首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Analysis of the conodont colour alteration index and the Kübler index of illite allowed us the characterization of four types of very low‐ or low‐grade metamorphism in the Cantabrian Zone (CZ) and determination of their regional and temporal distribution. These types are: (1) an orogenic Variscan metamorphism present only in restricted areas of the western and north‐western parts of the CZ where epizonal conditions are reached; (2) a burial metamorphism that appears in the basal part of some nappes, where anchizonal conditions are sometimes achieved; the thermal peak preceded emplacement of the nappes; (3) a late‐Variscan metamorphism in the southern and south‐eastern parts of the CZ; a cleavage, cutting most of the Variscan folds, is associated with this metamorphism, which has been related to an extensional episode; (4) a contact metamorphism and hydrothermal activity associated with minor intrusive bodies. The extension continued after the Variscan deformation giving rise to hydrothermal activity during Permian times.  相似文献   

2.
Conodont colour alteration index (CAI) data in Upper Ordovician rocks from several areas of the Variscan domain in the Iberian Peninsula indicate conditions ranging from diagenesis to low-grade metamorphism. In most of the areas, where studies using other indicators, such as illite crystallinity (IC) or where vitrinite reflectance are lacking, the CAI method has permitted a preliminary estimation of the metamorphic grade. In the Almadén syncline (Central-Iberian Zone), where IC studies are available, the thermal conditions inferred from CAI data agree with those obtained by the IC method. In the Puertollano–Almuradiel syncline, the thermal interval obtained primarily from fluid inclusions (270–370°C) overlaps considerably with that obtained from CAI data (180–340°C). In general, cleavage in rocks is present in anchizonal or epizonal conditions, whereas in diagenetic conditions with CAI 2.5, cleavage is scarce. The conodont texture changes with increasing metamorphism, and apatite recrystallisation appears in general with CAI 5. Variation of CAI values within a single sample and/or within short stratigraphic distances observed at several localities is due to hydrothermal activity.  相似文献   

3.
4.
Block-in-matrix formations in the Variscan foreland of Spain (Cantabrian Zone) occur in two different geological settings. The major block-in-matrix formations are mélanges, which appear as carpets beneath or ahead of submarine thrust systems. These mélanges may reach up to kilometric thickness and are mostly composed of broken formations (boudinaged sequences) of late Carboniferous age and scattered ‘exotic’ blocks derived from older Palaeozoic formations. Moreover, the mélanges in the Cantabrian Zone also include subordinate debris flow deposits with a chaotic block-in-matrix fabric (olistostromes). The source of the mélange blocks was the front of advancing nappes, chiefly the upper part of the nappe stacks. Therefore, the Cantabrian mélanges are interpreted as originated through submarine sliding and slumping associated with steep slopes at the orogenic front. The different types of rock bodies of these mélanges may be related to the degree of lithification of the sediments or rocks during slumping. So, broken formations are boudinaged sequences where the boudins or blocks resulted from extensional faults developed in lithified or semilithified limestones and sandstones, whereas the unlithified muddy matrix underwent continuous deformation. The scattered ‘exotic’ blocks ranging in age from early Cambrian to early Carboniferous were incorporated into the mélanges as individual blocks from competent well-lithified formations, originally located in the lower part of the nappe stacks. Although the Cantabrian Zone mélanges include olistostromic intervals, most of the olistostromes of this zone occur in a different geological setting. They are usually intercalated in the normal marine deposits of the Variscan foreland basin and, in contrast to the mélanges, they are mostly related to the margins of carbonate platforms, ahead of moving nappes. Finally, other instances of olistostromes are related to slopes generated by limb rotation of growth folds, which developed on submarine wedge-top successions.  相似文献   

5.
In the western fold-and-thrust belt of the southern Urals, the Kübler and Árkai indices determined on shales, slates and phyllites record an increase from lower late diagenetic to epizonal grade from west to east. The metamorphic grade varies strongly within the different tectonic segments, which are separated by major thrusts. The increase of diagenetic and incipient metamorphic grade from the footwall to the hanging wall of all major Upper Palaeozoic thrusts indicates a pre-Permo/Triassic origin. West of the Avzyan thrust zone, the diagenetic to incipient metamorphic grade is related to the Palaeozoic basin development and reached the final grades in Late Carboniferous to Early Permian times. East of the first Avzyan thrust in the Yamantau anticlinorium, the diagenetic to lower greenschist metamorphic grade is possibly of Neoproterozoic origin and might be related to the development of the Neoproterozoic basin at the eastern margin of the East European Craton. The eastern part of the Yamantau anticlinorium was exhumed below 200 °C in the Late Carboniferous or Early Permian. The diagenetic grade of the autochthonous Palaeozoic sedimentary units increases toward the stack of Palaeozoic nappes and might partly be caused by the deformational process due to the emplacement of the Palaeozoic nappes. Within the Timirovo thrust sheet, the decrease of metamorphic grade with stratigraphic age developed prior to the emplacement of the nappes. The upper anchizonal metamorphic grade of the Upper Devonian slates of the Zilair nappe results from the deformation process related to the Lower Carboniferous nappe emplacement.  相似文献   

6.
This paper presents data and preliminary interpretations on the diagenesis of Early Paleozoic continental margin deposits along a traverse of the Quebec Appalachians near Quebec City, Canada. Regional variations in diagenesis were studied using the thermal maturation of organic matter in shales (reflectance measured on asphaltic bitumen, 105 samples) and illite crystallinity (330 samples). These revealed a regional southeastward increase in grade from the late middle and late stage of diagenesis to epimetamorphism, which is reflected in the distinction of four zones: Zone I representing the late middle diagenetic stage has a mean reflectance in oil (R0) between 1.0 and 1.5% and illite crystallinity between 5.5 and 8.0 mm. Zone II (late diagenetic stage) is characterized by R0=1.5–2.6% and illite crystallinity between 3.5 and 5.5 mm. Anomalously poor illite crystallinities in Zone II (i. e. 5.5 to 8.0 mm) were obtained for black shales, in which improvement of crystallinity lags behind red and green shales. Zone II is subdivided into subzones IIA and IIB. In the former, reflectance and illite crystallinity increase, within individual nappes, as a function of age or depth of burial. In the latter no such dependence is observed, instead diagenetic grade increases regionally in a southeastward direction as it does in zones III and IV. Zone III represents the anchizone in which observed reflectance values R0 range from 2.6 to 4.0% and illite crystallinities from 2.0 to 3.1 mm. In Zone IV (epizone) illite crystallinity is less than 2.0 mm (In terms of reflectance the anchi-zone/epizone boundary was not defined). Zones I and IIA are anomalous in that lower tectonic units are diagenetically less altered than higher tectonic units: R0 varies from 1.71 to 2.30% for the highest tectonic unit (Cambrian Chaudière Nappe), 1.53 to 1.90% (Cambro-Ordovician Bacchus Nappe) and 1.08 to 1.46% (Lower Ordovician Pointe-de-Lévy Nappe) for the middle tectonic units, and 1.01 to 1.15% for the lowest tectonic unit (Middle Ordovician Quebec Promotory Nappe). Thermal maturation and mineral diagenesis in zone IIA are probably due solely to sedimentary burial at the original site of deposition (by an estimated 6 to 7 km of younger sediments) because in this zone the highest diagenetic grade occurs in the highest tectonic unit. Diagenesis in the nappes of zone I probably required additional tectonic burial by the higher nappes because original sedimentary thicknesses that once overlay these Lower and Middle Ordovician rocks appear insufficient to have caused the observed degree of diagenesis. Diagenesis in zone IIA, therefore, was most likely formed entirely before orogenesis; in zone I it is probably partly pre-orogenic in origin and has been transported during nappe-movement. In contrast, diagenesis and metamorphism in zones IIB to IV are interpreted as related to regional synorogenic heating in conjunction with the Taconic orogeny. Thermal maturation levels in zone I indicate that the rocks have not yet passed the “oil window” which is of interest for petroleum exploration in Quebec. An extended English version of this paper is in preparation for the Bulletin of Canadian Petroleum Geology (Ogunyomi et al., ms.).  相似文献   

7.
Two major divisions of the New England Fold Belt, Zone A and Zone B, are separated by the Peel Fault. Deposition in these two zones was probably contemporaneous (Lower Palaeozoic ‐ Lower Permian). Terminal orogenesis in both zones was also contemporaneous (Middle Permian) but whereas in Zone A deformation was only moderate, metamorphism was of burial type, and granitic emplacement was uncommon, in Zone B many rocks were severely deformed and regionally metamorphosed, and both syn‐tectonic and post‐tectonic granites are widespread.

Pre‐orogenic palaeogeography is envisaged in terms of an evolving volcanic chain ‐ fore‐chain basin ‐ trench system, with an outer non‐volcanic arc developed in the Carboniferous. Cessation of movement on a subduction zone dipping westward beneath the volcanic chain is believed to have caused the Middle Permian deformation, but neither metamorphism nor the granitic rocks are directly related to subduction.  相似文献   

8.
Hot metamorphic core complex in a cold foreland   总被引:1,自引:1,他引:0  
The Montagne Noire forms the southernmost part of the French Massif Central. Carboniferous flysch sediments and very low-grade metamorphic imprint testify to a very external position in the orogen. Sedimentation of synorogenic clastic sediments continued up to the Viséan/Namurian boundary (≤320 Ma). Subsequently, the Palaeozoic sedimentary pile underwent recumbent folding and grossly southward thrusting. An extensional window exposes a hot core of Carboniferous HT/LP gneisses, migmatites and granites (Zone Axiale), which was uplifted from under the nappe pile. After the emplacement of the nappes on the Zone Axiale (Variscan D1), all structural levels shared the same tectonic evolution: D2 (extension and exhumation), D3 (refolding) and post-D3 dextral transtension. HT/LP-metamorphism in the crystalline rocks probably started before and continued after the emplacement of the nappes. Peak metamorphic temperatures were attained during a post-nappe thermal increment (M2). M2 occurred during ENE-directed bilateral extension, which exhumed the Zone Axiale and its frame as a ductile horst structure, flanked to the ENE by a Stephanian intra-montane basin. Map patterns and mesoscopic structures reveal that extension in ENE occurred simultaneously with NNW-oriented shortening. Combination of these D2 effects defines a bulk prolate strain in a “pinched pull-apart” setting. Ductile D2 deformation during M2 dominates the structural record. In wide parts of the nappes on the southern flank of the Zone Axiale, D1 is only represented by the inverted position of bedding (overturned limbs of recumbent D1 folds) and by refolded D1 folds. U–Pb monazite and zircon ages and K–Ar muscovite ages are in accord with Ar–Ar data from the literature. HT/LP metamorphism and granitoid intrusion commenced already at ≥330 Ma and continued until 297 Ma, and probably in a separate pulse in post-Stephanian time. Metamorphic ages older than c. 300 Ma are not compatible with the classical model of thermal relaxation after stacking, since they either pre-date or too closely post-date the end of flysch sedimentation. We therefore propose that migmatization and granite melt generation were independent from crustal thickening and caused, instead, by the repeated intrusion of melts into a crustal-scale strike-slip shear zone. Advective heating continued in a pull-apart setting whose activity outlasted the emplacement of the Variscan nappe pile. The shear-zone model is confirmed by similar orogen-parallel extensional windows with HT/LP metamorphism and granitoid intrusion in neighbouring areas, whose location is independent from their position in the orogen. We propose that heat transfer from the mantle occurred in dextral strike-slip shear zones controlled by the westward propagating rift of the Palaeotethys ocean, which helped to destroy the Variscan orogen.  相似文献   

9.
The Lower Silurian??Lower Devonian Arisaig Group (Antigonish Highlands) in the Canadian Appalachians is a sequence of shallow marine strata deposited after the accretion of Avalonia to Baltica during the closure of the Iapetus Ocean. Deformation of the strata is widely attributed to the Devonian Acadian orogeny and produced shallowly plunging regional folds and a cleavage of varying penetrativity. Phyllosilicate minerals from the finest-grained rocks exhibit very low-grade (diagenetic-anchizone) metamorphic conditions. X-ray diffraction study reveals that the sampled rocks contain quartz, K-white mica, chlorite, and feldspars; illite?Csmectite and chlorite?Csmectite mixed-layers are common but Na?CK mica and kaolinite occur only in some samples. The identification of illite?Csmectite mixed-layers in diagenetic samples, with Kübler Index >0.50 ??°2?? and the highly heterogeneous b-cell dimension of the K-white micas are in agreement with the variable chemical composition of dioctahedral micas, which present low illitic substitution and variable phengitic content. The spatial variation in the above crystal-chemical parameters was plotted along a NW?CSE composite cross section across the regional folds. No correlation was found between the metamorphic conditions and either the stratigraphic depth or the strain values measured by phyllosilicates orientation analyses, as a function of the penetrativity of the cleavage. However, the metamorphic grade generally increases towards the Hollow Fault, and is highest in samples located within a 1?km corridor from the fault surface. Incipient cleavage is observed in the anchizonal samples located in the vicinity of the Hollow Fault and in some of the diagenetic samples, indicating cleavage development under low temperatures (<200?oC). These relationships, together with regional syntheses, suggest low-grade metamorphism post-dated regional folding and was coeval with Late Carboniferous dextral movement along the Hollow Fault. Fluid circulation associated with movement along this major fault may be the driving mechanism for the increasing metamorphism towards it.  相似文献   

10.
Conodont colour alteration index (CAI) values have been used for the assessment of the thermal history of Lower Palaeozoic strata in the southwestern margin of the Malopolska Massif, along the contact with the Upper Silesian Massif. The CAI data provide no evidence for a previously suggested greenschistgrade regional metamorphism in the Cracow-Myszkow zone during the Caledonian epoch. Near Zarki, the Silurian rocks display a relatively uniform thermal overprint (CAI values of 4) resulting from sedimentary burial during the early Late Carboniferous. The estimated maximum temperatures of 200–220°C can be explained by an elevated heat flow associated with the Cracow Fault system. This thermal maturation level was locally enhanced (CAI values up to 8) after the Westphalian, due to the magmatic activity caused by the Variscan regional extension.  相似文献   

11.
The Lesser Himalaya in central Nepal consists of Precambrian to early Paleozoic, low- to medium-grade metamorphic rocks of the Nawakot Complex, unconformably overlain by the Upper Carboniferous to Lower Miocene Tansen Group. It is divided tectonically into a Parautochthon, two thrust sheets (Thrust sheets I and II), and a wide shear zone (Main Central Thrust zone) from south to north by the Bari Gad–Kali Gandaki Fault, the Phalebas Thrust and the Lower Main Central Thrust, respectively. The Lesser Himalaya is overthrust by the Higher Himalaya along the Upper Main Central Thrust (UMCT). The Lesser Himalaya forms a foreland-propagating duplex structure, each tectonic unit being a horse bounded by imbricate faults. The UMCT and the Main Boundary Thrust are the roof and floor thrusts, respectively. The duplex is cut-off by an out-of-sequence fault. At least five phases of deformation (D1–D5) are recognized in the Lesser Himalaya, two of which (D1 and D2) belong to the pre-Himalayan (pre-Tertiary) orogeny. Petrographic, microprobe and illite crystallinity data show polymetamorphic evolution of the Lesser and Higher Himalayas in central Nepal. The Lesser Himalaya suffered a pre-Himalayan (probably early Paleozoic) anchizonal prograde metamorphism (M0) and a Neohimalayan (syn- to post-UMCT) diagenetic to garnet grade prograde inverted metamorphism (M2). The Higher Himalaya suffered an Eohimalayan (pre or early-UMCT) kyanite-grade prograde metamorphism (M1) which was, in turn, overprinted by Neohimalayan (syn-UMCT) retrograde metamorphism (M2). The isograd inversion from garnet zone in the Lesser Himalaya to kyanite zone in the Higher Himalaya is only apparent due to post-metamorphic thrusting along the UMCT. Both the Lesser and Higher Himalayas have undergone late-stage retrogression (M3) during exhumation.  相似文献   

12.
 The highest grade of metamorphism and associated structural elements in orogenic belts may be inherited from earlier orogenic events. We illustrate this point using magmatic and metamorphic rocks from the southern steep belt of the Lepontine Gneiss Dome (Central Alps). The U-Pb zircon ages from an anatectic granite at Verampio and migmatites at Corcapolo and Lavertezzo yield 280–290 Ma, i.e., Hercynian ages. These ages indicate that the highest grade of metamorphism in several crystalline nappes of the Lepontine Gneiss Dome is pre-Alpine. Alpine metamorphism reached sufficiently high grade to reset the Rb-Sr and K-Ar systematics of mica and amphibole, but generally did not result in crustal melting, except in the steep belt to the north of the Insubric Line, where numerous 29 to 26 Ma old pegmatites and aplites had intruded syn- and post-kinematically into gneisses of the ductile Simplon Shear Zone. The emplacement age of these pegmatites gives a minimum estimate for the age of the Alpine metamorphic peak in the Monte Rosa nappe. The U-Pb titanite ages of 33 to 31 Ma from felsic porphyritic veins represent a minimum-age estimate for Alpine metamorphism in the Sesia Zone. A porphyric vein emplaced at 448±5 Ma (U-Pb monazite) demonstrates that there existed a consolidated Caledonian basement in the Sesia Zone. Received: 23 May 1995/Accepted: 12 October 1995  相似文献   

13.
Detailed b lattice parameter and illite crystallinity (IC) studies of K-white micas in slates from the Stawell and Ballarat-Bendigo Zones (SZ, BBZ) in the western Lachlan Fold Belt of Victoria, Australia, reveal a metamorphic pattern characterized by regional metamorphism associated with crustal thickening and younger contact metamorphism accompanied by deformation. The IC data indicate that rocks regionally metamorphosed prior to the intrusion of the Early and Late Devonian granitoids, vary in grade from epizonal (greenschist facies) to diagenetic (zeolite facies) and that most are of epizonal to anchizonal (prehnite–pumpellyite facies) grade. In the BBZ, a decrease in grade from west to east occurs. Across fault zones, IC values show little change, indicating that limited vertical displacement has occurred. This is in accord with the thin skinned deformation model proposed for the western Lachlan Fold Belt. The b lattice parameters (x=9.022 Å; n=137; σn=0.009) indicate baric conditions intermediate between those of New Hampshire (P=Al2SiO5 triple point) and Otago (intermediate P ). Thus, a moderately low geothermal gradient existed 450–430 Ma ago, when these rocks were deformed. KD Fe/Mg (actinolite)/Fe/Mg (chlorite) values (0.52–0.70) obtained from coexisting actinolite and chlorite in metabasites from fault zones support the moderately high-P (c. 4 kbar) metamorphism suggested by the b cell parameter values. The metamorphic conditions indicated by these data are contrary to the low-P/high-T conditions proposed by previous authors, who inferred an intimate association between deformation, granitoid intrusion and gold mineralization. The b lattice parameter of white micas in slates adjacent to Early Devonian (c. 400 Ma) granitoids with schist bearing aureoles in the north-eastern part of the BBZ (x=9.002 Å; n=27; σn=0.007), indicate pressures in the order of c. 2.5 kbar which are in accord with those obtained from andalusite–cordierite and zoisite–garnet bearing assemblages observed in the higher grade metapelitic and calcareous rocks. This contrasts with the higher pressure (c. 4 kbar) existing during regional metamorphism and implies that c. 6.5–8 km of metasedimentary rocks in the BBZ were removed before the emplacement of the Early Devonian granitoids. Metamorphic assemblages in hornfelses associated with Late Devonian granitoids indicate a further 5–6 km of metasediment were removed in the next 40 Ma prior to their emplacement. This study shows the value of white mica studies in elucidating the tectonothermal history of a low-grade metamorphic terrane dominated by metapelitic rocks.  相似文献   

14.
White mica bearing fractions ranging in grain size from 0.4 m to 6.3–20 m were separated from metapelites and intercalated metatuffs of the eastern Rheinisches Schiefergebirge (FRG). The stratigraphic age of these rocks is Middle Devonian (Eifelian), and they contain detrital material of northwestern provenance (Old Red Continent, probably mainly derived from the Caledonian Orogen). Folding in the Carboniferous was associated with cleavage formation and an apparently synkinematic anchizonal metamorphism. Apparent K-Ar ages of metapelite fractions display a marked positive correlation with grain size illustrating the detrital influence which is diminished with decreasing grain size and increasing metamorphism (determined by illite crystallinity). Contrasting grain morphologies observed by SEM enable the interpretation of apparent age/ grain size relationship for coarse fractions. The anticipated lack of detrital mica in metatuffs is confirmed by the fairly consistent apparent K-Ar ages determined for the coarser than 0.63 m size fractions which date the anchizonal metamorphism at ca. 330 Ma. Comparison of metatuff and metapelite apparent ages suggests that the extent of rejuvenation in the latter was largely dependent on grain size. Rejuvenation was also somewhat controlled by the degree of anchizonal metamorphism as suggested by differences in K-Ar results of metapelites which were metamorphosed at variable anchizonal conditions. Fractions <0.63 m from upper anchizonal metapelites record ca. 330 Ma ages similar to those of the 0.63–20 m sizes in metatuffs. Together those results confirm the limited applicability of conventional K-Ar dating on bulk clay fractions (<2 m) of very-low grade (anchizonal) metamorphic rocks in dating metamorphic events and concomitant cleavage formation.  相似文献   

15.
The Alpine nappes of Crete are commonly subdivided into a Lower and an Upper Nappe pile, both of which are considered to be separated by a low-angle extensional shear zone referred to as ‘Cretan detachment’. The presence of a detachment at the originally suggested position, however, is not supported by our data: (1) Neogene rocks are sandwiched between Tripolitza Unit and the Lower Nappes. (2) Calcite twinning analyses indicate that the major nappes on Crete were largely affected by subhorizontal, layer-parallel shortening rather than subvertical shortening. (3) Metamorphic Tripolitza carbonates resting on top of non-metamorphic Neogene strata on the one hand and illite crystallinity data on the other indicate inverse metamorphism along the ‘Cretan detachment’. (4) Raman spectra of carbonaceous material from rocks below the detachment are locally indicative for very low-grade or an absence of metamorphism within the Lower Nappes, indicating weaknesses of their present tectono-stratigraphical assignment to the Phyllite-Quartzite Unit. (5) Illite crystallinity in the Pindos Unit is substantially lower than in the Tripolitza Unit, although both Units are considered as the Upper Nappes. (6) Oxygene Isotope data indicate precipitation of twinned calcite veins at supercrustal conditions. These findings point to Miocene thrusting at supercrustal conditions, which postdates the exhumation of the Lower Nappes.  相似文献   

16.
Along the southern margin of the Damara orogen age and degree of metamorphism were determined by means of K/Ar dating and illite crystallinity. The investigations include the following units:
  1. The southwestern-most part of the east-west striking branch of the Damara orogen.
  2. The nappes of the Naukluft Mountains.
  3. The Nama-Group from north of the Naukluft Mountains to the Fish River in the south (including the western part of the Dwyka-Formation).
The metamorphism of the Naukluft nappes as well as the underlying Nama beds corresponds to the higher part of the anchi-zone and lower epi-zone. Between the Naukluft nappes and the folded Nama rocks adjoining the southeastern front of the nappes there is an obvious step from higher down to lower metamorphism. Further to the southeast the metamorphism in the Nama beds decreases continuously down to diagenesis. K/Ar age determinations were carried out on the three units mentioned above and also on the basement underlying the Nama sequence. Muscovites of this basement gave an age of about 1160 m. y. Determinations on white micas of the southern Damara belt, the Naukluft Mountains and the northern Nama basin define two isochrons with ages of 495 and 530 m. y The age of 530 m. y. represents the peak of metamorphism and the age of syncrystalline deformation. The age of 495 m. y. can be interpreted as a cooling age of the higher metamorphic rocks or as a dating of rejuvenation caused by a second post-crystalline deformation in parts of the Naukluft and Damara rocks. This age of 495 m. y. was also found in the mylonite of the main thrust plane of the Naukluft nappes and it represents the time of emplacement of the Naukluft nappes.  相似文献   

17.
Abstract The Shyok Suture Zone separates rocks in the Asian plate from rocks in the Kohistan-Ladakh island arc. In Baltistan, this suture has been reactivated by the late 'break-back'Main Karakorum Thrust (MKT). The P-T histories of metamorphic rocks both north and south of the MKT have been determined in an effort to place constraints on the tectonic history of this zone. The terranes north and south of the MKT have different, unrelated metamorphic histories. Rocks from the Kohistan-Ladakh island arc south of the MKT have undergone a static low- P (2–4 kbar, c. 500° C) thermal metamorphism. The P-T paths and metamorphic textures of these rocks are consistent with metamorphism due to emplacement of plutonic rocks into the island arc. This metamorphism pre-dates folding and deformation of these rocks. Rocks in the Karakorum Metamorphic Complex, north of the MKT, have experienced a complex deformational and metamorphic history. Prograde metamorphic isograds have been deformed by subsequent south-verging folding and by gneiss dome emplacement. However, decompression metamorphic reactions occurred during nappe emplacement. Higher pressure rocks are associated with higher level nappes, creating an inverted pressure metamorphic sequence (8–9-kbar rocks over 5–6-kbar rocks). There is little variation in temperature with structural level (550–625° C). These two different terranes have been juxtaposed after metamorphism by the late south-directed MKT.  相似文献   

18.
X-ray diffraction methods for estimating the metamorphic grade of diagenetic, anchizone and epizone in metapelites are reviewed and applied to samples from a 7000?m+ borehole in western China and surface samples from the surrounding Zoigê area. Kübler’s illite crystallinity (IC) measurements provide more consistent results than calculated values of percentage of illite in the I/S mixed layers and percentage of I/S mixed layers. Down-borehole IC values display a typical burial metamorphic relationship between stratigraphic level and IC. A method for preparing very low grade metamorphic maps is described, and isograds plotted on a regional geological map at selected values of IC, delineating a high temperature diagenetic zone, an anchizone, and an epizone. The map shows that IC values are controlled by stratigraphic level in the north of the study area (i.e. burial metamorphism), and proximity to an igneous intrusive body in the south (i.e. contact metamorphism).  相似文献   

19.
Mantle fragments of ultramafic composition are widespread in the Scandinavian Caledonides (SC). Lenses and boudins of Alpine-type peridotites in the Scandinavian Caledonides represent parts of dismembered ophiolite sequences and fragments of sub-continental upper mantle. Metaperidotites of nappes in internal positions are generally isofacial with the metamorphic envelope, usually Caledonian metasediments but in places also Precambrian metagranitoids forming the basement cores of the nappes. Caledonian metamorphism strongly modified the texture and mineralogy of the peridotites and resulted in a systematic metamorphic pattern which is consistent with the pattern observed in the envelope.

Metaperidotites of the external massifs display at least a two-stage metamorphic history: an early Caledonian high-pressure high-temperature phase related to early crustal stacking and a late Caledonian regional metamorphic overprint which produced a regular Barrovian-type metamorphic pattern of in-situ metamorphism.

Metaperidotites from nappes in intermediate positions (Iapetus Ocean ophiolites and ultramafic rocks from island arc environments) show strongly diverging histories. Metaperidotites from internal ophiolites (oceanic ophiolites, Köli) lack any evidence of subduction metamorphism, are serpentinized to various degrees, show abundant primary mantle relic mineralogies and the Caledonian metamorphic overprint is low. Metaperidotites from external (island arc) ophiolites and other associations (Seve) often show relic high-pressure metamorphism related to the Finnmarkian phase of the Caledonian orogeny. The Seve metaperidotites are occasionally associated with eclogites and show a weak overprint of late Caledonian regional metamorphism. Alpine-type peridotites are absent in the foreland of the Baltic Shield and in the innermost nappes (Lofoten).

The metamorphic characteristics and evolution recorded by the metaperidotites in the Scandinavian Caledonides allow a general reconstruction of the dynamics of collision belt formation.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号