首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A steady-state groundwater flow model of three Quaternary intertill aquifers in the eastern part of Lithuania has been compiled. The distinction of separate modelled layers is based on hydraulic and isotope-hydrochemistry data criteria. 3H data were used to estimate the corrected groundwater age and were coupled with a groundwater-flow-dynamics model of the Quaternary aquifer system along a cross-section flow pathway from the Baltic Upland recharge area in eastern Lithuania towards the discharge area in the lowlands near the city of Kaunas in central Lithuania. The bicarbonate content in groundwater (214–462 mg/l) increases downgradient towards the lowland area. The other major constituents and total dissolved solids (TDS) have a trend analogous to the bicarbonate. The 14C activity of dissolved inorganic carbon (DIC) in the groundwater ranges from 41.4 to 85.7 pMC. With aquifer-system depth, active precipitation of aqueous solution takes place by dissolving minerals of calcite and dolomite and leakage of “old” groundwater from lower aquifers; the process is also traced by lower 14C and 3H activities and by more positive δ18O values in lowland areas.  相似文献   

2.
江苏南通地下水补给源、水化学特征及形成机理   总被引:8,自引:0,他引:8  
在地下水的大规模开采条件下,江苏沿海一带,特别是南通许多地区的地下水一度出现咸化趋势,对区域水资源及环境产生了极大的影响,已成为制约生态环境建设和经济社会发展的重要因素.为查明地下水的补给来源、水化学特征和矿化度增高的机理,对南通地区深浅层地下水开展了野外调查取样.通过对各种水化学参数的讨论分析,系统地研究了该区地下水...  相似文献   

3.
The continuous abstraction of groundwater from Arusha aquifers in northern Tanzania has resulted in a decline in water levels and subsequent yield reduction in most production wells. The situation is threatening sustainability of the aquifers and concise knowledge on the existing groundwater challenge is of utmost importance. To gain such knowledge, stable isotopes of hydrogen and oxygen, and radiocarbon dating on dissolved inorganic carbon (DIC), were employed to establish groundwater mean residence time and recharge mechanism.14C activity of DIC was measured in groundwater samples and corrected using a δ13C mixing method prior to groundwater age dating. The results indicated that groundwater ranging from 1,400 years BP to modern is being abstracted from deeper aquifers that are under intensive development. This implies that the groundwater system is continuously depleted due to over-pumping, as most of the sampled wells and springs revealed recently recharged groundwater. High 14C activities observed in spring water (98.1?±?7.9 pMC) correspond with modern groundwater in the study area. The presence of modern groundwater suggests that shallow aquifers are actively recharged and respond positively to seasonal variations.  相似文献   

4.
Aquifer-based groundwater quality assessment offers critical insight into the major hydrochemical processes, and aids in making groundwater resources management decisions. The Texas Rolling Plains (TRP), spanning over 22 counties, is a major agro-ecological region in Texas from where highest groundwater nitrate (NO3 ?) levels in the state have been reported. In this study, we present a comparative assessment of major hydrochemical facies pertaining to NO3 ? contamination and a host of species such as sulfate (SO4 2?), chloride (Cl?), and total dissolved solids (TDS) in different water use classes in the Seymour and Blaine aquifers, underlying the TRP. Aquifer-stratified groundwater quality information from 1990 to 2010 was obtained from the Texas Water Development Board and aggregated over decadal scale. High groundwater salinization was found in the municipal water use class in the Blaine aquifer with about 100, 87 and 50 % of observations exceeding the secondary maximum contaminant level for TDS, SO4 2?, and Cl?, respectively in the 2000s (2000–2010). The NO3-contamination was more alarming in the Seymour aquifer with 82 and 61 % of observations, respectively, exceeding the maximum contaminant level (MCL) in the irrigation and municipal water use classes in the 2000s. Salinization was more influenced by SO4 2? and Cl? in the Blaine aquifer and by NO3 ? in the Seymour aquifer. High NO3 ? (>MCL) observations in the Seymour aquifer occurred in the Ca–HCO3 and Ca–Mg–HCO3 facies, the domains of fresh water recharge and anthropogenic influences (e.g., agricultural activities, waste disposal). High SO4 2?, Cl? and TDS observations in the Blaine aquifer dominated the Ca–Cl, Na–Cl, and mixed Ca(Mg)–SO4(Cl) facies indicating evaporite dissolution, mixing and solute exchange, and lack of fresh recharge.  相似文献   

5.
An investigation of the thermal waters in the Ústí nad Labem area in the northeastern part of the Eger Rift has been carried out, with the principal objective of determining their origin. Waters from geothermal reservoirs in the aquifers of the Bohemian Cretaceous Basin (BCB) from depths of 240 to 616 m are exploited here. For comparison, thermal waters of the adjacent Teplice Spa area were also incorporated into the study. Results based on water chemistry and isotopes indicate mixing of groundwater from aquifers of the BCB with groundwater derived from underlying crystalline rocks of the Erzgebirge Mts. Unlike thermal waters in Dě?ín, which are of Ca–HCO3 type, there are two types of thermal waters in Ústí nad Labem, Na–HCO3–Cl–SO4 type with high TDS values and Na–Ca–HCO3–SO4 type with low TDS values. Carbon isotope data, speciation calculations, and inverse geochemical modeling suggest a significant input of endogenous CO2 at Ústí nad Labem in the case of high TDS groundwaters. Besides CO2 input, both silicate dissolution and cation exchange coupled with dissolution of carbonates may explain the origin of high TDS thermal waters equally well. This is a consequence of similar δ13C and 14C values in endogenous CO2 and carbonates (both sources have 14C of 0 pmc, endogenous CO2 δ13C around −3‰, carbonates in the range from −5‰ to +3‰ V-PDB). The source of Cl seems to be relict brine formed in Tertiary lakes, which infiltrated into the deep rift zone and is being flushed out. The difference between high and low TDS groundwaters in Ústí nad Labem is caused by location of the high mineralization groundwater wells in CO2 emanation centers linked to channel-like conduits. This results in high dissolution rates of minerals and in different δ13C(DIC) and 14C(DIC) fingerprints. A combined δ34S and δ18O study of dissolved SO4 indicates multiple SO4 sources, involving SO4 from relict brines and oxidation of H2S. The study clearly demonstrates potential problems encountered at sites with multiple sources of C, where several evolutionary groundwater scenarios are possible.  相似文献   

6.
The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ13CDIC) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO3-rich, SO42−-rich and Cl-rich. The HCO3-rich groundwater is undergoing closed system carbonate evolution from soil CO2(g) and weathering of aquifer carbonates. The SO42−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ13CDIC of the HCO3-rich groundwater was controlled by nearly equal contribution of carbon from soil CO2(g) and the aquifer carbonates, such that the δ13C of carbon added to the groundwater was −11.6‰. In the SO42−-rich groundwater, gypsum induced dedolomitization increased the 13C such that the δ13C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl-rich groundwater, common ion induced precipitation of calcite depleted the 13C such that the δ13C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution.  相似文献   

7.
A multicriteria approach in studying hydrodynamics of a multilayer aquifer system has been used in the Lomellina region (Northern Italy). It involves the reconstruction of the hydrogeological framework coupled to the definition of the hydrochemical and isotopic features of the aquifers. A shallow phreatic aquifer, reaching depths of about 60–80 m from the surface, and deeper aquifers containing confined groundwater, were distinguished. Groundwater generally shows mineralisation decreasing with depth; dissolved ions depict calcium-bicarbonate hydrochemical facies and stable isotopes define the recharge mechanisms, the origin of groundwater, and the hydraulic confinement of deep aquifers. The phreatic aquifer is fed by local infiltration and by streams and irrigation channels. Tritium and Carbon-14 groundwater dating indicate long residence times (on the order of thousands of years) for confined aquifers. The confined aquifers show essentially passive hydrodynamic conditions and maintain a higher piezometric level than the phreatic aquifer. This inhibits the possibility of recent water penetrating far below the surface. The hydrogeological setting of the Lomellina region displays features which are common to other sectors of the Po plain. As a consequence, the results of this study, although conducted on a restricted area, are highly illustrative of groundwater hydrodynamics in large sedimentary aquifers.  相似文献   

8.
Hydrochemical and isotopic study of Miocene and Mio-Plio-Quaternary (M-P-Q) aquifers in Wadi El Hechim?CGaraa Hamra basin, Central Tunisia was undertaken in order to investigate recharge mode and processes leading to mineralization of groundwater as well as interaction between both systems. The results revealed striking differences between the two aquifer systems. While the Miocene aquifer contains recently recharged waters with generally low mineralization (around 0.5?g?L?1), stemming mainly from dissolution of carbonate minerals, the M-P-Q aquifer reveals TDS values reaching 3?g?L?1, controlled mainly by dissolution of evaporitic minerals. Isotopic data indicate that the Miocene aquifer contains water recharged in past several decades (bomb tritium and bomb radiocarbon detected). The M-P-Q system appears to be much slower, with time scales of groundwater flow possibly reaching some thousands of years. Sharp discontinuity of hydrochemical and isotope characteristic of groundwater observed across the major tectonic fault separating the Miocene and M-P-Q aquifers supports the idea of very limited (if any) hydraulic interconnection between both studied systems. This in turn calls for revision of existing conceptual models of groundwater flow in the region postulating significant groundwater fluxes crossing the fault in the direction of M-P-Q aquifer and adjacent aquifers in the Wadi al Fakka plain.  相似文献   

9.
The groundwater extracted from the unconfined Quaternary aquifer is the main source of water supply in El-Tur area. The area is bounded from the east by the elevated basement complex of Southern Sinai and from the west by El-Qabaliyat Ridge. The wadis dissecting these highlands form effective watersheds of the Quaternary aquifer. These wadis form areas of focused recharge. Recharge also occurs directly via the Quaternary sediments covering El-Qaa Plain. Subsurface lateral groundwater flow from the fractured basement contributes significant recharge to the aquifer as well. The aquifer sediment facies affect the type and quality of groundwater. In the eastern part where the aquifer is composed mainly of gravel and coarse sand with fragments of weathered basement, the Na-Cl-SO4 water dominates. In the west where the facies change is rapid and complex, many water types arise. The base exchange index (BEX) is positive in this part reflecting the role of clay minerals in changing the water types via cation exchange. In the east where clays are insignificant in the aquifer, the BEX is negative. In the western part next to El-Qabaliyat Ridge, the wells discharging from the calcareous sand zone have low groundwater salinities compared to the wells discharging from the alluvium. In general, the groundwater salinity increases in the direction of groundwater flow from the northeast to the southwest which reflects the dissolution of aquifer sediments. The concentration relationships between the major ions on one hand and chloride on the other reflect the dissolution of calcium carbonates, precipitation of K- and Mg-bearing minerals, and cation exchange of Ca for Na on clay minerals. The hydrochemical models support these reactions. In addition, they show that the effect of evaporation on the recharge water in the western catchment is about four times its effect on the eastern recharge water which reflects the rapid recharge through the wadis draining the fractured basement. Moreover, the contribution from the eastern catchment in sample No. 23 is more than four-folds the contribution from the western recharge area. The stable isotopes (2H and 18O) show that the Quaternary aquifer is recharging from recent rainfall. However, upward leakage of Paleogene groundwater (depleted in 18O) also occurs. The groundwater level map shows strong overpumping impact especially in the areas close to El-Tur city.  相似文献   

10.
长江河口地区地下水咸、淡水界面的动态变化研究   总被引:1,自引:0,他引:1  
本文对长江河口地区1960~1985年间78口钻井中的各层承压水进行了245个水化学样品测试,分析内容包括K+、Na+、Ca2+、Mg2+、NH4+、Al3+、Cl-、HCO3-、CO32-、SO42-离子含量以及酸碱性、温度等项目。其中第I层有样品24个;II层有63个;III层有53个;IV层有70个;V层有35个。测试时采用平行双样进行精度控制,水质分析的结果,按阴阳离子毫克当量总和的平衡关系进行检查,超出允许误差及时进行复检。
为了研究各承压含水层咸、淡水界面分布的变化,我们将矿化度作为水质指标,并利用人工神经网络技术进行了计算机模拟。结果表明,本区第四纪地层中各含水层水质的时空分布格局主要受第四纪海平面波动控制;IV、V含水层中的微咸水、咸水的分布可能受上层咸水通过越流污染下层淡水所致。对II、III含水层在二十世纪六十年代和八十年代两阶段水质分布的分析发现,含水层内淡水区在上海市区有向东南和西北方向明显扩展的趋势。造成这种现象的主要原因在于二十世纪七十和八十年代,上海市区地下水开采量逐年压缩,并开展了人工回灌(均为淡水),从而阻止了由于二十世纪六十年代市区过量抽取地下水而引起的地面沉降等问题。  相似文献   

11.
Continual expansion of population density, urbanization, agriculture, and industry in most parts of the world has increased the generation of pollution, which contributes to the deterioration of surface water quality. This causes the dependence on groundwater sources for their daily needs to accumulate day by day, which raises concerns about their quality and hydrogeochemistry. This study was carried out to increase understanding of the geological setup and assess the groundwater hydrogeochemical characteristics of the multilayered aquifers in Lower Kelantan Basin. Based on lithological data correlation of exploration wells, the study area can be divided into three main aquifers: shallow, intermediate and deep aquifers. From these three aquifers, 101 groundwater samples were collected and analyzed for various parameters. The results showed that pH values in the shallow, intermediate and deep aquifers were generally acidic to slightly alkaline. The sequences of major cations and anions were Na+ > Ca2+ > Mg2+ > K+ and HCO3? > Cl? > SO42? > CO32?, respectively. In the intermediate aquifer, the influence of ancient seawater was the primary factor that contributed to the elevated values of electrical conductivity (EC), Cl? and total dissolved solids (TDS). The main facies in the shallow aquifer were Ca–HCO3 and Na–HCO3 water types. The water types were dominated by Na–Cl and Na–HCO3 in the intermediate aquifer and by Na–HCO3 in the deep aquifer. The Gibbs diagram reveals that the majority of groundwater samples belonged to the deep aquifer and fell in the rock dominance zone. Shallow aquifer samples mostly fell in the rainfall zone, suggesting that this aquifer is affected by anthropogenic activities. In contrast, the results suggest that the deep aquifer is heavily influenced by natural processes.  相似文献   

12.
Groundwaters in the confined aquifers of the Chianan and Ilan coastal plains of Taiwan are rich in dissolved methane (CH4). Serious endemic “blackfoot disease”, which occurred in the Chianan plain, especially during AD1950-1970, has been demonstrated to have arisen from drinking highly reducing groundwater with abnormal arsenic and humic substance levels. In order to explore the origin of CH4 and its hydrological implications, stable carbon isotope ratios (δ13C) and radiocarbon (14C) ages of exsolved CH4, dissolved inorganic carbon (DIC), and sedimentary biogenic sediments from a total of 34 newly completed water wells at 16 sites were determined. The main results obtained are as follows: (1) The δ13CCH4 (−65‰ to −75‰) values indicate that, except for one thermogenic sample (δ13CCH4=38.2) from the Ilan plain, all CH4 samples analyzed were produced via microbially mediated CO2 reduction. Many δ13CDIC values are considerably greater than −10‰ and even up to 10‰ due to Rayleigh enrichment during CO2 reduction. (2) Almost all the 14C ages of CH4 samples from the shallow aquifer (I) (<60 m depth) are greater than the 14C ages of coexisting DIC and sediments, suggesting the presence of CH4 from underlying aquifers. (3) The 14C ages of coexisting CH4, DIC and sediments from aquifer (II) of the Chianan plain are essentially equal, reflecting in-situ generation of CH4 and DIC from decomposition of sedimentary organic matter and sluggishness of the groundwater flow. On the other hand, both CH4 and DIC from each individual well of the relatively deep aquifers (III) and (IV) in the Chianan plain are remarkably younger than the deposition of their coexisting sediments, indicating that current groundwaters entered these two aquifers much later than the deposition of aquifer sediments. (4) Each CH4 sample collected from the Ilan plain is older than coexisting DIC, which in turn is distinctly older than the deposition of respective aquifer sediments, demonstrating the presence of much older CO2 and CH4 from underlying strata.  相似文献   

13.
《Applied Geochemistry》1993,8(5):483-493
Information regarding the origin, composition and transport of natural dissolved organic carbon (DOC) in groundwater is necessary to understand the transport of metals and organic pollutants, as well as for the use of14C in DOC as an isotopic groundwater dating method. Previous research in several groundwater systems has suggested soil organic C is the predominant source of high molecular weight DOC to the subsurface. Through the use of stable isotopes,14C and geochemical analyses, this study shows that significant concentrations of DOC and CH4 in a regional confined aquifer can be generated in situ from subsurface sedimentary organic sources. The DOC and CH4 produced is a combined result of degradation of buried peats and bacterial action, resulting in high DOC concentrations and strongly methanogenic conditions in the aquifer. The DOC and CH4 comprise, on average, nearly 50% of the total dissolved C pool in the central part of the aquifer. Methanogenic conditions complicate isotopic groundwater dating by the conventional dissolved inorganic carbon (DIC) method. Estimates of isotopic groundwater residence time using DOC14C data are proposed by the application of14C isotope and mass balance corrections.  相似文献   

14.
Groundwater is of a paramount importance in arid areas, as it represents the main water resource to satisfy the different needs of the various sectors. Nevertheless, coastal aquifers are generally subjected to seawater intrusion and groundwater quality degradation. In this study, the groundwater quality of the coastal Jeffara aquifer (southeastern Tunisia) is evaluated to check its suitability for irrigation purposes. A total of 74 groundwater samples were collected and analyzed for various physical and chemical parameters, such as, electrical conductivity, pH, dissolved solids (TDS), Na, K, Ca, Mg, Cl, HCO3, and SO4. Sodium adsorption ratio, magnesium adsorption ratio, Sodium percentage, and permeability index were calculated based on the analytical results. The analytical results obtained show a strong mineralization of the water in the studied aquifer. TDS concentrations range from 3.40 to 18.84 g?L?1. Groundwater salinity was shown to be mainly controlled by sodium and chloride. The dominant hydrochemical facieses are Na–Cl–Ca–SO4, mainly as a result of mineral dissolution (halite and gypsum), infiltration of saline surface water, and seawater intrusion. Assessment of the groundwater quality of the different samples by various methods indicated that only 7% of the water, in the northwest of the study area, is considered suitable for irrigation purposes while 93% are characterized by fair to poor quality, and are therefore just suitable or unsuitable for irrigation purposes.  相似文献   

15.
《Applied Geochemistry》2001,16(7-8):849-859
Isotopic investigations using 14C of groundwater were carried out to understand the hydraulic conditions in the sedimentary rocks at the Tono study site, central Japan. 14C activities of groundwater observed range from 2 to 32 % Modern Carbon (pMC). Measured 14C activities of groundwater are corrected by the isotopic mass balance model based on 14C activities, δ13C values, concentrations of the dissolved inorganic carbon (DIC) and δ13C values of non-active carbon dissolved into the groundwater from carbonate minerals and organics. Assuming that the groundwater reservoir is comparable to the piston flow situation, the relative 14C ages of groundwaters were calculated from the corrected 14C activity. The relative 14C age suggests that the groundwater infiltration from the upper part of the sedimentary rocks to the lower part takes several thousands of years, or that the groundwater in the lower part of sedimentary rocks is derived from long distance flow from the surface through the unconformity between the sedimentary rocks and basement granite. The flow rate calculated by relative 14C ages shows similar values to those estimated by computer simulation using hydraulic pressure and conductivity data. Hydraulic conditions at the Tono study site inferred from 14C activity agree with those suggested from hydrogeological analyses. Isotopic approaches using 14C activity can be applied as geochemical evaluation for interpretations from the hydraulic study.  相似文献   

16.
Groundwater systems in the San Luis Valley, Colorado, USA have been re-evaluated by an analysis of solute and isotopic data. Existing stream, spring, and groundwater samples have been augmented with 154 solute and isotopic samples. Based on geochemical stratification, three groundwater regimes have been identified within 1,200 m of the surface: unconfined, upper active confined, and lower active confined with maximum TDS concentrations of 35,000, 3,500 and 600 mg/L, respectively. The elevated TDS of northern valley unconfined and upper active confined systems result from mineral dissolution, ion exchange and methanogenesis of organic and evaporate lake sediments deposited in an ancient lake, herein designated as Lake Sipapu. Chemical evolutions along flow paths were modeled with NETPATH. Groundwater ages, and δ13C, δ2H and δ18O compositions and distributions, suggest that mountain front recharge is the principle recharge mechanism for the upper and lower confined aquifers with travel times in the northern valley of more than 20,000 and 30,000 14C years, respectively. Southern valley confined aquifer travel times are 5,000 14C years or less. The unconfined aquifer contains appreciable modern recharge water and the contribution of confined aquifer water to the unconfined aquifer does not exceed 20%.  相似文献   

17.
Hydro- and isotope geochemistry are used to refine groundwater conceptual models in two areas of central Italy (Acque Albule Basin and Velino River Valley) affected by extensional Quaternary tectonics, where deep and shallow groundwater flow systems are interacting. The role of geology, of recent deposits filling the plains and of main tectonic features controlling groundwater flowpaths and deep-seated fluids emergences are investigated and discussed. Environmental isotopes (2H and 18O) confirm recharge in the surrounding carbonate aquifers, and meteoric origin of both shallow and deep groundwater. Major ion chemistry indicates a mixing between shallow Ca-HCO3 groundwater from carbonate aquifers and deep Ca-HCO3-SO4 groundwater, characterised by higher salinity and temperature and high concentration in sulphates. Isotopic composition of dissolved sulphates (δ 34S and δ 18O) and dissolved inorganic carbon (δ 13C), henceforth indicated as DIC, are used to verify the presence of different sources of groundwater, and to validate the mixing model suggested by the major ion analyses. Sulphate isotope composition suggests a marine origin for the groundwater characterised by elevated sulphate concentration, whose source is present in the deep buried sequences. Carbon isotope composition confirms the role of a DIC source associated to CO2 degassing of a deep reservoir. Groundwater conceptual models are improved underlining the importance of Plio-Pleistocene sequences filling the tectonic depression. In the Acque Albule area, the travertine plateau represents a mixing stratified aquifer, where deep groundwater contribution is spread into the shallow aquifer. The alluvial–clastic–lacustrine leaky aquifer of Velino Valley enables a complete mixing of shallow and deep groundwater allowing spot-located discharge of deep groundwater along tectonic patterns and facilitating sulphate reduction in the lacustrine sediments, explaining locally the presence of H2S.  相似文献   

18.
The main factors and mechanisms controlling the groundwater chemistry and mineralization are recognized through hydrochemical data. However, water quality prediction remains a key parameter for groundwater resources management and planning. The geochemical study of groundwater of a multilayered aquifer system in Tunisia is recognized by measurements of the pH, EC, total dissolved solids (TDS), major ion concentration and nitrates of 36 samples from pumping wells covering the aquifer extension and analyzed using standard laboratory and field methods. The calcite precipitation, gypsum, anhydrite and halite dissolution, and direct and reverse ion exchange are the principal process of chemical evolution in the Nadhour-Saouaf aquifer system. Using stepwise regression, the concentration groups of (Ca, Cl, and NO3), (Cl, SO4, and Mg), and (Ca and Na) exhibit significant prediction of TDS in Plio-Quaternary, Miocene, and Oligocene aquifer levels, respectively. The highest values of R 2 and adjusted R 2 close to 1 revealed the accuracy of the developed models which is confirmed by the weak difference between the measured and estimated values varying between ?12 and 8%. The important uncertainty parameters that affected the estimated TDS are assessed by the sensitivity analysis method. The concentration of (Cl), (Ca and Cl), and (Na) are the major parameters affecting the TDS sensitivity of the Plio-Quaternary, Miocene, and Oligocene aquifer levels, respectively. Hence, the developed TDS models provide a more simple and easy alternative to other methods used for groundwater quality estimation and prediction as proven from external validation on groundwater samples unconsidered in the model construction.  相似文献   

19.
The spatial and temporal changes of the composition of the groundwater from the springs along the Wadi Qilt stream running from the Jerusalem–Ramallah Mountains towards the Jericho Plain is studied during the hydrological year 2006/2007. The residence time and the intensity of recharge play an important role in controlling the chemical composition of spring water which mainly depends on distance from the main recharge area. A very important factor is the oxidation of organics derived from sewage and garbage resulting in variable dissolved CO2 and associated HCO3 concentration. High CO2 yields lower pH values and thus under-saturation with respect to calcite and dolomite. Low CO2 concentrations result in over-saturation. Only at the beginning and at the end of the rainy season calcite saturation is achieved. The degradation of dissolved organic matter is a major source for increasing water hardness. Besides dissolution of carbonates dissolved species such as nitrate, chloride, and sulfate are leached from soil and aquifer rocks together with only small amounts of Mg. Mg not only originates from carbonates but also from Mg–Cl waters are leached from aquifer rocks. Leaching of Mg–Cl brines is particularly high at the beginning of the winter season and lowest at its end. Two zones of recharge are distinguishable. Zone 1 represented by Ein Fara and Ein Qilt is fed directly through the infiltration of meteoric water and surface runoff from the mountains along the eastern mountain slopes with little groundwater residence time and high flow rate. The second zone is near the western border of Jericho at the foothills, which is mainly fed by the under-groundwater flow from the eastern slopes with low surface infiltration rate. This zone shows higher groundwater residence time and slower flow rate than zone 1. Groundwater residence time and the flow rate within the aquifer systems are controlled by the geological structure of the aquifer, the amount of active recharge to the aquifer, and the recharge mechanism. The results of this study may be useful in increasing the efficiency of freshwater exploitation in the region. Some precautions, however, should be taken in future plans of artificial recharge of the aquifers or surface-water harvesting in the Wadi. Because of evaporation and associated groundwater deterioration, the runoff water should be artificially infiltrated in zones of Wadis with high storage capacity of aquifers. Natural infiltration along the Wadis lead to evaporation losses and less quality of groundwater.  相似文献   

20.
《Applied Geochemistry》2000,15(8):1191-1201
The impact of climatic and vegetation conditions over the past 15 Ka on the chemical composition and 14C dating of groundwater from the Franconian Albvorland aquifer system is discussed. Seven groundwaters over a flow distance of 25.5 km are investigated. Groundwater dating is made by 14C of dissolved inorganic carbon (DIC) and aqueous fulvic acid as well as 18O. 14C dating via fulvic acid gives groundwater ages consistent with climatic and vegetation records and variations in the groundwater composition. No correction for geochemical processes is required, since under these geochemical conditions fulvic acid remains stable over this time period and flow-distance. On the other hand, 14C dating via DIC requires correction of the 14C value due to perturbation by different geochemical processes. Up to a groundwater flow distance of approximately 17 km and an age of about 10 Ka, the 14C dating by DIC shows considerable dependence on the 14C-correction model applied. Beyond this groundwater age, 14C-DIC dating results in an overestimation by two to three 14C half-lives (T1/2=5730 a). This deviation may result from different groundwater recharge conditions at the end of the past glaciation and geochemical processes acting on DIC that cannot be adequately characterized. The present study has implications for humic substance mediated transport of pollutants in natural aquatic systems over long time periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号