the cutoff wavelength for retrieval of the wind-wave dominated spectrum is proportional to the root of significant wave height, which is consistent with the results of previous studies. We generated 66 match-ups using the SAR sub-images and the in-situ surface wave parameters, which were measured by wave gauges installed in near-shore seas. Among them, there are 57 swell-dominated cases, and 9 wind-wave dominated cases. The significant wave heights derived from SAR and from in-situ observation agree with the bias of 0.09 m, the standard deviation of 0.61 m and the correlation coefficient of 0.78. The averaged absolute deviation of wave propagation directions is 18.4°, and the trend of the agreement does not depend on the wave height. These results demonstrate that the SAR surface wave spectrum retrieved by the present system can be used to observe the surface wave field in the coastal seas around Japan.  相似文献   

12.
In this paper, results are presented on the comparison of X-band radar backscattering coefficient (RBC) from an oilcovered sea surface that features the Elfouhaily and Durden-Vesecky waveheight spectra. The Durden-Vesecky spectrum applies to a fully-developed sea, while the Elfouhaily spectrum accounts for the fetch of arbitrary length. Using these two waveheight spectra, a one-dimensional random rough surface is simulated by the Monte Carlo method, and the method of moments (MoM) is applied to yield the RBC. Comparison of the results with TerraSAR-X synthetic aperture radar (SAR) data acquired over the coastal waters polluted by the Hebei Spirit oil tanker shows that the Elfouhaily spectrum yields better agreement than the Durden-Vesecky spectrum for the fully-developed sea, and that the fetch-dependent Elfouhaily spectrum improves the agreement with SAR data in comparison with the fetch-independent spectrum for the fully developed sea. A possible application to estimate the amount of spilled oil is also suggested.  相似文献   

13.
船用X波段导航雷达凹波形成的海杂波图像中包含丰富的海浪、海表层流信息.借鉴合成孔径雷达(SAR)估计有效波高的方法,假设有效波高与雷达回波强度信噪比的平方根成线性关系,可由X波段雷达图像估计得到海浪的有效波高.用此方法主要分析小麦岛海域实验数据,结果显示,直流滤波后计算的信噪比估计的有效波高比不进行直流滤波结果符合得好;而按波浪浮标测得有效波高数据的高低,分两段分别进行线性拟合获取校准系数,估测的有效波高更加准确.  相似文献   

14.
Radar remote sensing of the ocean has been the subject of research for about 20 years. Spaceborne radar altimetry and scatterometry are approaching maturity, and synthetic-aperture radars (SAR) show great promise. The principles of radar scattering from the sea are outlined here, along with some recently discovered questions. For wind-vector scatterometry, the principle is presented, and remaining uncertainties are outlined. Principles of SAR imaging of moving targets, and particularly the ocean surface, are outlined. The theory of SAR wave imaging is the subject of considerable controversy, and some principles that can be used in evaluating the various theories are presented, along with brief outlines of the major conflicting theories. Other uses of SAR images are discussed briefly, with a theory to explain the bathymetric expression outlined.  相似文献   

15.
Compared to single-polarization synthetic aperture radar(SAR) data, fully polarimetric SAR data can provide more detailed information of the sea surface, which is important for applications such as shallow sea topography detection. The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research. In this paper, a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data. This method considers swell patterns and only requires SAR data and ...  相似文献   

16.
17.
Shallow water depth retrieval from space-borne SAR imagery   总被引:1,自引:1,他引:0  
Based on shallow water bathymetry synthetic aperture radar (SAR) imaging mechanism and the microwave scattering imaging model for oceanic surface features, we developed a new method for shallow water depth retrieval from space-borne SAR images. The first guess of surface currents and winds are estimated from the normalized radar crossing section (NRCS) profile of shallow water bathymetry SAR imagery, according to the linear theory and geophysical model function. The NRCS profile is then simulated by the microwave scattering imaging model. Both the surface currents and winds are adjusted by using the dichotomy method step by step to make the M4S-simulated NRCS profiles approach those observed by SAR. Then, the surface currents and the wind speeds are retrieved when a best fit between simulated signals and the SAR image appears. Finally, water depths are derived using the Navier–Stokes equation and finite difference method with the best estimated currents and the surface winds. The method is tested on two SAR images of the Taiwan Shoal. Results show that the simulated shallow water NRCS profile is in good agreement with those measured by SAR with the correlation coefficient as high as 85%. In addition, when water depths retrieved from the SAR image are compared with in situ measurements, both the root mean square and relative error are less than 3.0 m and 6.5%, respectively, indicating that SAR images are useful for shallow water depth retrieval and suggesting that the proposed method in this paper is convergent and applicable.  相似文献   

18.
Use of nautical radar as a wave monitoring instrument   总被引:2,自引:0,他引:2  
Common marine X-Band radars can be used as a sensor to survey ocean wave fields. The wave field images provided by the radars are sampled and analysed by a wave monitoring system (called WaMoS II) developed by the German research institute GKSS. This measuring system can be mounted on a ship, on offshore stations or at coastal locations. The measurement is based on the backscatter of microwaves from the ocean surface, which is visible as ‘sea clutter' on the radar screen. From this observable sea clutter, a numerical analysis is carried out. The unambiguous directional wave spectrum, the surface currents and sea state parameters such as wave periods, wave lengths, and wave directions can be derived. To provide absolute wave heights, the response of the nautical radar must be calibrated. Similar to the wave height estimations for Synthetic Aperture Radars, the so-called ‘Signal to Noise Ratio' leads to the determination of the significant wave height (HS). In this paper, WaMoS II results are compared with directional buoy data to show the capabilities of nautical microwave radars for sea state measurements.  相似文献   

19.
合成孔径雷达是海洋内波研究中最重要的工具之一。雷达图像中的斑点噪声会严重降低图像的质量,这一问题在处理和分析信号较弱的二模态内波信号和上升型内波信号时极为明显。合成孔径雷达图像中的海洋内孤立波的信号具有明显的尺度性和方向性。同时,curvelet变换作为一种同时具备尺度分辨率和方向分辨率的数学变换,能够对一幅雷达图像在不同尺度、不同方向和不同位置上进行分析。本文给出了一个基于curvelet变换的合成孔径雷达海洋内孤立波图像的斑点噪声抑制方法。该方法可简述为:(1)对一幅合成孔径雷达海洋内孤立波图像进行curvelet变换,获得curvelet系数;(2)分别仅仅保留一个尺度的系数,将其它尺度的系数置为零,利用处理之后的系数分别重建图像,得到仅仅用一个尺度的系数重建的图像;(3)分别计算上一步中得到的图像的均方差,根据波浪理论,图像的方差代表能量,方差越大则能量越大,以此可以确定内波信息集中的尺度;(4)在每个尺度下,分别计算每个方向的curvelet系数矩阵的平均值,以此确定内孤立波信号集中的方向;(5)在上两步工作的基础上,仅仅保留内波信号集中的尺度和方向的系数,而将其它尺度和方向的系数置为0,得到一幅提取主波信息的图像;(6)将上一步得到的提取主波信息的图像加回到原始图像中,从而达到增强波浪信息并抑制斑点噪声的目的。大量的实验验证表明,该方法不仅能有效地压制斑点噪声,而且能有效地增强波浪信号。  相似文献   

20.
欧洲环境卫星-高级合成孔径雷达(EnvironmentalSatellite-AdvancedSyntheticAperture Radar,Envisat-ASAR)波模式数据提供了全球风、浪要素信息,在海浪模式预报与同化方面有重要作用。该数据合成孔径雷达(SyntheticApertureRadar,SAR)图像普遍存在海浪条纹清晰度不同的现象,但是否影响数据精度尚无定论。本文通过比较2010年NODC (the National Oceanographic Date Center)浮标观测数据和波模式数据,发现经过官方修正后的海浪参数反而具有更大误差。进而通过对比不同条纹清晰度的SAR图像反演参数误差,揭示了ASAR产品海浪参数与浮标测量值之间的误差与海浪条纹清晰度的关系。结果表明:海浪条纹清晰的SAR图像的主波波长和主波周期的反演误差更小,而条纹不清晰SAR图像的有效波高和风速的反演误差更小。通过分析海浪参数对海浪条纹清晰度的敏感性,证实了有效波高和方位向截断波长对SAR图像条纹清晰度的响应最好,波陡次之,与卫星飞行方位角和入射角无关。因此,在反演和修正SAR波模式数据时,考虑图像的条纹清晰度,将会有效提高反演数据的精度。该研究可为高分三号等卫星的波模式数据波浪要素反演精度的提升提供有价值的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号