首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal variation in seabed elevation in the muddy intertidal zone of the Chao Phraya River delta, an area of serious coastal erosion for 40 years, was assessed using information on waves and tides predicted by numerical simulations. The study area is under the influence of the Southeast Asian monsoon climate and lies in the innermost part of a sheltered gulf, across which a low‐gradient slope has developed. Observations, aimed at evaluating the effectiveness of a prototype breakwater on mitigating coastal erosion, indicated that the seasonal variation in the seabed elevation, typically about 30 cm, was caused primarily by seasonal changes in wave direction and height. The breakwater seems to have contributed to a net rise in the seabed level at sites behind the structure. Seabed erosion was most apparent during the northeast monsoon, when waves are weak. Erosion under this low wave energy state was attributed to the combined effect of wave breaking and the low tidal level. A difference in the observed seabed accretion rate between the transitional intermonsoon period and the succeeding southwest monsoon period was attributed to the direction of the wave energy flux; offshore sediments seem to have been supplied efficiently to the study area by waves during the transitional period. Another potential cause of seabed erosion and accretion during the wet southwest monsoon season was the discharge of water and sediments from local canals associated with intense tropical rainfall; this discharge seems to be linked to land use in the coastal area. The results of this study show the importance of monitoring across‐shore sediment transport for better understanding of coastal erosion processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We study how a coastal obstruction (peninsula or coastal island) affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative) rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula) and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.Dedicated to Professor L.A. Mysak on the occasion of his sixtieth birthday.  相似文献   

3.
Rubble-mound breakwaters are subjected not only to water wave action but also to other types of environmental loading, such as earthquakes. The design of coastal structures should take into account the most relevant factors in each case, including seismic loading. The purpose of this study is to understand the dynamic response of breakwater materials in dry and water conditions. Hence, an experimental study was carried out for homogeneous breakwater structures subjected to different dynamic loadings with variable frequencies and amplitudes in a shaking tank. A shaking tank with a single degree of freedom was developed. The experiments were performed with rigid bottom conditions. The model scale was 1/50. The cyclic responses of the breakwater made of entirely armor material and another of entirely core material were examined separately, and their behaviors were then compared. The experimental results are also discussed with a numerical study, and the material properties and failure modes were thus defined. It is found that the settlement of the armor and core materials under cyclic loads increased with increasing base acceleration level. The cyclic deformation of the rubble mound breakwater in water was larger than that under dry conditions. The cyclic deformation of the rubble materials resulted in crest lowering and slumping. Dominant mode of the seismic failure was associated with the settlement of the crown of the structure accompanied by densification of the core material.  相似文献   

4.
A bidimensional numerical model has been used in order to simulate the contaminant transport in the coastal groundwater area (Atlantic margin of the Rharb basin, Morocco). This groundwater is materialized by means of the salt contamination derived from several factors: evapotranspiration, lithological series formations, marine intrusion, and processes of interaction between water and rocks. In order to reduce the numerical diffusion and limit the numerical dispersion, we use the Superbee flux limiter as a total variation diminishing scheme to discretize the convective operator. This kind of discretization was applied to the coastal groundwater of the Rharb basin (Morocco). The results show that the Superbee flux limiter is efficient at drawing the path of the contaminant front with high accuracy. Consequently, this scheme could constitute an approach in water management and allows one to prevent the risks of pollution and to manage the groundwater resource from a durable development perspective. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A new depth-averaged exploratory model has been developed to investigate the hydrodynamics and the tidally averaged sediment transport in a semi-enclosed tidal basin. This model comprises the two-dimensional (2DH) dynamics in a tidal basin that consists of a channel of arbitrary length, flanked by tidal flats, in which the water motion is being driven by an asymmetric tidal forcing at the seaward side. The equations are discretized in space by means of the finite element method and solved in the frequency domain. In this study, the lateral variations of the tidal asymmetry and the tidally averaged sediment transport are analyzed, as well as their sensitivity to changes in basin geometry and external overtides. The Coriolis force is taken into account. It is found that the length of the tidal basin and, to a lesser extent, the tidal flat area and the convergence length determine the behaviour of the tidally averaged velocity and the overtides and consequently control the strength and the direction of the tidally averaged sediment transport. Furthermore, the externally prescribed overtides can have a major influence on tidal asymmetry in the basin, depending on their amplitude and phase. Finally, for sufficiently wide tidal basins, the Coriolis force generates significant lateral dynamics.  相似文献   

6.
Tsunamis waves caused by submarine earthquake or landslide might contain large wave energy, which could cause significant human loss and property damage locally as well as in distant region. The response of three harbors located at the Pacific coast (i.e. Crescent City Harbor, Los Angeles/Long Beach Port, and San Diego Harbor) to six well-known tsunamis events generated (both near-field and far-field) between 2005 and 2011 are examined and simulated using a hybrid finite element numerical model in frequency domain. The model incorporated the effects of wave refraction, wave diffraction, partial wave reflection from boundaries, entrance and bottom energy dissipation. It can be applied to harbor regions with arbitrary shapes and variable water depth. The computed resonant periods or modes of oscillation for three harbors are in good agreement with the energy spectral analysis of the time series of water surface elevations recorded at tide gauge stations inside three harbors during the six tsunamis events. The computed wave induced currents based on the present model are also in qualitative agreement with some of the reported eye-witness accounts absence of reliable current data. The simulated results show that each harbor responded differently and significantly amplified certain wave period(s) of incident wave trains according to the shape, topography, characteristic dimensions and water depth of the harbor basins.  相似文献   

7.
This study is aimed to understand the hydraulic mechanism of coastal aquifer systems that include highly permeable layers (HPLs). These hydrologic conditions can be found in many volcanic islands that are composed of a series of lava flows discharged into sea or other standing body of water. In the first part, we developed a numerical model based on the geologic and hydrologic data obtained from the eastern Jeju Island, Korea, of which the aquifer contains clinker and hyaloclastite layers. The simulation results reproduced spatial location of fresh‐saline water interface, especially the abrupt decline of interface at the inland part and the thickness variation of transition zone along the cross‐section observed at the eastern Jeju coastal aquifer. We were able to find out that these phenomena are strongly related to the presence of the HPL. In the second part, quantitative analyses were conducted with the use of hypothetical models in order to understand the dynamic characteristics of coastal system that includes HPLs. A series of sensitivity studies were conducted to assess the effect of the horizontal length and vertical depth of HPL on the spatial location of the interface toe and the configuration of transition zone. Various case studies have shown that the seawater intruded into the inland more as the horizontal length of HPL was increased and its vertical depth was decreased. In other simulations including two HPLs, the vertical distance between these two HPLs primarily controlled the flow regime, flux variations, and the configuration of the transition zone. Finally, we performed simulations to evaluate the effect of a rising sea‐level. This study provides more understanding of how the presence of HPL controls the seawater intrusion processes, and the spatial configurations of fresh‐saline water interface at coastal aquifers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Summary The time-dependent primitive equations for a shallow homogeneous ocean with a free surface are solved for a bounded basin on the sphere, driven by a steady zonal wind stress and subject to lateral viscous dissipation. These are the vertically integrated equations for a free-surface model, and are integrated to 60 days from an initial state of rest by an explicit centered-difference method with zero-slip lateral boundary conditions. In a series of comparative numerical solutions it is shown that at least a 2-deg resolution is needed to resolve the western boundary currents adequately and to avoid undue distortion of the transient (Rossby waves. The -plane formulation is shown to be an adequate approximation for the mean circulation in the lower and middle latitudes, but noticeably intensifies the transports poleward of about 50 deg and both slows and distorts the transients in the central basin. The influence of the (southern) zonal boundary on the transport solutions is confined to the southernmost gyre, except in the region of the western boundary currents where its influence spreads to the northern edge of the basin by 30 days. The total boundary current transport is shown to be approximately proportional to the zonal width of the basin and independent of the basin's (uniform) depth, while the elevation of the free water surface is inversely proportional to the basin depth, in accordance with linear theory. The introduction of bottom friction has a marked damping effect on the transient Rossby waves, and also reduces the maximum boundary-current transport. The solutions throughout are approximately geostrophic and are only slightly nonlinear.The root-mean-square (rms) transport variability during the period 30 to 60 days is concentrated in the southwest portion of the basin through the reflection of the transient Rossby waves from the western shore and has a maximum corresponding to an rms current variability of about 3 cm sec–1. The transport variabilities are about 10 percent of the mean zonal transport and more than 100 percent of the mean meridional transport over a considerable region of the western basin (outside the western boundary current regime). Some 99 percent of the total kinetic energy is associated with the zonal mean and standing zonal waves, which are also responsible for the bulk of the meridional transport of zonal angular momentum. Although the transient Rossby waves systematically produce a momentum flux convergence at the latitude of the maximum eastward current, much in the manner of their atmospheric counterparts, this is only a relatively small contribution to the zonal oceanic momentum balance; the bulk of the mean zonal stress is here balanced by a nearly stationary net pressure torque exerted against the meridional boundaries by the wind-raised water. In an ocean without such boundaries the role of the transient circulations may be somewhat more important.  相似文献   

9.
This paper presents an analytical case study to explore one‐dimensional subsurface air pressure variation in a coastal three‐layered unsaturated zone. The upper layer is thin and much less permeable than the middle layer, and water table is located in the very permeable lower layer. An analytical solution was derived to describe the air pressure variation caused by tide‐induced water table fluctuations. We revisited the case study at Hong Kong International Airport conducted by Jiao and Li (2004) who used a two‐dimensional numerical model. The analytical prediction using the parameter values equivalent to the two‐dimensional numerical model agreed very well with the observed air pressure, indicating the validity and applicability of our one‐dimensional model in approximating the actual situation in this coastal zone with adequate accuracy. The analysis revealed that the asphalt pavement played an important role in causing air pressure fluctuations below it. Abnormally high air pressure can be caused beneath the surface pavement when the air permeability decreases due to rainfall infiltration, which may lead to heaving problems during rising tides.  相似文献   

10.
Numerical modeling was used in order to study the effect of tidal currents within a breakwater scheme that has reached morphodynamic equilibrium. Tidal flow is simulated, using a downscaling procedure from a regional numerical model, in order to investigate the small-scale hydrodynamic modifications caused by the structures in the absence of waves. Sediment transport processes at different stages of the neap and spring tidal cycle are also considered over the entire scheme. Significant modifications to the tidal currents were identified, caused by the presence of the following structures: (1) obstruction of the main tidal flow and (2) flow channelization between the structures and the coastline, leading to flow acceleration over the salients. Furthermore, the effect of the modified tidal regime on bedload sediment transport processes was investigated. The design characteristics of the scheme (i.e., gap width, offshore distance, and relative angle with respect to the tidal currents) are found to influence locally the tidal flow and the bedload transport, over the top of the salients, modulating their growth. Despite being located in a mixed-energy, wave-dominated environment, the shear stress ratio between currents and waves show a dominance of tidal processes at the sheltered areas of the scheme (i.e., behind the breakwaters) that diminishes as the incident wave period increases. Hence, in order to correctly predict the morphological evolution of such coast under the influence of coastal protection schemes, the tidal processes have to be studied in addition to the wave processes.  相似文献   

11.
Transport of nonsorbing solutes in a streambed with periodic bedforms   总被引:1,自引:0,他引:1  
Previous studies of hyporheic zone focused largely on the net mass transfer of solutes between stream and streambed. Solute transport within the bed has attracted less attention. In this study, we combined flume experiments and numerical simulations to examine solute transport processes in a streambed with periodic bedforms. Solute originating from the stream was subjected to advective transport driven by pore water circulation due to current–bedform interactions as well as hydrodynamic dispersion in the porous bed. The experimental and numerical results showed that advection played a dominant role at the early stage of solute transport, which took place in the hyporheic zone. Downward solute transfer to the deep ambient flow zone was controlled by transverse dispersion at the later stage when the elapsed time exceeded the advective transport characteristic time tc (= L/uc with L being the bedform length and uc the characteristic pore water velocity). The advection-based pumping exchange model was found to predict reasonably well solute transfer between the overlying water and streambed at the early stage but its performance deteriorated at the later stage. With dispersion neglected, the pumping exchange model underestimated the long-term rate and total mass of solute transfer from the overlying water to the bed. Therefore both advective and dispersive transport components are essential for quantification of hyporheic exchange processes.  相似文献   

12.
《Continental Shelf Research》1999,19(9):1221-1245
This paper presents some recent results of drifters released on the West Florida Shelf during 1996–1997 and compares with the numerical model results of the wind-driven circulation. Using satellite tracked surface drifters during the one year period from February 1996 to February 1997, a drifter free region, called the “forbidden zone”, is found over the southern portion of the West Florida Shelf. This finding is consistent with historical drift bottle data and with a recent numerical model study of the West Florida Shelf circulation response to climatological wind forcing. Direct drifter simulations by numerical model during March 1996 show a good agreement with both the in situ ADCP current observation and drifter observation. Three mechanisms are proposed for the observed Lagrangian features. The primarily dynamic mechanism is the along-shore wind forcing, which induces a coastal jet that tends to leave the coast and the bottom onshore and near surface offshore transports. The second one is the convergent coastal geometry and bottom topography for the southward flow in central shelf near Tampa Bay that enforces the coastal jet and the bottom and near surface transport. The last is a kinematic one, simply due to the short along-shore Lagrangian excursion, driven by the typical synoptic weather systems. Thus near surface shelf waters over the north may not reach the southern coast of the West Florida. Implication is that surface hazard such as oil spill that may occur outside of the southern West Florida shelf may not greatly impact the southern coastal region except Florida Keys. However, the biological and chemical patches over the north that may occur in the water column such as red tides still can easily reach the southern coastal region through the subsurface and bottom waters.  相似文献   

13.
Climate change is an issue of major concern nowadays.Its impact on the natural and human environment is studied intensively,as the expected shift in climate will be significant in the next few decades.Recent experience shows that the effects will be critical in coastal areas,resulting in erosion and inundation phenomena worldwide.In addition to that,coastal areas are subject to "pressures" from upstream watersheds in terms of water quality and sediment transport.The present paper studies the impact of climate change on sediment transport and morphology in the aforementioned coupled system.The study regards a sandy coast and its upstream watershed in Chalkidiki,North Greece;it is based on:(a)an integrated approach for the quantitative correlation of the two through numerical modeling,developed by the authors,and(b)a calibrated application of the relevant models Soil and Water Assessment Tool(SWAT)and PELNCON-M,applied to the watershed and the coastal zone,respectively.The examined climate change scenarios focus on a shift of the rainfall distribution towards fewer and more extreme rainfall events,and an increased frequency of occurrence of extreme wave events.Results indicate the significance of climatic pressures in wide-scale sediment dynamics,and are deemed to provide a useful perspective for researchers and policy planners involved in the study of coastal morphology evolution in a changing climate.  相似文献   

14.
Interactions between waves, current, mud and turbulence are very complicated in the coastal and estuarine turbid waters. It is still necessary to improve our understanding of the fundamental physical processes governing the cohesive sediment transport in the coastal and estuarine waters. A numerical model is developed to study the interactions among waves, current, and mud. An eddy viscosity model for wave and current is proposed in order to close the equations of wave motion or of current motion in a combined flow, respectively. The equations of mud transport are derived based on the visco-elastic properties of mud. Coupling the equations of wave motion or of current motion for water layer with those of mud layer can give (1) wave height; (2) distributions of current velocities in the water layer; (3) distributions of transport velocities at the water–mud interface; and (4) distributions of mass transport velocities within the mud layer. These modeled results are in a reasonable agreement with experimental results. Results suggest that (1) the rate of wave attenuation increases in the opposing currents (currents against in the direction in which the waves propagate) and decreases in the following currents (currents in the same direction as that in which the waves propagate); (2) the opposing currents would have more significant effects on the rate of wave height attenuation than the following currents; (3) the effect of current on the rate of wave attenuation on the muddy bottom is larger than that on the rigid bottom; (4) mud transport rate increased in the following currents but decreased in the opposing currents; and (5) the rate of wave height attenuation on the mud bottom is one order of magnitude larger than that on the rigid bottom.  相似文献   

15.
Analytical models have been exhaustively used to study simple seawater intrusion problems and the sustainable management of groundwater resources in coastal aquifers because of its simplicity, easy implementation, and low computational cost. Most of these models are based on the sharp‐interface approximation and the Ghyben–Herzberg relation, and their governing equations are expressed in terms of a single potential theory to calculate critical pumping rates in a coastal pumping scenario. The Ghyben–Herzberg approach neglects mixing of fresh water and seawater and implicitly assumes that salt water remains static. Therefore, the results of the analytical solutions may be inaccurate and unacceptable for some real‐complex case studies. This paper provides insight into the validity of sharp‐interface models to deal with seawater intrusion in coastal aquifers, i.e. when they can be applied to obtain accurate enough results. For that purpose, this work compares sharp‐interface solutions, based on the Ghyben–Herzberg approach, with numerical three‐dimensional variable‐density flow simulations for a set of heterogeneous groundwater flow and mass transport parameters, and different scenarios of spatially distributed recharge values and spatial wells placement. The numerical experiment has been carried out in a 3D unconfined synthetic aquifer using the finite difference numerical code SEAWAT for solving the coupled partial differential equations of flow and density‐dependent transport. This paper finds under which situations the sharp‐interface solution gives good predictions in terms of seawater penetration, transition zone width and critical pumping rates. Additionally, the simulation runs indicate to which parameters and scenarios the results are more sensitive. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The Gulf of Naples (Southern Tyrrhenian Sea) is a highly urbanised area, where human activities and natural factors (e.g. river runoff, exchanges with adjacent basins) can strongly affect the water quality. In this work we show how surface transport can influence the distribution of passively drifting surface matter, and more in general if and how the circulation in the basin can promote the renovation of the surface layer. To this aim, we carried out a multiplatform analysis by putting together HF radar current fields, satellite images and modelling tools. Surface current fields and satellite images of turbidity patterns were used to initialise and run model simulations of particle transport and diffusion. Model results were then examined in relation to the corresponding satellite distributions. This integrated approach permits to investigate the concurrent effects of surface dynamics and wind forcing in determining the distribution of passive tracers over the basin of interest, identifying key mechanisms supporting or preventing the renewal of surface waters as well as possible areas of aggregation and retention.  相似文献   

17.
New analysis of wave records at Hualien Harbor during Typhoon Tim in 1994 reveals that for certain wave periods, the ratios of measured wave heights among three available wave stations inside the harbor are unique and roughly remain the same during the severest period of resonance. Since there is no incident infragravity wave (period from 80 to 220 s) information at offshore boundaries, these unique ratios become the surrogate of background truth for checking the performance of numerical simulations. A new simulation effort using a large (45 × 17 km) modeling domain, high-resolution (20 × 20 m) grid and the RIDE wave transformation model were conducted to simulate the observed responses. Comparison of the modeling results with the observations showed reasonable agreement. Additional model studies using ideal bathymetries with the same grid domain and resolution were also conducted to help interpret the prototype modeling results. The effects of two types of commonly used remedies were first examined by using the ideal bathymetry, and then, the prototype bathymetry. The results demonstrated that a single 1-km long, shore-parallel breakwater could significantly reduce the resonance. The results of using three shore-parallel breakwaters, however, are no better. More studies to identify the optimum design associated with the shore-parallel breakwater (location, length, etc.) are necessary for the optimum reduction of resonance at Hualien Harbor.  相似文献   

18.
Analytical solutions for the water flow and solute transport equations in the unsaturated zone are presented. We use the Broadbridge and White nonlinear model to solve the Richards’ equation for vertical flow under a constant infiltration rate. Then we extend the water flow solution and develop an exact parametric solution for the advection-dispersion equation. The method of characteristics is adopted to determine the location of a solute front in the unsaturated zone. The dispersion component is incorporated into the final solution using a singular perturbation method. The formulation of the analytical solutions is simple, and a complete solution is generated without resorting to computationally demanding numerical schemes. Indeed, the simple analytical solutions can be used as tools to verify the accuracy of numerical models of water flow and solute transport. Comparison with a finite-element numerical solution indicates that a good match for the predicted water content is achieved when the mesh grid is one-fourth the capillary length scale of the porous medium. However, when numerically solving the solute transport equation at this level of discretization, numerical dispersion and spatial oscillations were significant.  相似文献   

19.
The exchange flow of water and sediment between a harbor and the surrounding waters can be geometrically decomposed into three main components: tidal filling, horizontal, and vertical exchange flows. The method is applied to analyze available measurements at two important harbor basins in Belgium. The geometric analysis can also be applied to the results of a numerical model of hydrodynamics and sediment transport, provided it has sufficient horizontal, vertical, and temporal resolutions to capture the dynamics at the harbor mouth. As such, it can be used as a tool in model calibration. The presented method can provide some insight into the complex relationship (phasing and spatial correlations) between hydrodynamics and sediment concentration that determines harbor siltation.  相似文献   

20.
Estimation of groundwater recharge to an unconfined aquifer is studied using analytical and numerical techniques and results are compared with field observations. There is an acute need for such estimation in water balance studies in arid climates, and the case study in this paper is for such a region. The wetting front movement in the unsaturated zone depends on antecedent soil moisture, the ponded water depth and its duration, and on the position of the water table and the hydraulic properties of the unsaturated zone. A hydraulic connection between the recharge basin and the aquifer is not immediately established because the wetting front is unsaturated. A numerical model is applied to estimate recharge in an arid-zone wadi, and its validity is tested by comparing it with an analytical solution of the equations. The calculated recharge values matched the piezometric levels observed at a well site at the edge of the wadi channel. The total recharge depths found by integration in the time domain provided a good estimate of the transmitted volume of water per unit length of wadi channel. The findings were confirmed by runoff volume measurements at gauging stations located in the basin. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号