首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全极化合成孔径雷达近岸风场反演研究   总被引:2,自引:2,他引:0  
Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not provide any information about the coastal wind field, as the coarse spatial resolution hampers the radar backscattering. Synthetic aperture radar (SAR) with a high spatial resolution and all-weather observation abilities has become one of the most important tools for ocean wind retrieval, especially in the coastal area. Conventional methods of wind field retrieval from SAR, however, require wind direction as initial information, such as the wind direction from numerical weather prediction models (NWP), which may not match the time of SAR image acquiring. Fortunately, the polarimetric observations of SAR enable independent wind retrieval from SAR images alone. In order to accurately measure coastal wind fields, this paper proposes a new method of using co-polarization backscattering coefficients from polarimetric SAR observations up to polarimetric correlation backscattering coefficients, which are acquired from the conjugate product of co-polarization backscatter and cross-polarization backscatter. Co-polarization backscattering coefficients and polarimetric correlation backscattering coefficients are obtained form Radarsat-2 single-look complex (SLC) data.The maximum likelihood estimation is used to gain the initial results followed by the coarse spatial filtering and fine spatial filtering. Wind direction accuracy of the final inversion results is 10.67 with a wind speed accuracy of 0.32 m/s. Unlike previous methods, the methods described in this article utilize the SAR data itself to obtain the wind vectors and do not need external wind directional information. High spatial resolution and high accuracy are the most important features of the method described herein since the use of full polarimetric observations contains more information about the space measured.This article is a useful addition to the work of independent SAR wind retrieval. The experimental results herein show that it is feasible to employ the co-polarimetric backscattering coefficients and the polarimetric correlation backscattering coefficients for coastal wind field retrieval.  相似文献   

2.
Many synthetic aperture radar(SAR) wave height retrieval algorithms have been developed.However,the wave height retrievals from most existing methods either depend on other input as the first guess or are restricted to the long wave regime.A semiempirical algorithm is presented,which has the objective to estimate the wave height from SAR imagery without any prior knowledge.The proposed novel algorithm was developed based on the theoretical SAR ocean wave imaging mechanism and the empirical relation between two types of wave period.The dependency of the proposed model on radar incident and wave direction was analyzed.For Envisat advanced synthetic aperture radar(ASAR) wave mode data,the model can be reduced to the simple form with two input parameters,i.e.,the cutoff wavelength and peak wavelength of ocean wave,which can be retrieved from SAR imagery without any prior knowledge of wind or wave.Using Envisat ASAR wave mode data and the collocated buoy measurements from NDBC,the semiempirical algorithm is validated and compared with the Envisat ASAR level 2 products.The root-mean-square-error(RMSE) and scatter index(SI) in respect to the in situ measurements are 0.52 m and 19% respectively.Validation results indicate that,for Envisat ASAR wave mode data,the proposed method works well.  相似文献   

3.
Theoretical-based ocean wave retrieval algorithms are applied by inverting a synthetic aperture radar(SAR)intensity spectrum into a wave spectrum, that has been developed based on a SAR wave mapping mechanism. In our previous studies, it was shown that the wave retrieval algorithm, named the parameterized first-guess spectrum method(PFSM), works for C-band and X-band SAR at low to moderate sea states. In this work, we investigate the performance of the PFSM algorithm when it is applied for dual-polarization c-band sentinel-1(S-1) SAR acquired in extra wide-swath(EW) and interferometric wide-swath(IW) mode under cyclonic conditions.Strong winds are retrieved from six vertical-horizontal(VH) polarization S-1 SAR images using the c-band crosspolarization coupled-parameters ocean(C-3 PO) model and then wave parameters are obtained from the image at the vertical-vertical(VV) polarization channel. significant wave height(SWH) and mean wave period(MWP) are compared with simulations from the WAVEWATCH-III(WW3) model. The validation shows a 0.69 m root mean square error(RMSE) of SWH with a –0.01 m bias and a 0.62 s RMSE of MWP with a –0.17 s bias. Although the PFSM algorithm relies on a good quality SAR spectrum, this study confirms the applicability for wave retrieval from an S-1 SAR image. Moreover, it is found that the retrieved results have less accuracy on the right sector of cyclone eyes where swell directly affects strong wind-sea, while the PFSM algorithm works well on the left and rear sectors of cyclone eyes where the interaction of wind-sea and swell is relatively poor.  相似文献   

4.
Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360°. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.  相似文献   

5.
Chinese Gaofen-3(GF-3) is the first civilian satellite to carry C-band(5.3 GHz) synthetic aperture radar(SAR).During the period of August 2016 to December 2017, 1 523 GF-3 SAR images acquired in quad-polarization(vertical-vertical(VV), horizontal-horizontal(HH), vertical-horizontal(VH), and horizontal-vertical(HV)) mode were recorded, mostly around China's seas. In our previous study, the root mean square error(RMSE) of significant wave height(SWH) was found to be around 0.58 m when compared with retrieval results from a few GF-3 SAR images in co-polarization(VV and HH) with moored measurements by using an empirical algorithm CSAR_WAVE. We collected a number of sub-scenes from these 1 523 images in the co-polarization channel,which were collocated with wind and SWH data from the European Centre for Medium-Range Weather Forecasts(ECMWF) reanalysis field at a 0.125° grid. Through the collected dataset, an improved empirical wave retrieval algorithm for GF-3 SAR in co-polarization was tuned, herein denoted as CSAR_WAVE2. An additional 92 GF-3 SAR images were implemented in order to validate CSAR_WAVE2 against SWH from altimeter Jason-2, showing an about 0.52 m RMSE of SWH for co-polarization GF-3 SAR. Therefore, we conclude that the proposed empirical algorithm has a good performance for wave retrieval from GF-3 SAR images in co-polarization.  相似文献   

6.
许荞晖  张彦敏  王运华 《海洋学报》2021,43(12):111-121
本文首先对合成孔径雷达(SAR)海浪成像中的3种调制(倾斜调制、流体力学调制与速度聚束调制)的影响进行了对比分析,结果显示:速度聚束调制对SAR图像的影响最为显著。另外,由于SAR图像中固有相干斑噪声的存在,较低波数范围的噪声难以滤除或抑制,利用经典MPI方法反演海浪谱会造成低波数范围谱值偏大。基于此,本文借鉴经典MPI海浪谱反演算法,建立了基于速度聚束调制的海浪方位向斜率谱和有效波高的反演算法。通过将经典MPI方法、同极化调制法及本文算法等3种海浪反演方法所得有效波高与浮标数据进行比较,结果显示:本文方法反演得到的海浪有效波高与浮标数据获得的有效波高之间的均方误差为0.79 m,为3种方法中最小。  相似文献   

7.
This paper proposes the retrieval method of ocean wave spectrum for airborne radar observations at small incidence angles, which is slightly modified from the method developed by Hauser. Firstly, it makes use of integration method to estimate total mean square slope instead of fitting method, which aims to reduce the affects of fluctuations superposed on normalized radar cross-section by integration. Secondly, for eliminating the noise spectrum contained in signal spectrum, the method considers the signal spectrum in certain look direction without any long wave components as the assumed noise spectrum, which would be subtracted from signal spectrum in any look direction for linear wave spectrum retrieval. Estimated ν from the integration method are lower than the one from fitting method and have a standard deviation of 0.004 between them approximately. The assumed noise spectrum energy almost has no big variations along with the wave number and is slightly lower to the high wave number part of signal spectrum in any look direction, which follows that the assumption makes sense. The retrieved directional spectra are compared with the buoy records in terms of peak wavelength, peak direction and the significant wave height. Comparisons show that the retrieved peak wavelength and significant wave height are slightly higher than the buoy records but don’t differs significantly (error less than 10%). For peak direction, the swell waves in first case basically propagate in the wind direction 6 hours ago and the wind-generated waves in second case also propagate in the wind direction, but the 180? ambiguity remains. Results show that the modified method can carry out the retrieval of directional wave spectrum.  相似文献   

8.
Compared to single-polarization synthetic aperture radar(SAR) data, fully polarimetric SAR data can provide more detailed information of the sea surface, which is important for applications such as shallow sea topography detection. The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research. In this paper, a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data. This method considers swell patterns and only requires SAR data and ...  相似文献   

9.
This paper proposes two simple models, look-up table(LUT) model and empirical model, to directly retrieve significant wave height(Hs) using synthetic aperture radar(SAR) azimuth cutoff(λc). Both models aim at C-band VV, HH, VH, and HV single-polarization SAR images. The LUT model relates Hs to λc, while the empirical model relates Hs to both λc and SAR range-to-velocity(β). The LUT model coefficients are derived by simulation under different sea states and observation conditions, which depend on incidence angle(θ), wave direction(dw), and βbut are independent of polarization. The empirical model coefficients are obtained by fitting the collocated data,which only depend on polarization. To fit empirical model coefficients and validate the two models, C-band RADARSAT-2 fine quad-polarization(VV+HH+VH+HV) single-look complex(SLC) SAR images and collocated buoy data are collected. Retrieved Hs, using Yang model and the two models proposed in this paper from four kinds of polarization SAR data, are compared with buoy Hs. Results show that both LUT and empirical models have the capacity of retrieving Hs from C-band RADARSAT-2 co-polarization SAR data, while Yang model is not suitable for these kinds of SAR data. Moreover, the empirical model is also valid for cross-polarization SAR data showing clear ocean wave stripes.  相似文献   

10.
Simultaneously obtainedX- andL-band synthetic aperture radar (SAR) data collected during the Marineland Experiment were spectrally analyzed by fast Fourier transform (FFT) techniques to estimate ocean wavelength and direction. An eight-sided flight pattern was flown over the same ocean area in order to study the sensitivity of the spectral estimate on radar look direction. These spectral estimates were compared with in situ wave measurements made by a pitch-and-roll buoy. The comparison revealed that theX-band SAR detected all gravity waves independent of radar look direction, while theL-band SAR detected all range-traveling gravity waves but failed to detect waves in three of four cases in which the waves were traveling within 25° of the azimuth direction. The analysis also indicates that azimuth-traveling waves appear longer and more range-traveling in the SAR imagery than observed by in situ instrumentation. It is postulated that degraded azimuth resolution due to scatterer motion is responsible for these observations.  相似文献   

11.
The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.  相似文献   

12.
为了验证波谱仪反演二维海浪谱的功能,根据海浪波谱仪的信号形成机制,总结了机载波谱仪反演海浪的流程。利用机载波谱仪回波数据,通过自相关和互相关两种功率谱估计方法,反演了二维海浪谱。最后通过与浮标测量的二维海浪谱进行对比,验证了该机载波谱仪探测二维海浪谱的有效性。结果表明,无论采用自相关函数还是互相关函数进行功率谱估计,得到的主波波长和有效波高与实际二维海浪谱基本一致。互相关函数法得到的交叉谱能去除180°模糊现象,其在计算有效波高时相对于自相关函数会稍微偏小。在计算斜率方差时可以采用5°~12°入射角范围的后向散射系数进行公式拟合,因此定标与否并不影响最后的二维海浪谱结果,未来星载波谱仪只有靠多波束联合才能实现。  相似文献   

13.
对ENVISAT ASAR level2算法固有误差的分析   总被引:1,自引:0,他引:1  
欧洲空间局的ENVISAT ASAR level 2算法是从合成孔径雷达(SAR)单视复图像反演涌浪方向谱的算法.该算法假设双峰海浪谱的SAR图像交叉谱是涌浪的图像交叉谱和风浪的图像交叉谱之和.实际上双峰海浪谱的SAR图像交叉谱中还有一个混合项,正是该混合项导致ENVI-SAT ASAR level 2算法有固有误差.利用遥感仿真的方法分析了不同海况条件下该算法的这一固有误差,结果表明,只有在有效波高较小、或风浪的成分较少、或双峰海浪的传播方向较靠近SAR距离向、或波长较长时固有误差才较小,ENVISAT ASAR level 2算法对海浪谱的反演才较为适用.  相似文献   

14.
根据星载合成孔径雷达(SAR)浅海水下地形和水深成像机理,建立了浅海水下地形和水深雷达后向散射截面仿真模型.利用该模型模拟并分析了不同地形条件下,浅海水下地形的雷达后向散射截面.分析结果表明,水下地形高度越高,SAR可测量的水深越深;水下地形坡度越大,越易被SAR所观测.水下地形的星载SAR测量还与水下地形的方向有关,与卫星飞行方向平行的水下地形最易被SAR观测,与卫星飞行方向垂直的水下地形最不易被SAR观测.  相似文献   

15.
A new method for estimating significant wave height(SWH) from advanced synthetic aperture radar(ASAR) wave mode data based on a support vector machine(SVM) regression model is presented. The model is established based on a nonlinear relationship between σ0, the variance of the normalized SAR image, SAR image spectrum spectral decomposition parameters and ocean wave SWH. The feature parameters of the SAR images are the input parameters of the SVM regression model, and the SWH provided by the European Centre for Medium-range Weather Forecasts(ECMWF) is the output parameter. On the basis of ASAR matching data set, a particle swarm optimization(PSO) algorithm is used to optimize the input kernel parameters of the SVM regression model and to establish the SVM model. The SWH estimation results yielded by this model are compared with the ECMWF reanalysis data and the buoy data. The RMSE values of the SWH are 0.34 and 0.48 m, and the correlation coefficient is 0.94 and 0.81, respectively. The results show that the SVM regression model is an effective method for estimating the SWH from the SAR data. The advantage of this model is that SAR data may serve as an independent data source for retrieving the SWH, which can avoid the complicated solution process associated with wave spectra.  相似文献   

16.
The digital processing requirements of several algorithms for extracting the spectrum of a detected synthetic aperture radar (SAR) image from the raw SAR data are described and compared. The most efficient algorithms for image spectrum extraction from raw SAR data appear to be those containing an intermediate image formation step. It is shown that a recently developed compact formulation of the image spectrum in terms of the raw data is computationally inefficient when evaluated directly, in comparison with the classical method where matched-filter image formation is an intermediate result. It is also shown that a proposed indirect procedure for digitally implementing the same compact formulation is somewhat more efficient than the classical matched-filtering approach. However, this indirect procedure includes the image formation process as part of the total algorithm. Indeed, the computational savings afforded by the indirect implementation are identical to those obtained in SAR image formation processing when the matched-filtering algorithm is replaced by the well-known "dechirp-Fourier transform" technique. Furthermore, corrections to account for slant-to-ground range conversion, spherical earth, etc., are often best implemented in the image domain, making intermediate image formation a valuable processing feature.  相似文献   

17.
浅海水下地形的SAR遥感仿真研究   总被引:2,自引:0,他引:2  
结合连续性方程和布拉格后向散射模型,在准一维简化浅海水下地形情况下,建立了浅海水下地形SAR海面相对后向散射强度仿真模型,将浅海水下地形区域的SAR海面后向散射强度的相对变化与大尺度背景流场、海面风场和雷达系统参数等联系起来.海上实验和研究结果表明,浅海水下地形的SAR成像主要由通过受水下地形影响的海表层流场对海表面风引起的微尺度波的水动力调制而获取浅海水下地形信息,其中潮流与水下地形的相互作用过程改变海表层流场,变化的海表层流与海表面微尺度波之间的相互作用改变海表面波的空间分布,雷达波与海表面波之间的相互作用决定雷达海面后向散射强度.因此SAR图像中浅海水下地形或水深信息量的多少不仅与海表层流场和海面风速有关,而且与雷达工作波段、雷达波束入射角和极化方式也密切相关.认为由水下地形变化引起的缓慢变化的表层流场中海表面定常微尺度波谱能量密度的变化满足波作用量谱平衡方程;而在波数空间中,海表面微尺度波谱的成长过程也可以用波数谱平衡方程描述,在此基础上,得出了海表面波高频谱(毛细-重力波)形式的解析表达式.众所周知,浅海水下地形信息是由于水下地形影响下SAR海面后向散射强度与背景海面后向散射强度的相对差异而在SAR图像上的呈现,从而在建立浅海水下地形SAR海面相对后向散射强度仿真模型的基础上,仿真计算了浅海水下地形SAR海面相对后向散射强度相对于海表层流场、海面风场等海况参数和SAR工作波段、SAR波束入射角、极化方式等雷达系统参数的数值仿真结果,分析得到了有关浅海水下地形SAR海面相对后向散射强度的特征和SAR浅海水下地形遥感的最佳海况参数与最佳雷达系统参数,为研究和开展SAR浅海水下地形遥感研究提供了有价值的参考.  相似文献   

18.
搭载在欧洲环境卫星(ENVISAT)上的高级合成孔径雷达(Advanced Synthetic Aperture Radar,ASAR)二级波模式数据提供了诸多海浪信息包括有效波高、波向、波长和二维海浪谱等,在海浪预报模式中具有重要作用。本文拟利用浮标观测数据对ASAR波模式算法及其反演数据精度进行对比验证。由于SAR卫星在海面的特殊成像机制,不同海况下会有不同的测量结果,通过与美国国家浮标中心(NDBC)的浮标数据对比,显示ASAR有效波高在高海况下低估和在低海况下高估的现象,在中等海况下的测量结果较优。通过研究ASAR数据集中对应的海浪谱,按照能量与方向分布可分为四种类型:单一方向海浪谱(Ⅰ类谱),180°方向模糊海浪谱(Ⅱ类谱),海浪两个方向且能量分布杂乱(Ⅲ类谱),多个传播方向且谱型杂乱海浪谱(Ⅳ类谱)。探究在不同类型下的海浪参数的精度,结果表明在单一波向正常海浪谱情况下,有效波高、波向与浮标数据一致性较好,存在180°方向模糊的对称海浪谱仅有效波高精度较高,谱型杂乱的海浪谱海浪有效波高和波向反演结果均较差。  相似文献   

19.
Extraction of coastal ocean wave fields from SAR images   总被引:3,自引:0,他引:3  
Wave spectra derived from synthetic aperture radar (SAR) images acquired by ENVISATs are compared to in situ measurements by seven sensors, deployed in a field experiment carried out on the French coast of La Manche (English Channel). The wave spectra inversion scheme is adapted for shallow water from the European Space Agency (ESA)'s operational processing techniques used for level 2 ocean wave products. Under the low to moderate wind speed observed conditions, overall good agreement is found between in situ and SAR observations over a wide range of wave heights and directions, including waves propagating in the radar azimuth direction and incidence angles different from the standard imagette products.  相似文献   

20.
针对机载合成孔径雷达(SAR)对海探测特点,采用多入射角法从SAR数据本身得到与海浪参数反演区域时空匹配的同步海面风速和风向,并结合线性变换关系,计算得到海浪初猜谱对应的仿真SAR图像谱,将仿真SAR图像谱和观测SAR图像谱输入代价函数中进行迭代运算,通过非线性方程的解算得到最适海浪谱;采用交叉谱法去除海浪传播180°方向模糊,最终得到海浪参数。论文提出的基于同步风场的机载SAR海浪参数反演方法,充分利用了机载SAR海洋环境探测的优势,解决了传统SAR海浪参数反演中初猜谱构造依赖外部风场的问题,机载同步飞行试验的海浪参数反演结果与浮标观测值的有效波高、波向的均方根误差分别为0.23 m和13.23°,验证了该方法的有效性,可为机载SAR海浪参数反演业务化提供支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号