首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The partial pressure of CO2 (pCO2) and dissolved inorganic carbon (DIC) were monitored in shallow coastal waters located inside and outside giant kelp beds (Macrocystis pyrifera) located in the Kerguelen Archipelago (Southern Ocean). Photosynthesis and respiration by microplankton and kelp lead to marked pCO2 and DIC diel cycles. Daily variations of pCO2 and DIC are significant in the spring and summer, but absent in the winter, reflecting the seasonal cycle of biological activity in the kelp beds. If the kelp beds seem to favour the onset of phytoplankton blooms, most of the primary production inside the kelp beds is due to the kelp itself. The primary production of Macrocystis kelp beds in the Sub-Antarctic high-nutrient, low-chlorophyll (HNLC) waters off the Kerguelen Archipelago is elevated and closely linked to light availability. This production is significant from October to March and reaches its climax in December at the solar radiation maximum.  相似文献   

2.
We report results from two surveys of pCO2, biological O2 saturation (??O2/Ar) and dimethylsulfide (DMS) in surface waters of the Ross Sea polynya. Measurements were made during early spring (November 2006-December 2006) and mid-summer (December 2005-January 2006) using ship-board membrane inlet mass spectrometry (MIMS) for high spatial resolution (i.e. sub-km) analysis. During the early spring survey, the polynya was in the initial stages of development and exhibited a rapid increase in open water area and phytoplankton biomass over the course of our ∼3 week occupation. We observed a rapid transition from a net heterotrophic ice-covered system (supersaturated pCO2 and undersaturated O2) to a high productivity regime associated with a Phaeocystis-dominated phytoplankton bloom. The timing of the early spring phytoplankton bloom was closely tied to increasing sea surface temperature across the polynya, as well as reduced wind speeds and ice cover, leading to enhanced vertical stratification. There was a strong correlation between pCO2, ??O2/Ar, DMS and chlorophyll a (Chl a) during the spring phytoplankton bloom, indicating a strong biological imprint on gas distributions. Box model calculations suggest that pCO2 drawdown was largely attributable to net community production, while gas exchange and shoaling mixed layers also exerted a strong control on the re-equilibration of mixed layer ??2 with the overlying atmosphere. DMS concentrations were closely coupled to Phaeocystis biomass across the early spring polynya, with maximum concentrations exceeding 100 nM.During the summer cruise, we sampled a large net autotrophic polynya, shortly after the seasonal peak in phytoplankton productivity. Both diatoms and Phaeocystis were abundant in the phytoplankton assemblages during this time. Minimum pCO2 was less than 100 ppm, while ??O2/Ar exceeded 30% in some regions. Mean DMS concentrations were ∼2-fold lower than during the spring, although the range of concentrations was similar between the two surveys. There was a significant correlation between pCO2, ??O2/Ar and Chl a across the summer polynya, but the strength of these correlations and the slope of O2 vs. CO2 relationship were significantly lower than during the early spring. Summertime DMS concentrations were not significantly correlated to phytoplankton biomass (Chl a), pCO2 or ??O2/Ar. In contrast to the early spring time, there were no clear temporal trends in summertime gas concentrations. Rather, small-scale spatial variability, likely resulting from mixing and localized sea-ice melt, was clearly evident in surface gas distributions across the polynya. Analysis of length-scale dependent variability demonstrated that much of the spatial variance in surface water gases occurred at scales of <20 km, suggesting that high resolution analysis is needed to fully capture biogeochemical heterogeneity in this system.  相似文献   

3.
Partial pressure of CO2 (pCO2) in surface seawater has been measured in the northeastern Pacific Ocean at Station P and along Line P since 1973. These data have been divided into ‘oceanic’ and ‘coastal/transition’ zones, and the seasonal and interannual variability and the long-term trends for each zone have been examined. The oceanic zone shows little seasonality in surface seawater pCO2, with undersaturation throughout the year. A strong, biologically-driven seasonal cycle is offset by variation in temperature-dependent solubility of CO2. The coastal/transition zone shows a decline in pCO2 from winter–spring through summer and fall that is likely the result of seasonal stratification and convection rather than coastal upwelling. Interannual variability all along Line P is correlated with the multivariate ENSO index (MEI), with lower seawater pCO2 associated with El Niño conditions. Correlations with the Pacific Decadal Oscillation Index are similar but weaker, in part because there are few data prior to the 1976 regime shift. The long-term trend in seawater pCO2 in the oceanic zone is +1.36±0.16 μatm year?1, indistinguishable from the atmospheric growth rate, and varies little among the seasons. In the coastal/transition zone a slow increase in the pCO2 of surface seawater relative to that of the atmosphere has led to increasing undersaturation, particularly in spring. Aliasing of the seasonal and interannual variability due to sampling frequency may explain part of the observed trend in the coastal/transition zone, but real changes in physical or biological processes are also possible and require more detailed study.  相似文献   

4.
Reduced ice extent within coastal regions of the Southern Ocean may lead to deeper surface mixed layers (SML), as prevail in offshore areas. A future decline of ice melt-induced stability of the water column may be associated with a shift in dominant food webs, from larger, sun-adapted diatoms grazed by euphausiids to smaller, shade-adapted flagellates consumed by salps. A basically one-dimensional numerical model of three dominant groups of the Antarctic phytoplankton community (diatoms, cryptophytes, and colonial prymnesiophytes) and four types of herbivore (protozoans, salps, copepods, and euphausiids) is used to explore the seasonal importance of both light limitation and grazing pressure on the amount of annual carbon sequestration and larval krill survival within contrasting oceanic and neritic waters, where respective validation data have been gathered during austral spring by the European JGOFS and RACER programs. With imposition of moderate and large grazing stresses, thought to be typical of offshore waters, we were able to replicate the European JGOFS 1992 observations of light penetration, phytoplankton biomass, primary production, pCO2, bacterial biomass, labile DOC, ammonium, and total particle effluxes at 100 m within the deep SML of our model. The fidelity of such a large set of simulated state variables suggests that multiple limiting factors are indeed operating on different components of the oceanic phytoplankton community — selective grazing losses on the flagellates, but light limitation of diatoms. Release of protozoan grazing pressure in our model instead leads to unobserved spring blooms of cryptophytes, found only in laboratory enclosures. On an annual basis, weak sequestration of atmospheric CO2 is simulated in a habitat typical of the Polar Front, while evasion of carbon dioxide occurs under biophysical conditions of the Antarctic Circumpolar Current. Stratification in shallow SML and the same absolute grazing demands by krill and copepods allows sun-adapted diatoms of our model to bloom at the expense of shade-adapted cryptophytes and prymnesiophytes, eaten by salps and protozoans. We were also able to replicate RACER-I observations of the same suite of variables in 1986–1987, as well as the observed 10-fold range of detrital fluxes caught by other sediment trap deployments during 1980 and 1983 along the Antarctic Peninsula. In western Bransfield Strait, coastal waters are a strong sink for atmospheric CO2 within parcels of Bellingshausen Sea origin, but not perhaps in those from the Weddell Sea, which resemble the oceanic regime of deep SML. We conclude that even in shallow neritic SML, some protozoan rivals of larval krill must still crop flagellates to ensure sufficient abundance of diatom food for both euphausiid survival and possible clogging of the mucous nets of other salp rivals.  相似文献   

5.
The Northeast Pacific has one of the longest time series of any open ocean station, primarily as a result of the weathership station at Station P from the 1950s to 1981. This review summarizes our understanding of the plankton ecosystem for this station and examines interannual variability for the primary producers. The weathership era characterized a period of high temporal sampling resolution with a limited number of parameters being measured. In contrast, the post-weathership period focussed on seasonal sampling (usually three times per year), but a wider range of parameters were measured and sediment traps were deployed to estimate carbon and opal flux rates. The mixed layer depth is shallow compared to the Atlantic Ocean, ranging from 40 to 120 m in late summer and winter respectively. Nitrate, silicate and phosphate are saturating year round with only a few exceptions in the 1970s. Winter and summer Si:N ratios are the same (1.5:1). Ammonium and urea are 0.5 uM in winter and near detection limits (∼0.1 uM) in late summer. Iron is limiting (∼0.05 nM) in late spring and summer for the growth of large diatoms, but iron is co-limiting with irradiance in winter. Chlorophyll and primary productivity are low and show little seasonal variation (about 2 times). Summer chl is about 20 mg m−2 while primary productivity ranges from 400–850 mg C m−2d−1. The f-ratio of 0.25 does not vary with seasons and indicates that primary productivity is fueled by regenerated nitrogen (e.g. NH4 and urea). Small cells (<5 um) are normally abundant and they utilize regenerated nitrogen produced by the micrograzers; they do not appear to be Fe-limited, but rather controlled by the micrograzers. Shipboard carboy experiments indicate that large diatoms become dominant when iron is added. Therefore top down control is exerted by the micrograzers on the small cells, while there is bottom up control of the large phytoplankton due to low Fe concentrations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The seasonal variability of surface chlorophyll in the northern Humboldt Current System is studied using satellite data, in situ observations and model simulations. The data show that surface chlorophyll concentration is highest in austral summer and decreases during austral winter, in phase opposition with coastal upwelling intensity. A regional model coupling ocean dynamics and biogeochemical cycles is used to investigate the processes which control this apparently paradoxical seasonal cycle. Model results suggest that the seasonal variability of the mixed layer depth is the main controlling factor of the seasonality. In winter, the mixed layer deepening reduces the surface chlorophyll accumulation because of a dilution effect and light limitation. In summer, biomass concentrates near the surface in the shallow mixed layer and nitrate limitation occurs, resulting in a biomass decrease in the middle of summer. Intense blooms occur during the spring restratification period, when winter light limitation relaxes, and during the fall destratification period, when the surface layer is supplied with new nutrients. Model sensitivity experiments show that the seasonal variations in insolation and surface temperature have little impact on the surface chlorophyll variability.  相似文献   

7.
2010-2011年胶州湾叶绿素a与环境因子的时空变化特征   总被引:2,自引:1,他引:1  
王玉珏  刘哲  张永  汪岷  刘东艳 《海洋学报》2015,37(4):103-116
2010年4、6、8、10月和2011年1、3月在胶州湾开展了6个航次的综合调查,研究了表层海水温度、盐度、营养盐和叶绿素a浓度的时空变化特征。调查期间,总无机氮(DIN)、磷酸盐(PO4)和硅酸盐(SiO3)多呈现东北部湾边缘高,而湾内和湾口低的空间分布特征。季节变化表明,DIN和PO4主要受养殖排放、河流径流输入和浮游植物生长消耗的影响,呈现初夏和秋季高,夏末和冬季低的特点;而SiO3主要受河流径流输入和浮游植物消耗的影响,呈现夏、秋高,而冬、春低的特点。营养盐浓度和结构分析表明,胶州湾存在PO4和SiO3的绝对和相对限制;SiO3限制尤其严重,是控制胶州湾浮游植物生长的主要环境因子。SiO3和PO4的限制主要表现在冬季,几乎遍布整个海湾;夏季降水可有效缓解海域的SiO3限制。叶绿素a浓度呈现春、夏季高,秋、冬季低的季节分布,温度、营养盐浓度与结构和季节性贝类养殖活动是控制胶州湾叶绿素a浓度时空分布的关键因素。  相似文献   

8.
The European Regional Seas Ecosystem Model (ERSEM) has been coupled with a two-dimensional depth-averaged transport model of the Humber plume region and run to simulate 1988–1989. Simulations of the spatial and temporal variations in chlorophyll-a, nitrate, phosphate and suspended particulate matter distributions in winter, spring and summer show how the development of the spring bloom and subsequent maintenance of primary production is controlled by the physicochemical environment of the plume zone. Results are also shown for two stations, one characterised by the high nutrient and suspended matter concentrations of the plume and the other by the relatively low nutrient and sediment concentrations of the offshore waters. The modelled net primary production at the plume site was 105 g C m−2 a−1 and 127 g C m−2 a−1 offshore. Primary production was controlled by light limitation between October and March and by the availability of nutrients during the rest of the year. The phytoplankton nutrient demand is met by in-situ recycling processes during the summer. The likely effect of increasing and decreasing anthropogenic riverine inputs of nitrate and phosphate upon ecosystem function was also investigated. Modelling experiments indicate that increasing the nitrogen to silicate ratio in freshwater inputs increased the production of non-siliceous phytoplankton in the plume. The results of this model have been used to calculate the annual and quarterly mass balances describing the usage of inorganic nitrogen, phosphate and silicate within the plume zone for the period of the NERC North Sea survey (September 1988 to October 1989). The modelled Humber plume retains 3.9% of the freshwater dissolved inorganic nitrogen, 2.2% of the freshwater phosphate and 1.3% of the freshwater silicate input over the simulated seasonal cycle. The remainder is transported into the southern North Sea in either dissolved or particulate form. The reliability of these results is discussed.  相似文献   

9.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
This paper discusses the seasonal evolution of the hydrographic and biogeochemical properties in the Antarctic Circumpolar Current (ACC) during the US Joint Global Ocean Flux (JGOFS) Antarctic Environment and Southern Ocean Process Study (AESOPS) in 1997–1998. The location of the study region south of New Zealand along 170°W was selected based on the zonal orientation and meridional separation of the physical and chemical fronts found in that region. Here we endeavor to describe the seasonal changes of the macronutrients, fluorescence chlorophyll, particulate organic carbon (POC), and carbon dioxide (CO2) in the upper 400 m of the ACC during the evolution of the seasonal phytoplankton bloom found in this area. While the ACC has extreme variability in the meridional sense (due to fronts, etc.), it appears to be actually quite uniform in the zonal sense. This is reflected by the fact that a good deal of the seasonal zonal changes in nutrients distributions at 170°W follow a pattern that reflects what would be expected if the changes are associated with seasonal biological productivity. Also at 170°W, the productivity of the upper waters does not appear to be limited by availability of phosphate or nitrate. While there is a significant decrease (or uptake) of inorganic nitrogen, phosphate and silicate associated with the seasonal phytoplankton bloom, none of the nutrients, except perhaps silicate (north of the silicate front) are actually depleted within the euphotic zone. At the end of the growing season, nutrient concentrations rapidly approached their pre-bloom levels. Inspection of the ratios of apparent nutrient drawdown near 64°S suggests N/P apparent drawdowns to have a ratio of 10 and N/Si apparent drawdowns to have a ratio of >4. These ratios suggest a bloom that was dominated by Fe limited diatoms. In addition, the surface water in the Polar Front (PF) and the Antarctic Zone (AZ) just to the south of the PF take up atmospheric CO2 at a rate 2–3 times as fast as the mean global ocean rate during the summer season but nearly zero during the rest of year. This represents an important process for the transport of atmospheric CO2 into the deep ocean interior. Finally, the net CO2 utilization or the net community production during the 2.5 growing months between the initiation of phytoplankton blooms and mid-January increase southward from 1.5 mol C m−2 at 55°S to 2.2 mol C m−2 to 65°S across the Polar Frontal Zone (PFZ) into the AZ.  相似文献   

11.
Role of dissolved silicate in the occurrence of a phytoplankton bloom   总被引:1,自引:0,他引:1  
The spring bloom of phytoplankton was studied in March in Funka Bay, Japan, to test the Tsunogai (1979)'s hypothesis regarding the role of silicate in the bloom. The hypothesis comprises two parts. 1) Diatoms are predominant when all the physical and chemical conditions are adequate for plankton growth. 2) Since the Si:P ratio of the diatom body is usually much larger than that of sea water, flagellates (non-siliceous phytoplankton) replace diatoms after dissolved silicate in the sea water has been almost completely consumed by diatoms. At the end of the bloom in late March phosphate still remained in the water but silicate was exhausted and the main species of phytoplankton changed from diatoms to flagellates. Grazing pressure by zooplankton at this time was not so great. A model using the data on assimilation rates of silicate showed a dramatic change of silicate uptake in late March. Poison in scallops caused byProtogonyaulux sp. (dinoflagellates) rapidly increased from mid-April at all stations along the coast of Funka Bay. All of these findings support Tsunogai's hypothesis.  相似文献   

12.
The South China Sea (SCS) exhibits strong variations on seasonal to interannual time scale, and the changing Southeast Asian Monsoon has direct impacts on the nutrients and phytoplankton dynamics, as well as the carbon cycle. A Pacific basin-wide physical-biogeochemical model has been developed and used to investigate the physical variations, ecosystem responses, and carbon cycle consequences. The Pacific basin-wide circulation model, based on the Regional Ocean Model Systems (ROMS) with a 50-km spatial resolution, is driven with daily air-sea fluxes derived from the National Centers for Environmental Prediction (NCEP) reanalysis between 1990 and 2004. The biogeochemical processes are simulated with the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSINE) model consisting of multiple nutrients and plankton functional groups and detailed carbon cycle dynamics. The ROMS-CoSINE model is capable of reproducing many observed features and their variability over the same period at the SouthEast Asian Time-series Study (SEATS) station in the SCS. The integrated air-sea CO2 flux over the entire SCS reveals a strong seasonal cycle, serving as a source of CO2 to the atmosphere in spring, summer and autumn, but acting as a sink of CO2 for the atmosphere in winter. The annual mean sea-to-air CO2 flux averaged over the entire SCS is +0.33 moles CO2 m−2year−1, which indicates that the SCS is a weak source of CO2 to the atmosphere. Temperature has a stronger influence on the seasonal variation of pCO2 than biological activity, and is thus the dominant factor controlling the oceanic pCO2 in the SCS. The water temperature, seasonal upwelling and Kuroshio intrusion determine the pCO2 differences at coast of Vietnam and the northwestern region of the Luzon Island. The inverse relationship between the interannual variability of Chl-a in summer near the coast of Vietnam and NINO3 SST (Sea Surface Temperature) index in January implies that the carbon cycle and primary productivity in the SCS is teleconnected to the Pacific-East Asian large-scale climatic variability.  相似文献   

13.
This paper evaluates whether a thermodynamic ocean-carbon model can be used to predict the monthly mean global fields of the surface-water partial pressure of CO2 (pCO2SEA) from sea surface salinity (SSS), temperature (SST), and/or nitrate (NO3) concentration using previously published regional total inorganic carbon (CT) and total alkalinity (AT) algorithms. The obtained pCO2SEA values and their amplitudes of seasonal variability are in good agreement with multi-year observations undertaken at the sites of the Bermuda Atlantic Timeseries Study (BATS) (31°50’N, 60°10’W) and the Hawaiian Ocean Time-series (HOT) (22°45’N, 158°00’W). By contrast, the empirical models predicted CT less accurately at the Kyodo western North Pacific Ocean Time-series (KNOT) site (44°N, 155°E) than at the BATS and HOT sites, resulting in greater uncertainties in pCO2SEA predictions. Our analysis indicates that the previously published empirical CT and AT models provide reasonable predictions of seasonal variations in surface-water pCO2SEA within the (sub) tropical oceans based on changes in SSS and SST; however, in high-latitude oceans where ocean biology affects CT to a significant degree, improved CT algorithms are required to capture the full biological effect on CT with greater accuracy and in turn improve the accuracy of predictions of pCO2SEA.  相似文献   

14.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:26,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

15.
The results of the first ground-based spectroscopic measurements in Russia of the total content (TC) of nitric acid in the atmosphere near St. Petersburg over the period April 2009–October 2011 are presented. These measurements show a substantial seasonal trend of the HNO3 TC with maximal values in the winter period and early in the spring and minimal values in the summer time. The seasonal trends and variations in the daily mean values of HNO3 TC near St. Petersburg in the winter and spring periods agree well with observations at the Kiruna station of the international NDACC network.  相似文献   

16.
The spring diatom bloom characterizes the plankton and nutrient dynamics in the Oyashio region, the westernmost part of the subarctic Pacific. Previous studies have shown that NO3 was not depleted during the spring bloom, and an increase in the consumption ratio of Si(OH)4 to NO3 (ΔSi(OH)4:ΔNO3) was observed as the spring bloom progressed. The increase in ΔSi(OH)4:ΔNO3 has been suggested to be caused by growth stresses of diatoms, e.g. light limitation by self-shading. In the present study, incubation experiments of sea-surface water from the Oyashio region under saturated irradiance showed that NO3 was depleted first and ΔSi(OH)4:ΔNO3 was more or less constant until the NO3 depletion occurred. The increase in ΔSi(OH)4:ΔNO3 was observed after the NO3 depletion had occurred in contrast with the field observation. This result of the increase in ΔSi(OH)4:ΔNO3 under saturated irradiance after NO3 depletion suggests that the in situ increase in ΔSi(OH)4:ΔNO3 before the NO3 depletion might be caused by light limitation for diatoms. Responses to a reduction in irradiance were examined using diatom species isolated from the Oyashio region. Variable responses to a reduced irradiance were observed for cell specific C, N, Si and chlorophyll a (Chl) contents. However, the examined diatom species showed similar tendencies for increases in Si:C and Si:N and decreases in C:Chl ratios with the reduction in irradiance. We conclude that light limitation changes the uptake ratio of nutrients and the elemental composition of diatoms and that light limitation is one of the factors influencing the physiology of diatoms and nutrient dynamics in the Oyashio region during the spring bloom.  相似文献   

17.

The dissolved inorganic carbon and total alkalinity in the surface brackish waters of Lake Hamana were investigated monthly from October 2017 to September 2019 at 14 stations. The partial pressure of carbon dioxide (pCO2) in the surface water ranged from 29 to 1476 μatm and was undersaturated for atmospheric CO2 during the observation periods, although most coastal waters were net source areas because of the large amount of terrestrial organic and inorganic carbon input. Since there was a strong negative correlation between pCO2 and the dissolved oxygen, seasonal and temporal variations in pCO2 were mainly derived from phytoplankton activity. The high phytoplankton activity induced by the effluents from sewage treatment plants, which was low in carbon and high in nitrogen. Therefore, in urbanized coastal waters with sewage treatment plants, such as the coastal waters of Japan, there is a possibility of shifting from weaker carbon dioxide source areas to sink areas. However, pCO2 was oversaturated at the polluted river mouth, especially after high precipitation events due to the large carbon supply.

  相似文献   

18.
Sendai Bay is located on the Pacific coast of northern Japan and suffered serious damage following the 2011 off the Pacific coast of Tohoku earthquake and tsunami in March 2011. To assess the impact on the marine ecosystem, information was needed on the phytoplankton communities and their seasonal variation. However, such information was limited. Therefore, an intensive monitoring of the phytoplankton was carried out from March 2012 to April 2014. Seasonal variation of the phytoplankton community was similar at coastal and offshore stations. Total phytoplankton biomass, based on Chl a concentration, peaked in spring and then decreased to a minimum in summer, before gradually increasing during early winter and peaking again in the following spring. This seasonal pattern was consistent with previous studies conducted before the earthquake and tsunami. Also, size structure of the phytoplankton community and its four main groups was estimated from the size-fractioned samples of Chl a. Our results also showed that the spring bloom consisted of large diatoms, with their growth ceasing due to nitrogen depletion. The bloom was followed by a summer period where cyanobacteria and picoeukaryote became dominant, with high cell densities in spite of low nutrient concentrations. In addition, sporadic environmental changes, such as those following typhoons, were observed. These resulted in large increases/decreases in individual phytoplankton groups.  相似文献   

19.
Ocean acidification and warming are likely to affect the structure and functioning of marine benthic communities. This study experimentally examined the effects of ocean acidification and warming on trophic interactions within a maerl bed community by using stable carbon and nitrogen isotope analysis. Two three-month experiments were conducted in winter and summer seasons with four different combinations of pCO2 (ambient and elevated pCO2) and temperature (ambient and +3°C). Experimental assemblages were created in tanks held in the laboratory and were composed of calcareous (Lithothamnion corallioides) and fleshy algae (Rhodymenia ardissonei, Solieria chordalis, and Ulva sp.), gastropods (Gibbula magus and Jujubinus exasperatus), and sea urchins (Psammechinus miliaris). Our results showed higher seaweed availability for grazers in summer than winter. Therefore, grazers were able to adapt their diet seasonally. Increased pCO2 and temperature did not modify the trophic structure in winter, while shifts in the contribution of seaweed were found in summer. Combined acidification and warming increased the contribution of biofilm in gastropods diet in summer conditions. Psammechinus miliaris mostly consumed L. corallioides under ambient conditions, while the alga S. chordalis became the dominant food source under high pCO2 in summer. Predicted changes in pCO2 and temperature had complex effects on assemblage trophic structure. Direct effects of acidification and warming on seaweed metabolism may modify their abundance and biomass, affecting their availability for grazers. Climate change may also modify seaweeds' nutritive value and their palatability for grazers. The grazers we investigated were able to change their diet in response to changes in algal assemblages, an advantage given that warming and acidification alter the composition of algal communities.  相似文献   

20.
Ocean Station Papa (OSP, 50°N 145°W) in the NE subarctic Pacific is characterised as high nitrate low chlorophyll (HNLC). However, little is known about the spatial extent of these HNLC waters or the phytoplankton dynamics on the basin scale. Algal biomass, production and size-structure data are presented from winter, spring and summer between 1992 and 1997 for five stations ranging from coastal to open-ocean conditions. The inshore stations (P04–P16) are characterised by the classical seasonal cycle of spring and late summer blooms (production >3 g C m−2 d−1), diatoms are not Fe-stressed, and growth rate is probably controlled by macronutrient supply. The fate of the phytoplankton is likely sedimentation by diatom-dominated spring blooms, with a pelagic recycling system predominating at other times. The offshore stations (P20/OSP) display low seasonality in biomass and production (OSP, mean winter production 0.3 g C m−2 d−1, mean spring/summer production 0.85 g C m−2 d−1), and are dominated by small algal cells. Low Fe availability prevents the occurrence of diatom blooms observed inshore. The main fate of phytoplankton is probably recycling through the microbial food web, with relatively low sedimentation compared to inshore. However, the supply of macro- and micro-nutrients to the coastal and open ocean, respectively, may vary between years. Variability in macro-nutrient supply to the coastal ocean may result in decreased winter reserve nitrate, summer nitrate limitation, subsequent floristic shifts towards small cells, and reduced primary production. Offshore, higher diatom abundances are occasionally observed, perhaps indicating episodic Fe supply. The two distinct oceanic regimes have different phytoplankton dynamics resulting in different seasonality, community structure and fate of algal carbon. These differences will strongly influence the biogeochemical signatures of the coastal and open-oceanic NE subarctic Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号