首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
The purpose is to study the accuracy of ocean wave parameters retrieved from C-band VV-polarization Sentinel-1Synthetic Aperture Radar(SAR) images, including both significant wave height(SWH) and mean wave period(MWP), which are both calculated from a SAR-derived wave spectrum. The wind direction from in situ buoys is used and then the wind speed is retrieved by using a new C-band geophysical model function(GMF) model,denoted as C-SARMOD. Continuously, an algorithm parameterized first-guess spectra method(PFSM) is employed to retrieve the SWH and the MWP by using the SAR-derived wind speed. Forty–five VV-polarization Sentinel-1 SAR images are collected, which cover the in situ buoys around US coastal waters. A total of 52 subscenes are selected from those images. The retrieval results are compared with the measurements from in situ buoys. The comparison performs good for a wind retrieval, showing a 1.6 m/s standard deviation(STD) of the wind speed, while a 0.54 m STD of the SWH and a 2.14 s STD of the MWP are exhibited with an acceptable error.Additional 50 images taken in China's seas were also implemented by using the algorithm PFSM, showing a 0.67 m STD of the SWH and a 2.21 s STD of the MWP compared with European Centre for Medium-range Weather Forecasts(ECMWF) reanalysis grids wave data. The results indicate that the algorithm PFSM works for the wave retrieval from VV-polarization Sentinel-1 SAR image through SAR-derived wind speed by using the new GMF C-SARMOD.  相似文献   

2.
Many synthetic aperture radar(SAR) wave height retrieval algorithms have been developed.However,the wave height retrievals from most existing methods either depend on other input as the first guess or are restricted to the long wave regime.A semiempirical algorithm is presented,which has the objective to estimate the wave height from SAR imagery without any prior knowledge.The proposed novel algorithm was developed based on the theoretical SAR ocean wave imaging mechanism and the empirical relation between two types of wave period.The dependency of the proposed model on radar incident and wave direction was analyzed.For Envisat advanced synthetic aperture radar(ASAR) wave mode data,the model can be reduced to the simple form with two input parameters,i.e.,the cutoff wavelength and peak wavelength of ocean wave,which can be retrieved from SAR imagery without any prior knowledge of wind or wave.Using Envisat ASAR wave mode data and the collocated buoy measurements from NDBC,the semiempirical algorithm is validated and compared with the Envisat ASAR level 2 products.The root-mean-square-error(RMSE) and scatter index(SI) in respect to the in situ measurements are 0.52 m and 19% respectively.Validation results indicate that,for Envisat ASAR wave mode data,the proposed method works well.  相似文献   

3.
The main objective of this paper is to propose a newly developed ocean Significant Wave Height(SWH) retrieval method from Envisat Advanced Synthetic Aperture Radar(ASAR) imagery. A series of wave mode imagery from January, April and May of 2011 are collocated with ERA-Interim reanalysis SWH data. Based on the matched datasets, a simplified empirical relationship between 22 types of SAR imagery parameters and SWH products is developed with the Genetic Algorithms Partial Least-Squares(GA-PLS) model. Two major features of the backscattering coefficient σ_0 and the frequency parameter S_(10) are chosen as the optimal training feature subset of SWH retrieval by using cross validation. In addition, we also present a comparison of the retrieval results of the simplified empirical relationship with the collocated ERA-Interim data. The results show that the assessment index of the correlation coefficient, the bias, the root-mean-square error of cross validation(RMSECV) and the scattering index(SI) are 0.78, 0.07 m, 0.76 m and 0.5, respectively. In addition, the comparison of the retrieved SWH data between our simplifying model and the Jason-2 radar altimeter data is proposed in our study.Moreover, we also make a comparison of the retrieval of SWH data between our developed model and the wellknown CWAVE_ENV model. The results show that satisfying retrieval results are acquired in the low-moderate sea state, but major bias appears in the high sea state, especially for SWH5 m.  相似文献   

4.
Theoretical-based ocean wave retrieval algorithms are applied by inverting a synthetic aperture radar(SAR)intensity spectrum into a wave spectrum, that has been developed based on a SAR wave mapping mechanism. In our previous studies, it was shown that the wave retrieval algorithm, named the parameterized first-guess spectrum method(PFSM), works for C-band and X-band SAR at low to moderate sea states. In this work, we investigate the performance of the PFSM algorithm when it is applied for dual-polarization c-band sentinel-1(S-1) SAR acquired in extra wide-swath(EW) and interferometric wide-swath(IW) mode under cyclonic conditions.Strong winds are retrieved from six vertical-horizontal(VH) polarization S-1 SAR images using the c-band crosspolarization coupled-parameters ocean(C-3 PO) model and then wave parameters are obtained from the image at the vertical-vertical(VV) polarization channel. significant wave height(SWH) and mean wave period(MWP) are compared with simulations from the WAVEWATCH-III(WW3) model. The validation shows a 0.69 m root mean square error(RMSE) of SWH with a –0.01 m bias and a 0.62 s RMSE of MWP with a –0.17 s bias. Although the PFSM algorithm relies on a good quality SAR spectrum, this study confirms the applicability for wave retrieval from an S-1 SAR image. Moreover, it is found that the retrieved results have less accuracy on the right sector of cyclone eyes where swell directly affects strong wind-sea, while the PFSM algorithm works well on the left and rear sectors of cyclone eyes where the interaction of wind-sea and swell is relatively poor.  相似文献   

5.
Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360°. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.  相似文献   

6.
A horizontal two- dimensional numerical model is developed for estimation of sediment transport and sea bed change around a large circular cylinder under wave action. The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by a finite element method. The results of this model are compared with those from other methods and agree well with experimental data.  相似文献   

7.
A non-traditional fuzzy quantification method is presented in the modeling of an extreme significant wave height. First, a set of parametric models are selected to fit time series data for the significant wave height and the extrapolation for extremes are obtained based on high quantile estimations. The quality of these results is compared and discussed. Then, the proposed fuzzy model, which combines Poisson process and generalized Pareto distribution(GPD) model, is applied to characterizing the wave extremes in the time series data. The estimations for a long-term return value are considered as time-varying as a threshold is regarded as non-stationary. The estimated intervals coupled with the fuzzy theory are then introduced to construct the probability bounds for the return values. This nontraditional model is analyzed in comparison with the traditional model in the degree of conservatism for the long-term estimate. The impact on the fuzzy bounds of extreme estimations from the non stationary effect in the proposed model is also investigated.  相似文献   

8.
赵明  滕斌  谭丽 《中国海洋工程》2004,18(3):335-346
In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two-dimensional Navier-Stokes equations is solved numerically with a finite element method. In order to track the moving non-linear wave surface boundary, the Navier-Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three-step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data.Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder.The effects of the KC number and the cylinder depth on the wave forces are studied.  相似文献   

9.
A preliminary numerical model of the buoyant drum by wave action is presented, which is based on The Finite Boundary Element Method of the source distribution. A series formula of Green's function is used for the derivation of the model. In the paper the calculated results of the examples for a sphere and a buoyant drum are close to the data in some references. A subject of great interest to ocean engineers is the response a floating body suffers in ocean waves. In this paper, the oscilatory motion of a buoyant drum is analysed and a calculating method is presented. Applying this calculating method, the hydrodynamic coefficient for any kind of floating bodies can be obtained.  相似文献   

10.
Chen  Bai-yu  Zhang  Kuang-yuan  Wang  Li-ping  Jiang  Song  Liu  Gui-lin 《中国海洋工程》2019,33(2):127-136
In this paper, we establish a generalized extreme Value-Pareto distribution model and derive an analytical expression of Weibull–Pareto distribution model. Based on a data sample of 26-year wave height, we adopt the new model to estimate the design wave height for 500, 700 and 1000-year return periods. Results show that the design wave height from Weibull–Pareto distribution is between that of the Weibull distribution and that of the Pearson-Ⅲ distribution.For the 500-year return period design wave height, the results from the new model is 1.601% lower than those from the Weibull distribution and 1.319% higher than those from the Pearson-Ⅲ distribution. The Weibull–Pareto distribution innovatively considers the fractal features, extreme-value statistics and the truncated data in the derivation process. Therefore, it is a more holistic and practical model for estimating the design parameters in marine and coastal environments.  相似文献   

11.
搭载在欧洲环境卫星(ENVISAT)上的高级合成孔径雷达(Advanced Synthetic Aperture Radar,ASAR)二级波模式数据提供了诸多海浪信息包括有效波高、波向、波长和二维海浪谱等,在海浪预报模式中具有重要作用。本文拟利用浮标观测数据对ASAR波模式算法及其反演数据精度进行对比验证。由于SAR卫星在海面的特殊成像机制,不同海况下会有不同的测量结果,通过与美国国家浮标中心(NDBC)的浮标数据对比,显示ASAR有效波高在高海况下低估和在低海况下高估的现象,在中等海况下的测量结果较优。通过研究ASAR数据集中对应的海浪谱,按照能量与方向分布可分为四种类型:单一方向海浪谱(Ⅰ类谱),180°方向模糊海浪谱(Ⅱ类谱),海浪两个方向且能量分布杂乱(Ⅲ类谱),多个传播方向且谱型杂乱海浪谱(Ⅳ类谱)。探究在不同类型下的海浪参数的精度,结果表明在单一波向正常海浪谱情况下,有效波高、波向与浮标数据一致性较好,存在180°方向模糊的对称海浪谱仅有效波高精度较高,谱型杂乱的海浪谱海浪有效波高和波向反演结果均较差。  相似文献   

12.
欧洲环境卫星-高级合成孔径雷达(EnvironmentalSatellite-AdvancedSyntheticAperture Radar,Envisat-ASAR)波模式数据提供了全球风、浪要素信息,在海浪模式预报与同化方面有重要作用。该数据合成孔径雷达(SyntheticApertureRadar,SAR)图像普遍存在海浪条纹清晰度不同的现象,但是否影响数据精度尚无定论。本文通过比较2010年NODC (the National Oceanographic Date Center)浮标观测数据和波模式数据,发现经过官方修正后的海浪参数反而具有更大误差。进而通过对比不同条纹清晰度的SAR图像反演参数误差,揭示了ASAR产品海浪参数与浮标测量值之间的误差与海浪条纹清晰度的关系。结果表明:海浪条纹清晰的SAR图像的主波波长和主波周期的反演误差更小,而条纹不清晰SAR图像的有效波高和风速的反演误差更小。通过分析海浪参数对海浪条纹清晰度的敏感性,证实了有效波高和方位向截断波长对SAR图像条纹清晰度的响应最好,波陡次之,与卫星飞行方位角和入射角无关。因此,在反演和修正SAR波模式数据时,考虑图像的条纹清晰度,将会有效提高反演数据的精度。该研究可为高分三号等卫星的波模式数据波浪要素反演精度的提升提供有价值的参考。  相似文献   

13.
SARAL/AltiKa surface wind speed (WS) and significant wave height (SWH) measurements are monitored and validated against operational European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric and wave model results in addition to available in-situ observations to access their suitability for various applications, especially SWH data assimilation. The quality of SWH is very high while that of WS is very good except for an underestimation of high wind speeds. The impact of assimilating SWH in the ECMWF Integrated Forecast System was assessed using several numerical experiments. The results show positive impact. Operational assimilation of SWH at ECMWF model is part of the forthcoming model change.  相似文献   

14.
Chinese Gaofen-3(GF-3) is the first civilian satellite to carry C-band(5.3 GHz) synthetic aperture radar(SAR).During the period of August 2016 to December 2017, 1 523 GF-3 SAR images acquired in quad-polarization(vertical-vertical(VV), horizontal-horizontal(HH), vertical-horizontal(VH), and horizontal-vertical(HV)) mode were recorded, mostly around China's seas. In our previous study, the root mean square error(RMSE) of significant wave height(SWH) was found to be around 0.58 m when compared with retrieval results from a few GF-3 SAR images in co-polarization(VV and HH) with moored measurements by using an empirical algorithm CSAR_WAVE. We collected a number of sub-scenes from these 1 523 images in the co-polarization channel,which were collocated with wind and SWH data from the European Centre for Medium-Range Weather Forecasts(ECMWF) reanalysis field at a 0.125° grid. Through the collected dataset, an improved empirical wave retrieval algorithm for GF-3 SAR in co-polarization was tuned, herein denoted as CSAR_WAVE2. An additional 92 GF-3 SAR images were implemented in order to validate CSAR_WAVE2 against SWH from altimeter Jason-2, showing an about 0.52 m RMSE of SWH for co-polarization GF-3 SAR. Therefore, we conclude that the proposed empirical algorithm has a good performance for wave retrieval from GF-3 SAR images in co-polarization.  相似文献   

15.
对ENVISAT ASAR level2算法固有误差的分析   总被引:1,自引:0,他引:1  
欧洲空间局的ENVISAT ASAR level 2算法是从合成孔径雷达(SAR)单视复图像反演涌浪方向谱的算法.该算法假设双峰海浪谱的SAR图像交叉谱是涌浪的图像交叉谱和风浪的图像交叉谱之和.实际上双峰海浪谱的SAR图像交叉谱中还有一个混合项,正是该混合项导致ENVI-SAT ASAR level 2算法有固有误差.利用遥感仿真的方法分析了不同海况条件下该算法的这一固有误差,结果表明,只有在有效波高较小、或风浪的成分较少、或双峰海浪的传播方向较靠近SAR距离向、或波长较长时固有误差才较小,ENVISAT ASAR level 2算法对海浪谱的反演才较为适用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号