首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While recent studies have revealed that tidal fluctuations in an estuary significantly affect groundwater flows and salt transport in the riparian zone, only seawater salinity in the estuary has been considered. A numerical study is conducted to investigate the influence of estuarine salinity variations on the groundwater flow and salt dynamics in the adjacent aquifer to extend our understanding of these complex and dynamic systems. Tidal salinity fluctuations (synchronous with estuary stage) were found to alter the magnitude and distribution of groundwater discharge to the estuary, which subsequently impacted on groundwater salinity patterns and residence times, especially in the riparian zone. The effects of salinity fluctuations were not fully captured by adopting a constant, time-averaged estuarine salinity. The modelling analysis also included an assessment of the impact of a seasonal freshwater flush in the estuary, similar to that expected in tropical climates (e.g. mean estuary level during flood significantly greater than average), on adjacent groundwater flow and salinity conditions. The three-month freshwater flushing event temporarily disrupted the salt distribution and re-circulation patterns predicted to occur under conditions of constant salinity and tidal water level fluctuations in the estuary. The results indicate that the salinity variations in tidal estuaries impact significantly on estuary–aquifer interaction and need to be accounted for to properly assess salinity and flow dynamics and groundwater residence times of riparian zones.  相似文献   

2.
Freshwater inflow is central to the definition of estuaries and if we lose control of the quantity of freshwater flow or discharge (including seasonal timing) to estuaries, then freshwater water quality has the potential to become a moot issue in estuarine ecosystems (Definition of estuaries: estuaries (aestus = tide) are physico-chemically, geomorphically, and biotically diverse ecosystems. Although numerous definitions of estuaries exist, we prefer the following: an estuary is a partially enclosed coastal water body in which freshwater runoff, often seasonally and episodically pulsed, dilutes salty ocean water and the biotic structure is influenced by dynamic tidal action and associated salinity gradients and reef building organisms and wetlands influence development and evolution of ecological structure and function (see for expanded definition)).  相似文献   

3.
The EC Water Framework Directive requires that ecological quality be assessed in transitional waters using the abundance and species composition of macroalgae. In estuaries, which form the majority of transitional waters, species composition is not a suitable measure. This arises from two features: (i) there is a continuous, natural change in species composition along the gradient of estuarine conditions which makes it difficult to know where within an estuary the species composition should be assessed, (ii) the inner estuarine macroalgal community of mat-forming species is very tolerant to both natural and anthropogenic stress and species poor which makes it insensitive to environmental variations in terms of species composition. An alternative feature is proposed based on the extent of upstream penetration of perennial fucoid algae. This proposal is founded on a series of case studies of the changes in fucoid limits, within a number of estuaries in the British Isles, consequent upon changes in pollution status over the last three decades. This also has to take into account variations of fucoid penetration owing to natural factors such as range of salinity variation and turbidity. The abundance criterion is taken to mean the absence of macroalgal blooms or "green tides", because general abundance of species is hard to quantify meaningfully in the upper estuarine mat-forming species and in the lower estuary is subject to great variation owing to the physical variability of estuary types.  相似文献   

4.
Hexachlorocylcohexanes (HCHs) are pesticides that persist in air and water of the Northern hemisphere. To understand the spatial and temporal variability in HCH levels in estuarine surface waters we measured concentrations of two HCH isomers (-HCH and γ-HCH) at six sites in the York River estuary at bimonthly intervals for a year. Bacterial abundance and activity were also monitored using acridine orange direct counts and uptake of tritiated substrates, respectively. -HCH was consistently observed to be significantly higher in marine water compared to river water entering the estuary, suggesting that the Chesapeake Bay or Atlantic Ocean is a larger source of this compound to the York River estuary compared to riverine input. Moreover, following periods of high freshwater flow into the estuary during spring and early summer, both - and γ-HCH mixing curves indicated an additional source of these pollutants to the estuary such as land-derived runoff or groundwater discharge. In contrast, during low freshwater flow (late summer and fall) the estuary was a sink for HCHs, with γ-HCH more rapidly removed from the estuary than -HCH. During the period of low freshwater flow, concentrations of both - and γ-HCH were negatively correlated with bacterial activity. Bacterial activity as opposed to abundance appears to control HCH degradation in estuarine surface waters.  相似文献   

5.
Water quality and health status of the Senegal River estuary   总被引:1,自引:0,他引:1  
The Senegal River estuary was sampled in May 2002 to get the first data on both the trophic and sanitary status of the water of the main river of the northwest African coast. Several physical, chemical and microbiological variables were measured twice along a transect. Inorganic nutrient concentrations were low while phytoplanktonic abundances (0.58-1.8 x 10(5) cells ml(-1)), bacterial abundances (0.27-8.1 x 10(7) cells ml(-1)), activity (22-474 pmol l(-1) h(-1)), were among the highest recorded in such ecosystems. Microbiological variables revealed a eutrophicated status for this estuary. Largest abundances of fecal contamination bacterial indicators were only detected in localized areas (Saint-Louis city and surrounding areas). The apparent good survival of fecal indicator bacteria in the estuarine waters despite a long residence time (4-5 days) has been evaluated by complementary survival experiments. Exposed to a salinity gradient, a local Escherichia coli strain showed a significantly better survival than those of an E. coli reference strain.  相似文献   

6.
Hong Kong is surrounded by estuarine, coastal and oceanic waters. In this study, monthly averages over a 10 year time series of salinity, temperature, chlorophyll a (chl a), dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), silicate (SiO4) and orthophosphate (PO4) at three representative stations around Hong Kong were used to examine if excess nitrogen in estuarine influenced waters is due to P limitation. The monthly distribution clearly shows the dominant influence of the seasonal change in river discharge in the Pearl River estuary and adjacent coastal waters. In winter, the river discharge is small and more oceanic waters are dominant and as a result, salinity is high, and chlorophyll and nutrients are low. In summer, when the river discharge is high, salinity decreases and nutrients increase. DIN is very high, reaching 100 μM in the estuary. This indicates over enrichment of nitrogen relative to P and consequently there is an excess of N in coastal waters of Hong Kong. P remains low (∼1 μM) and can potentially limit both phytoplankton biomass and N utilization which was demonstrated in field incubation experiments. P limitation would result in excess N being left in the estuarine influenced waters south of Hong Kong. Phosphate concentration is lower in the Pearl River estuary than in many other eutrophied estuaries. Therefore, this relatively low PO4 concentration should be a significant factor limiting a further increase in the magnitude of algal biomass and in the degree of eutrophication in the Pearl River estuary. The export of the excess N offshore into the northern South China Sea may result in an increase in the size of the region that is P limited in summer.  相似文献   

7.
Groundwater flow and chemical transport in subterranean estuaries are poorly understood despite their potentially important implications for chemical fluxes from aquifers to coastal waters. Here, a numerical study of the dynamics in a subterranean estuary subject to tidal forcing is presented. Simulations show that salt transport associated with tidally driven seawater recirculation leads to the formation of an upper saline plume in the intertidal region. Computed transit times and flow velocities indicate that this plume represents a more active zone for mixing and reaction than the dispersion zone of the lower, classical salt wedge. Proper conceptualisation of this surficial mixing zone extends our understanding of processes within the subterranean estuary. Numerical tracer simulations reveal that tidal forcing may reduce the threat of a land-derived contaminant discharging to the marine environment by modifying the subsurface transport pathway and local geochemical conditions. Mixing and stratification in the subterranean estuary are strongly affected by both inland and tidal forcing. Based on the estuarine analogy we present a systematic classification of subterranean estuaries.  相似文献   

8.
A method, utilising overlaid graphs for nutrients vs salinity, was developed in order to determine which nutrient is limiting for plant growth in estuarine waters-at any salinity. Dissolved inorganic nitrogen (DIN=NO(3)(-)+NO(2)(-)+NH(4)(+)) and o-phosphate (PO(4)(-)) are the main forms of N and P that are readily bio-available for plant growth in waters and these have a Redfield atomic ratio of N:P=16:1 (i.e. aquatic plants absorb N and P in the average ratio of 16 atoms of N to 1 atom of P). Graphs are prepared for (i) DIN vs salinity and (ii) o-phosphate vs salinity with the vertical scales for DIN and o-phosphate set at a ratio of N:P=16:1; when these graphs are overlaid on each other then the lowermost trendline denotes the limiting nutrient for plant/algal growth-at any salinity. The graphs also indicate the extent by which one or other of the nutrients is limiting--at any salinity. Furthermore, if there is a transition from P to N limitation somewhere along the salinity gradient, then this occurs at the salinity where the trendlines intersect. The concept was applied to three estuaries in the southeast of Ireland and the results show that, in all of these circumstances, P is the limiting nutrient throughout--except for the higher salinities (i.e. salinities 30 per thousand), where either (i) N and P may become equally limiting at salinity approximately 35 per thousand or (ii) N may become limiting at salinity 30 per thousand. Overlaid nutrients vs salinity graphs were also used to demonstrate that, in the estuaries in southeast Ireland, carbon (as dissolved inorganic carbon, DIC=CO(2)+H(2)CO(3)+HCO(3)(-)+CO(3)(2-)) is not the limiting nutrient--at any salinity.  相似文献   

9.
Anthropogenic mercury pollution was studied in Kastela Bay (Croatia), 10 years after chloralkaline plant (PVC) stopped production. The concentration of total mercury determined in sediments which are composed mainly of calcite and quartz, are in the range 14,280-30,400 ng/g. The values are higher than reported in the literature for Elbe and Seine estuaries and also above 25,000 ng/g used for criterion in remediation project in Minamata Bay. The concentration of methylmercury 6.05-36.74 ng/g are typical for slightly to highly contaminated estuarine sediments. The low ratio of methylmercury to total mercury found in sediments of Kastela Bay is in the range 0.04-0.18%. It can be explained that in this region predominate conditions which do not promote in-situ methylation. Sediments were found to be highly anoxic. Concentrations of total mercury in unfiltered surface waters are in the range 69-145 ng/l and in unfiltered bottom waters in the range 230-1,418 ngl(-1). High concentrations found in bottom waters suggest that either resuspension or partial dissolution of sediments takes place. An experiment performed on filtered and unfiltered waters showed that about 85% of total mercury in surface water and almost 100% in bottom water was retained on 45 microm filters. To demonstrate contrasts, two pristine estuaries from norths and south Europe were studied. Silicious sediments of Ore estuary (Sweden) and calcareous sediments of Krka estuary (Croatia) have total mercury concentrations close to accepted background level. The ratio of methylmercury to total mercury is < or = 1% in all samples with one exception. The highest observed ratio (2.70%) was in the surface sediment from E2 station in Krka estuary measured in March 2000. This location is suitable for studying methylmercury formation in pristine environment.  相似文献   

10.
A mixing experiment, using large volumes (100 l) of filtered (< 1 μm) freshwater and seawater end-members, was performed to simulate and investigate the chemical reactivity of239, 240Pu during estuarine mixing. An organic-rich freshwater with a relatively high concentration (0.8 dpm/100 l) of dissolved239, 240Pu was used as one end-member; Buzzards Bay seawater (dissolved239, 240Pu= 0.04dpm/100l) was the other. The results demonstrate that dissolved239, 240Pu in the freshwater undergoes extensive and rapid coagulation under simulated estuarine conditions. There is a strong correlation between the amount of coagulation of dissolved239, 240Pu, humic acids (HA), and Fe. The extent of coagulation of all three constituents increases with increasing salinity and the net extent of their removal is 53%, 57%, and 100% for Pu, HA, and Fe respectively. As has been documented for Fe in freshwater, dissolved239, 240Pu appears to be stabilized by naturally occurring humic substances to form negatively charged colloids which are then coagulated by seawater cations. The extrapolation of these experimental results to real estuaries will require additional research.  相似文献   

11.
This research reconstructed the Late Quaternary salinity history of the Pearl River estuary, China, from diatom records of four sedimentary cores. The reconstruction was produced through the application of a diatom–salinity transfer function developed based on 77 modern surface sediment samples collected across the estuary from shallow marine environment to deltaic distributaries. The statistical analysis indicates that the majority of sediment samples from the cores has good modern analogues, thus the reconstructions are reliable. The reconstructed salinity history shows the older estuarine sequence formed during the last interglacial was deposited under similar salinity conditions to the younger estuarine sequence, which was formed during the present interglacial. Further analysis into the younger estuarine sequence reveals the interplays between sea level, monsoon‐driven freshwater discharge, and deltaic shoreline movement, key factors that have influenced water salinity in the estuary. In particular, a core from the delta plain shows the effects of sea‐level change and deltaic progradation, while cores from the mouth region of the estuary reveal changes of monsoon‐driven freshwater discharge. This study demonstrates the advantages of quantitative salinity reconstructions to improve the quality of reconstruction and allow direct comparison with other quantitative records and the instrumentally observed values of salinity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Nutrient and suspended sediment concentrations were measured in the dry season and during the rising and falling stages of flood events in the Annan and Daintree rivers to estimate catchment exports. These flood events were also sampled along the salinity gradient in the estuary and nearshore shelf to quantify the modification of terrestrial sediment and nutrient loads as they pass through estuaries into the Great Barrier Reef lagoon. In the Daintree River TSS concentrations were found to increase between the catchment and the estuary plume. The source of TSS may have been scour of the estuarine channel or from land use in the catchment of the lower estuary. In the dry season nitrogen enters the Annan and Daintree estuaries predominantly in the form of PON and DON in roughly equal proportions. Nitrogen exports to the GBR are mostly in the form of DON. In the wet season the majority of nitrogen enters the estuaries as DON and leaves as PON. Nitrogen removal in the estuaries and plumes appears to be biologically mediated once suspended sediment concentrations decrease to a point where phytoplankton growth is not light limited. In the dry season phosphorus enters and leaves the estuaries primarily in organic form. PIP is the dominant form of phosphorus in river water, but leaves the estuary more evenly distributed between all forms. These estuarine processes result in less nitrogen and phosphorus being delivered to the GBR lagoon than is exported from the catchment. The differences between these estuaries highlights the need for further work to explore modifications in estuaries that drain into the Great Barrier Reef lagoon.  相似文献   

13.
Regularities in processes of seawater intrusion into the rivers of Senegal, Saloum, Gambia, and Casamance in West Africa are analyzed. The seawater intrusion during the low-flow period, which is a common phenomenon for the lower reaches of these rivers, has taken on extreme features in the course of the severe drought that occurred in West Africa in the 1970s–1980s. The processes of progressing water salinization in estuaries under the impact of drastic reduction of atmospheric precipitation and river runoff, considerable evaporation water losses, and tides are described. Due consideration is given to the unique hydrological phenomenon, i.e., the so-called reverse estuary. The Senegal River mouth is taken as a case study of cyclic variations in runoff, water salinity, and distance of saltwater penetration into the river. Certain environmental consequences of water salinization are discussed using the Casamance River estuary as an example. Methods used in Africa to prevent seawater intrusion and salinization of estuaries harmful for the environment and economy are described in this article.  相似文献   

14.
From 2006 to 2008, microbial water quality was monitored along the Georgian coast of the Black Sea. Temperature, pH, salinity, and dissolved oxygen were measured, along with a variety of aquatic microbial parameters, including heterotrophic plate count (HPC), total culturable bacterial count (TCBC), and chlorophyll a (Chl-a) concentration. Total and fecal coliforms and total enterococci counts were recorded as indicators of fecal pollution. Vibrio bacteria, and Escherichia coli- and Vibrio-specific bacteriophages were isolated and enumerated to determine their relationships to standard marine pollution indicators.Persistent microbial pollution was observed, particularly in the summer months, with a higher rate of contamination in estuaries. Microbial indicators generally showed seasonal dependence, suggesting that temperature may influence bacterial dynamics in this environment. No correlation was apparent between fecal pollution indicators and physical-chemical and aquatic microbial parameters, although there were significant relationships amongst the indicators themselves, as well as with the prevalence of Vibrio bacteria and phage.  相似文献   

15.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

16.
This paper documents a numerical modeling study to calculate the residence time and age of dissolved substances in a partially mixed estuary. A three-dimensional, time-dependent hydrodynamic model was established and applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model showed good agreement with observations of surface elevation, tidal currents and salinity made in 2002. The model was then applied to calculate the residence time and age distribution response to different freshwater discharges with and without density-induced circulations in the Danshuei River estuarine system. Regression analysis of model results reveals that an exponential equation can be used to correlate the residence time to change of freshwater input. The simulated results show it takes approximately 10, 4.5, and 3 days, respectively, for a water parcel that has entered the headwaters of the estuary to be transported out of the estuary under low, mean, and high flow conditions with density-induced circulation. The calculated age with density-induced circulation is less than that without density-induced circulation. The age of the surface layer is less than that at the bottom layer. Overall the study shows that freshwater discharges are the important factors in controlling the transport of dissolved substances in the Danshuei River estuarine system.  相似文献   

17.
The main regularities of hydrological and hydrological-environmental processes occurring within the complex estuary, the Chesapeake Bay and the mouths of its tributaries, are discussed. The peculiarities of the estuary morphological structure, including the structures of tidal and net currents, salinity and water turbidity fields and their variability, the environmental conditions, and their human-induced changes. Using the Chesapeake Bay as an example, it became possible to reveal the basic features of classical estuaries subject to a considerable impact of river runoff and featuring mixing of river and sea water and moderate stratification of the water mass. It is shown that the regularities of hydrological processes in the Chesapeake Bay are typical of many mouth water bodies of estuarine type (inlets, drowned river valleys, lagoons, and tidal estuaries proper).  相似文献   

18.
Levels of bacterial indicators of pollution are related with marine salinity and turbidity at both high tide (HT) and low tide (LT). The salinity varied from values around 26.9 ppm at the LT and 28.6 ppm at the high tide but affected total and faecal coliform (FC) estimates. Salinity readings of 25–30 ppm produced microbial counts below 10−2 MPN/100 ml total coliforms (TCs) whereas salinity of 15–22 ppm produced a TC level of 4.6×10−4 MPN/100 ml. Turbidity peaks in the samples are accompanied by peaks of microbial contamination of the seawater indicating that the contamination is normally deposited at the marine sediment rather than in the water column. In fact, samples collected under heavy stormy weather, in which the water agitation resulted in turbidity values up to 68.3 NTU, produced maximum microbial counts.  相似文献   

19.
In seepage waters of eight different dumping sites, counts on agar and gelatine of endobacteria, coliforms, Escherichia coli, enterococci and sulphate reducers are determined and the influences exerted on them by various chemical criteria are discussed. Locations of dumping sites which can be regarded as dumping sites of noxious substances due to the Eh and pH values of their seepage waters indicate this status by low or lacking bacterial counts. The bacterial counts of the sulphate reducers correlate with the Eh/pH values. In fourty samples partly high numbers for sulphate reducers were found also above the limit of BAAS-BECKING Eh = 4–115 mV. Considerably reduced conditions with high concentrations of sulphide and ammonium lead to the death of sulphate reducers. By impoundage of water in municipal refuse disposal sites there are created conditions for sulphuretes due to which these refuse disposal sites develop into sites of noxious substances.  相似文献   

20.
The estuarine chemistry of dissolved humic acids was determined by carrying out both field and laboratory studies. These approaches were combined in an investigation of the Amazon estuary while laboratory mixing experiments were performed using filtered (0.45?0.001 μm) river water fractions of the Water of Luce (Scotland).The results demonstrate that a small fraction of river dissolved organic matter is preferentially and rapidly flocculated during estuarine mixing. This fraction is the high molecular weight component of dissolved humic acids (0.45?0.1 μm filtered). Approximately 60–80% of the dissolved humic acid in these rivers flocculates during estuarine mixing. This represents a removal of only 3–6% of river dissolved organic matter and is responsible for the non-conservative behaviour of dissolved humic acid in the Amazon estuary even though total dissolved organic carbon appears conservative.The salinity dependence with which humic acid flocculates in estuaries is similar to that of iron. This implies that both constituents may be removed from river water by a common mechanism of colloid flocculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号