首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Profile and eddy-correlation (heights of 4 and 10 m) measurements performed on the Pasterze glacier (Austria) are used to study the characteristics of the stable boundary layer under conditions of katabatic and large-scale forcing. We consider cases where large-scale forcing results in a downslope (or following) ambient wind. The analysis of averaged spectra and cospectra reveals low frequency perturbations that have a large influence on the variances of temperature and horizontal wind components and also alter the cospectra of momentum and sensible heat flux. Only the spectrum of the vertical wind speed is comparable to universal spectra. The low frequency perturbations occur as brief intermittent events and result in downward entrainment of ambient air thereby producing enhanced downward sensible heat fluxes and downward as well as upward momentum fluxes with various magnitudes and timescales. After the variances were high pass filtered, the normalised standard deviations of wind speed and temperature compare favourably to findings in the literature within the range 0>z/L>0.5. For larger z/L they deviate as a result of an increased influence from low frequency perturbations and thus non-stationarity. In line with this, the turbulent kinetic energy budget (at 4 m height) indicates that production (shear) is in balance with destruction (buoyancy and dissipation) within the range 0>z/L>0.3. Non-dimensional gradients of wind speed within the range 0>z/L>0.3 have a slope of about 3.5. The scatter for the dimensionless temperature gradient is quite large, and the slope is comparable to that for wind speed gradients. For z/L>0.3 the imbalance in the turbulent kinetic energy budget grows and non-dimensional gradients for wind speed and temperature deviate considerably from accepted values as a result of increased non-stationarity. Average roughness lengths for momentum and sensible heat flux derived from wind speed and temperature profiles are respectively 1 × 10-3 m and 6 × 10-5 m, consistent with the literature. The ratio (z0h/z0m) compares to those predicted by surface renewal models. A variation of this ratio with the roughness Reynolds number is not indicated by our data.  相似文献   

2.
A regional atmospheric climate model is used toexamine the effect of changes in the roughnesslengths of momentum (z0m) and heat (z0h)on the structure of the lower atmosphere and on thesurface energy fluxes over Antarctica. Fourexperiments were carried out in which z0mand/or z0h were altered with respect to acontrol experiment. The changes consisted of (1) alowering of z0m from a field aggregated froma vegetation map with an orographic correction basedon the European Centre for Medium-Range WeatherForecasts z0m field, to a constant value of10-3 m; and (2) a lowering of z0h from a valueequal to z0m to a constant value of 10-3 mor a value dependent on the wind speed via a surfacerenewal model. A reduction of z0m results in theexpected increase in near-surface wind speed. It alsoresults in an increase in the depth of the layer in whichsouth-easterly near-surface winds prevail, and in adecrease in the strength of the large-scale flow overthe continent, in particular in summer. In theescarpment region a decrease of z0m is foundto result in too high wind speeds. Surface temperatureson average decrease while atmospheric temperaturesincrease, resulting in an increase of near-surfacestatic stability. Changes in roughness lengths donot significantly change the temperature profiles.The surface fluxes, on average found reduced, aremodelled best by using the z0h based on thesurface renewal method.  相似文献   

3.
This is the first of two papers reporting the results of a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. The experimental site was located on a 5o slope. The stand, which was planted in 1962, and thinned and pruned uniformly in 1988, had a (projected) leaf area index of 5.4 and a heighth=16.7 m. Two eddy correlation units were operated in the daytime to measure the fluctuations in the three velocity components, air temperature and water vapour density, with one mounted permanently at a height of 23.0m (z/h=1.38) and the other at various heights in the stand with two to three 8-hour periods of measurement at each level. Humidity and radiation regimes both above and beneath the overstory and profiles of wind speed and air temperature were also measured. The most important findings are:
  1. A marked secondary maximum in the wind speed profile occurred in the middle of the trunk space (aroundz/h=0.12). The turbulence intensities for the longitudinal and lateral velocity components increased with decreasing height, but the intensity for the vertical velocity component had a maximum atz/h=0.60 (middle of the canopy layer). Magnitudes of the higher order moments (skewness and kurtosis) for the three velocity components were higher in the canopy layer than in the trunk space and above the stand.
  2. There was a 20% reduction in Reynolds stress fromz/h=1.00 to 1.38. Negative Reynolds stress or upward momentum flux perisistently occurred atz/h=0.12 and 0.42 (base of the canopy), and was correlated with negative wind speed gradients at the two heights. The longitudinal pressure gradient due to the land-sea/upslope-downslope circulations was believed to be the main factor responsible for the negative Reynolds stress.
  3. Momentum transfer was highly intermittent. Sweep and ejection events dominated the transfer atz/h=0.60, 1.00 and 1.38, with sweeps playing the more important role of the two atz/h=0.60 and 1.00 and the less important role atz/h=1.38. But interaction events were of greater magnitude than sweep and ejection events atz/h=0.12 and 0.42.
  相似文献   

4.
Summary In this paper, we evaluate the applicability of flux-gradient relationships for momentum and heat for urban boundary layers within the Monin-Obukhov similarity (MOS) theory framework. Although the theory is widely used for smooth wall boundary layers, it is not known how well the theory works for urban layers. To address this problem, we measured the vertical profiles of wind velocity, air temperature, and fluxes of heat and momentum over a residential area and compared the results to theory. The measurements were done above an urban canopy whose mean height zh is 7.3 m. 3-D sonic anemometers and fine wire thermocouples were installed at 4 heights in the region 1.5zh < z < 4zh. We found the following: (1) The non-dimensional horizontal wind speed has good agreement with the stratified logarithmic profile predicted using the semi-empirical Monin-Obukov similarity (MOS) function, when it was scaled by the surface friction velocity that is derived from the shear stress extrapolated to the roof-top level. (2) The scaled gradient of horizontal wind speed followed a conventional semi-empirical function for a flat surface at a level (z/zh = 2.9), whereas, in the vicinity of the canopy height was larger than the commonly-used empirical relationship. (3) The potential temperature profile above the canopy shows dependency on the atmospheric stability and the scaled gradient of temperature is in good agreement with a conventional shear function for heat. In the case of heat, the dependency on height was not found. (4) The flux-gradient relationship for momentum and heat in the region 1.5zh < z < 4zh was rather similar to that for flat surfaces than that for vegetated canopies.  相似文献   

5.
Source/sink distributions of heat, water vapour andCO2 within a rice canopy were inferred using aninverse Lagrangian dispersion analysis and measuredmean profiles of temperature, specific humidity andCO2 mixing ratio. Monin–Obukhov similarity theorywas used to account for the effects of atmosphericstability on w(z), the standard deviation ofvertical velocity and L(z), the Lagrangian timescale of the turbulence. Classical surface layer scaling was applied in the inertial sublayer (z > zruf)using the similarity parameter = (z - d)/L, where z is height above ground, d is the zero plane displacementheight for momentum, L is the Obukhov length,and zruf 2.3hc, where hc iscanopy height. A single length scale hc, was usedfor the stability parameter 3 = hc/L in the height range 0.25 < z/hc < 2.5. This choice is justified by mixing layer theory, which shows that within the roughness sublayer there is one dominant turbulence length scaledetermined by the degree of inflection in the windprofile at the canopy top. In the absence of theoretical or experimental evidence for guidance,standard Monin–Obukhov similarity functions, with = hc/L, were used to calculate the stabilitydependence of w(z) and L(z) in the roughness sublayer. For z/hc < 0.25 the turbulence length and time scales are influenced by the presence of the lowersurface, and stability effects are minimal. With theseassumptions there was excellent agreement between eddycovariance flux measurements and deductions from theinverse Lagrangian analysis. Stability correctionswere particularly necessary for night time fluxes whenthe atmosphere was stably stratified.The inverse Lagrangian analysis provides a useful toolfor testing and refining multilayer canopy models usedto predict radiation absorption, energy partitioningand CO2 exchanges within the canopy and at thesoil surface. Comparison of model predictions withsource strengths deduced from the inverse analysisgave good results. Observed discrepancies may be dueto incorrect specification of the turbulent timescales and vertical velocity fluctuations close to theground. Further investigation of turbulencecharacteristics within plant canopies is required toresolve these issues.  相似文献   

6.
Vertical profiles of wind speed, temperature and humidity were used to estimate the roughness lengths for momentum (z 0), heat (z H ) and moisture (z Q) over smooth ice and snow surfaces. The profile-measurements were performed in the vicinity of a blue ice field in Queen Maud Land, East Antarctica. The values ofz 0 over ice (3·10–6 m) seem to be the smallest ever obtained over permanent, natural surfaces. The settling of snow on the ice and the loss of momentum at saltating snow particles serve as momentum dissipating processes during snow-drift events, expressed as a strong dependence ofz 0 on u#.The scalar roughness lengths and surface temperature can be evaluated from the temperature and humidity profile measurements if the ratioz H /z Q is specified. This new method circumvents the difficult measurement of surface temperature. The scalar roughness lengths seem to be approximately equal toz0 for a large range of low roughness Reynolds numbers, despite the frequent occurrence of drifting snow. Possible reasons for this agreement with theory of non-saltating flow are discussed.  相似文献   

7.
Fluctuations in the vertical wind velocity and air temperature were measured with a 1-dimensional sonic anemometer and fine thermocouple over a flat agricultural site in the Rhone Valley, France. Strong Mistral winds with speeds up to 20 m s–1 kept atmospheric conditions very close to neutral and ensured stationarity. Friction velocities estimated both by eddy correlation (sonic plus Gill Bivane) and inertialdissipation (sonic only) methods agreed within 1 and 5 % respectively of traditional profile measurements over the measured range of 0.2 to 1.2 m s–1. The coefficient of eddy transport for heat exceeded that of momentum by a factor of 1.38 (± 0.05), a result almost identical to that obtained in the Kansas experiment (Businger et al., 1971). For - 0.15 >= z/L >= 0.05, the ratio w /u * was 1.69 and 1.34 for unstable and stable conditions, respectively. For ¦z/L¦ >= 0.05, the ratio /T * was 1.40 independent of whether neutrality was approached from either stable or unstable conditions.  相似文献   

8.
Data from the Antarctic winter at Halley Base have been used in order to evaluate qualitatively and quantitatively how the stratification in the low atmosphere (evaluated with the gradient Richardson number, Ri) influences the eddy transfers of heat and momentum. Vertical profiles of wind and temperature up to 32 m, and turbulent fluxes ( , and ) measured from three ultrasonic thermo-anemometers installed at 5, 17 and 32 m are employed to calculate Ri, the friction velocity (u *) and the eddy diffusivities for heat (K h ) and momentum (K m ). The results show a big dependence of stability onK m ,K h andu *, with a sharp decrease of these turbulent parameters with increasing stability. The ratio of eddy diffusivities (K h /K m ) is also analyzed and presents a decreasing tendency as Ri increases, reaching values even less than 1, i.e., there were situations where the turbulent transfer of momentum was greater than that of heat. Possible mechanisms of turbulent mixing are discussed.  相似文献   

9.
The influence of an internal boundary layer and a roughness sublayer on flux–profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensible heat flux and momentum (h and m) and analysed as a function of atmospheric stability and fetch. For heat, the influences of the roughness sublayer and the internal boundary layer were in agreement with previous studies. For momentum, the strong vertical gradient of the flow just above the canopy top for some wind sectors led to an increase in m, a feature that has not previously been observed. For a fetch of 500 m over the beech forest during neutral atmospheric conditions, there is no height range at the site where profiles can be expected to be logarithmic with respect to the local surface. The different influence of the roughness sublayer on h and m is reflected in the aerodynamic resistance for the site. The aerodynamic resistance for sensible heat is considerably smaller than the corresponding value for momentum.  相似文献   

10.
In the framework of an international field program for the study of semi-arid areas, observations were done in the region called La Crau in southern France. In this paper, the use of the surface radiative temperature for the determination of the sensible heat flux is addressed. We found that, once proper values of the roughness length of momentum (z 0) and heat (z 0h) are set, the sensible heat flux can be reliably predicted with a one-layer resistance model using standard observations of wind speed and air temperature, together with the surface temperature. The latter quantity has to be known with a precision better than ±2°C. From our observations, the value of the parameterB –1k –1 In (z 0 z 0h) was found to be 9.2, which falls between values quoted by Brutsaert (1982) for grass and bluff bodies.  相似文献   

11.
The wind stress in the marine surface layer under unstable conditions and low wind speed has been studied using a Synthetic Aperture Radar (SAR) image of the sea surface and time series of the horizontal and vertical wind velocities and of the wind stress recorded on board the C.N.R. research platform, in the northern Adriatic Sea, during a SAR overflight.A conditional sampling technique has been used on the wind stress time series and on the SAR image to detect downward (sweep) and upward (ejection) bursts of the momentum flux, as well as the two-dimensional structure of the radar backscatter.From the ensemble average of both the wind stress and the backscatter structures, it has been possible to estimate the mean duration of the upward (11 s) and the downward (15 s) wind stress bursts and the mean size of the bright patches of the SAR image (120 m). The front of the mean backscatter structure, associated with the downward wind stress bursts, has been related to the time length of the mean sweep stress structure to get, after accounting for a threshold of the wind stress for the generation of the sea surface wavelets, the translation velocity Ut of the mean wind stress of sweep, very close to the mean wind speed. The vertical coherence of the wind stress structures has permited to refer the translation velocity to a level very close to the sea surface, but above the viscous sublayer. The variability of Ut with height has been studied through comparison with the mean wind speed at different heights z calculated by a boundary-layer model. Accounting for the results reported in the literature, there is an indication that Ut is constant with height in the range 0.5 m z 15 m.The two-dimensional pattern of the wind stress structures has been derived from the SAR image. The structures appear elongated crosswind, as with microfronts, with an average cross- to down-wind ratio of 4. The area covered by the downward wind stress structures represents 13% of the total area.  相似文献   

12.
Flux-profile relationships based on surface-layer similarity theory are used to derive relationships between the Monin-Obukhov stability parameter = z/L and the bulk Richardson number Ri b . In contrast to previous studies, the roughness length for heat, z 0h ,is assumed unequal to the roughness length for momentum, z 0m .For the stable case, an analytic expression of in terms of Ri b can be derived and in the unstable case, the solution is obtained through a simple iterative process.Errors introduced from the simplification of z 0h = z 0m are evaluated and are shown to be very significant in most cases. Thus, this error in many practical applications may invalidate the intended solution.  相似文献   

13.
Measurements of gradients of wind, temperature and humidity and of the corresponding turbulent fluxes have been carried out over a sparse pine forest at Jädra»s in Sweden. In order to ascertain that correct gradient estimates were obtained, two independent measuring systems were employed: one system with sensors at 10 fixed levels on a 51 m tower and another with reversing sensors for temperature and humidity, covering the height interval 23 to 32 m. Turbulent fluxes were measured at three levels simultaneously. Data from three field campaigns: in June 1985, June 1987 and September 1987 have been analyzed. The momentum flux is found on the average to be virtually constant from tree top level, at 20 to 50 m. The average fluxes of sensible and latent heat are not so well behaved. The ratio of the non-dimensional gradients of wind and temperature to their corresponding values under ideal conditions (low vegetation) are both found to be small immediately above the canopy (about 0.3 for temperature and 0.4 for wind). With increasing height, the ratios increase, but the values vary substantially with wind direction. The ratios are not found to vary systematically with stability (unstable stratification only studied). The ratio of the non-dimensional humidity gradient to the corresponding non-dimensional potential temperature gradient (equivalent to k h /k w ) is found to be unity for (z – d)/L v less than about –0.1 and about 1.4 for near neutral stratification, but the scatter of the data is very large.  相似文献   

14.
Turbulent Transport of Momentum and Scalars Above an Urban Canopy   总被引:3,自引:3,他引:0  
Turbulent transport of momentum and scalars over an urban canopy is investigated using the quadrant analysis technique. High-frequency measurements are available at three levels above the urban canopy (47, 140 and 280 m). The characteristics of coherent ejection–sweep motions (flux contributions and time fractions) at the three levels are analyzed, particularly focusing on the difference between ejections and sweeps, the dissimilarity between momentum and scalars, and the dissimilarity between the different scalars (i.e., temperature, water vapour and $\hbox {CO}_{2})$ . It is found that ejections dominate momentum and scalar transfer at all three levels under unstable conditions, while sweeps are the dominant eddy motions for transporting momentum and scalars in the urban roughness sublayer under neutral and stable conditions. The flux contributions and time fractions of ejections and sweeps can be adequately captured by assuming a Gaussian joint probability density function for flow variables. However, the inequality of flux contributions from ejections and sweeps is more accurately reproduced by the third-order cumulant expansion method (CEM). The incomplete cumulant expansion method (ICEM) also works well except for $\hbox {CO}_{2}$ at 47 m where the skewness of $\hbox {CO}_{2}$ fluctuations is significantly larger than that for vertical velocity. The dissimilarity between momentum and scalar transfers is linked to the dissimilarity in the characteristics of ejection–sweep motions and is further quantified by measures of transport efficiencies. Atmospheric stability is the controlling factor for the transport efficiencies of momentum and heat, and fitted functions from the literature describe their behaviour fairly accurately. However, transport efficiencies of water vapour and $\hbox {CO}_{2}$ are less affected by the atmospheric stability. The dissimilarity among the three scalars examined in this study is linked to the active role of temperature and to the surface heterogeneity effect.  相似文献   

15.
This paper describes a wind-tunnel experiment on the dispersion of trace heat from an effectively planar source within a model plant canopy, the source height being h s = 0.80 h c , where h c is the canopy height. A sensor assembly consisting of three coplanar hot wires and one cold wire was used to make simultaneous measurements of the temperature and the streamwise and vertical velocity components. It was found that:
  1. The thermal layer consisted of two parts with different length scales, an inner sublayer (scaling with h s and h c ) which quickly reached streamwise equilibrium downstream of the leading edge of the source, and an outer sublayer which was self-preserving with a length scale proportional to the depth of the thermal layer.
  2. Below 2h c , the vertical eddy diffusivity for heat from the plane source (K HP ) was substantially less than the far-field limit of the corresponding diffusivity for heat from a lateral line source at the same height as the plane source. This shows that dispersion from plane or other distributed sources in canopies is influenced, near the canopy, by turbulence ‘memory’ and must be considered as a superposition of both near-field and far-field processes. Hence, one-dimensional models for scalar transport from distributed sources in canopies are wrong in principle, irrespective of the order of closure.
  3. In the budgets for temperature variance, and for the vertical and streamwise components of the turbulent heat flux, turbulent transport was a major loss between h s and h c and a principal gain mechanism below h s , as also observed in the budgets for turbulent energy and shear stress.
  4. Quadrant analysis of the vertical heat flux showed that sweeps and ejections contributed about equal amounts to the heat flux between h s and h c , though among the more intense events, sweeps were dominant. Below h s , almost all the heat was transported by sweeps.
  相似文献   

16.
Urban surface and radiation processes are incorporated into a computational fluid dynamics (CFD) model to investigate the diurnal variation of flow in a street canyon with an aspect ratio of 1. The developed CFD model predicts surface and substrate temperatures of the roof, walls, and road. One-day simulations are performed with various ambient wind speeds of 2, 3, 4, 5, and 6 ms−1, with the ambient wind perpendicular to the north–south oriented canyon. During the day, the largest maximum surface temperature for all surfaces is found at the road surface for an ambient wind speed of 3 ms−1 (56.0°C). Two flow regimes are identified by the vortex configuration in the street canyon. Flow regime I is characterized by a primary vortex. Flow regime II is characterized by two counter-rotating vortices, which appears in the presence of strong downwind building-wall heating. Air temperature is relatively low near the downwind building wall in flow regime I and inside the upper vortex in flow regime II. In flow regime II, the upper vortex expands with increasing ambient wind speed, thus enlarging the extent of cool air within the canyon. The canyon wind speed in flow regime II is proportional to the ambient wind speed, but that in flow regime I is not. For weak ambient winds, the dependency of surface sensible heat flux on the ambient wind speed is found to play an essential role in determining the relationship between canyon wind speed and ambient wind speed.  相似文献   

17.
An alternative analysis of flux-gradient relationships at the 1976 ITCE   总被引:7,自引:1,他引:7  
An extensive micrometeorological data set from the 1976 International Turbulence Comparison Experiment (ITCE) is analysed to determine flux-gradient relationships in an unstable atmosphere for momentum, sensible heat and water vapour transfers. The data are first analysed for internal consistency, resulting in the rejection of some data. Following a least-square fit to the remaining data in the form /k = (1 – z/L)-/k, rounded-off values of k, , and are selected for each form of transfer consistent with the statistical accuracy of the measurements. The equations finally adopted are M = (1 – 28z/L)-1/4 and H, W = (1 – 14z/L)-1/2 with k M = kH = kW = 0.40.These expressions fit the averaged observations to within a few per cent in the stability range of the experiment (-4 < z/L < -0.004).  相似文献   

18.
Careful micrometeorological measurements on an empty parking lot allowed determination of the surface fluxes of sensible heatH and of momentum by applying profile equations derived from Monin-Obukhov similarity theory with two sets of the stability correction function for momentum m and sensible heat h . These fluxes were compared with reference values ofH independently determined by means of an eddy correlation technique. In general, better agreement was found betweenH values derived from profiles with the stability functions of Brutsaert (1992) and referenceH values, than when the Businger-Dyer functions were used to deriveH. The disagreement in the latter comparison was especially serious under strongly unstable conditions, with the value ofy=–z/L (wherez is the height andL is the Obukhov length) larger than 10. A closer look at the procedure for calculatingH from the profiles revealed that the large differences between theH values derived with these two different versions of the stability correction functions were caused by the small differences of the h values, and not by the larger differences of the m values. This result stems from the strong sensitivity of the resultingH values on the choice of h .  相似文献   

19.
For the thermal stability function h used to calculate heat and moisture fluxes in the surface layer, we choose a formulation which has the theoretically correct free convection limit % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabgk% HiTGqaciaa-PhacaqGVaGaamitaiaabMcadaahaaWcbeqaaiabgkHi% TiaaigdacaGGVaGaaG4maaaaaaa!3DFE!\[{\rm{(}} - z{\rm{/}}L{\rm{)}}^{ - 1/3} \]. We then use the experimental result that z/L Ri to deduce a formulation with an exponent -1/6 for the momentum stability function m. This formulation also resolves the matching problem at the interface between the surface and Ekman layers. The proposed functions are found to remain reasonably close to another formulation that is well supported by observations and has exponents -1/2 for h and -1/4 for m. The intent of the proposals is mainly to clarify and simplify the parameterization of the convective boundary layer in present day atmospheric models, without significantly altering the results.  相似文献   

20.
A two dimensional model has been set up to investigate the circulation induced by an urban heat island in the absence of synoptic winds. The boundary conditions need to be formulated carefully and due to difficulties arising here, we restrict our attention to cases of initially stable thermal stratification. Heat island circulations are allowed to develop from rest and prior to the appearance of the final symmetric double cell pattern, a transitional multi-cell pattern is observed in some cases. The influence on the steady state circulation of various parameters is studied, among which are eddy transfer coefficients, the heat island intensity, the initial temperature stratification and the heat island size. Some results are presented for a case in which differential surface cooling beneath an initially stable atmosphere produces a circulation and an unstable layer capped by an elevated inversion over the city. It is hoped that this case is vaguely representative of the night-time heat island with no geostrophic wind.Notation cp Specific heat at constant pressure - g Acceleration due to gravity - H Top of integration region - Kz Vertical eddy transfer coefficient - Kx, KxH, Kxm Horizontal eddy transfer coefficients for heat and momentum - l ixing length - p Pressure - p0 Reference surface pressure (1000 mb) - PH (x, t) Pressure at z = H - R Specific gas constant for dry air - t Time - u, w Horizontal and vertical velocities - x, z Horizontal and vertical coordinates - x1, x2 Positions of discontinuities in surface temperature field (see Figure 2) - xa Heat island half-width - xb Boundary of integration region - Parameter in formula for eddy coefficients (variable-K case) = 18.0 - s Intensity of heat island - Potential temperature field - Reference absolute temperature (variable-K case) - r Reference temperature (° C) - s Surface temperature - Q Air density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号