首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E.D. Zaron  G.D. Egbert   《Ocean Modelling》2007,18(3-4):210-216
We use a synthetic data experiment to assess the accuracy of ocean tides estimated from satellite altimetry data, with emphasis on the impact of the phase-locked internal tide, which has a surface expression of several centimeters near its sites of genesis. Previous tidal estimates have regarded this signal as a random measurement error; however, it is deterministic and not scale-separated from the barotropic (surface) tide around complex bathymetric features. The synthetic data experiments show that the internal tide has a negligible impact on the barotropic tidal fields inferred under these circumstances, and the barotropic dissipation (a quadratic functional of the tidal fields) is in good agreement with the energetics of the three-dimensional regional primitive equations model which is the source of the synthetic data.  相似文献   

2.
《Ocean Modelling》2004,6(3-4):245-263
Astronomical data reveals that approximately 3.5 terawatts (TW) of tidal energy is dissipated in the ocean. Tidal models and satellite altimetry suggest that 1 TW of this energy is converted from the barotropic to internal tides in the deep ocean, predominantly around regions of rough topography such as mid-ocean ridges. A global tidal model is used to compute turbulent energy levels associated with the dissipation of internal tides, and the diapycnal mixing supported by this energy flux is computed using a simple parameterization.The mixing parameterization has been incorporated into a coarse resolution numerical model of the global ocean. This parameterization offers an energetically consistent and practical means of improving the representation of ocean mixing processes in climate models. Novel features of this implementation are that the model explicitly accounts for the tidal energy source for mixing, and that the mixing evolves both spatially and temporally with the model state. At equilibrium, the globally averaged diffusivity profile ranges from 0.3 cm2 s−1 at thermocline depths to 7.7 cm2 s−1 in the abyss with a depth average of 0.9 cm2 s−1, in close agreement with inferences from global balances. Water properties are strongly influenced by the combination of weak mixing in the main thermocline and enhanced mixing in the deep ocean. Climatological comparisons show that the parameterized mixing scheme results in a substantial reduction of temperature/salinity bias relative to model solutions with either a uniform vertical diffusivity of 0.9 cm2 s−1 or a horizontally uniform bottom-intensified arctangent mixing profile. This suggests that spatially varying bottom intensified mixing is an essential component of the balances required for the maintenance of the ocean’s abyssal stratification.  相似文献   

3.
Progress in tidal science has been rapid in recent years. The advent of precision altimetry has enabled, for the very first time in tidal history, an accurate measurement of tides in most of the global oceans. This has revolutionized our knowledge of tides and tidal processes. Combined with high‐resolution numerical models of tides (and other recent advances in astronomy and geodesy), this increased knowledge is providing valuable assistance in effecting closure on many outstanding problems in this three‐centuries‐old science. For example, we now know the dissipation rate of lunar tides to be 3.17 TW to within 2%. However, there do remain some outstanding issues. While we know the rate at which tidal energy is being dissipated in the global oceans, there is still considerable uncertainty as to the mechanisms, locations, and magnitudes of various tidal energy sinks. Imminent advances in shallow‐water barotropic and deep‐water baroclinic tides hold the prospect of a better understanding of these also. Improved knowledge of oceanic tides and high‐precision satellite measurements of tides are enabling better assessment of some matters of geophysical interest, such as the anelasticity and the length‐of‐day fluctuations of the Earth's mantle. It has been possible to map long‐period lunar tides more accurately and derive their contribution to the Earth's rotation rate fluctuations and its anelasticity at these frequencies. We discuss various aspects related to tides, including tidal dissipation and its consequences, as well as several other topics such as tidal energetics, internal tides, and long‐period tides, where considerable progress has been made in the last decade. Both oceanographic and geophysical implications are mentioned.  相似文献   

4.
Abyssal recipes II: energetics of tidal and wind mixing   总被引:11,自引:0,他引:11  
Without deep mixing, the ocean would turn, within a few thousand years, into a stagnant pool of cold salty water with equilibrium maintained locally by near-surface mixing and with very weak convectively driven surface-intensified circulation. (This result follows from Sandström’s theorem for a fluid heated and cooled at the surface.) In this context we revisit the 1966 “Abyssal Recipes”, which called for a diapycnal diffusivity of 10-4m2/s (1 cgs) to maintain the abyssal stratification against global upwelling associated with 25 Sverdrups of deep water formation. Subsequent microstructure measurements gave a pelagic diffusivity (away from topography) of 10-5 m2/s — a low value confirmed by dye release experiments.A new solution (without restriction to constant coefficients) leads to approximately the same values of global upwelling and diffusivity, but we reinterpret the computed diffusivity as a surrogate for a small number of concentrated sources of buoyancy flux (regions of intense mixing) from which the water masses (but not the turbulence) are exported into the ocean interior. Using the Levitus climatology we find that 2.1 TW (terawatts) are required to maintain the global abyssal density distribution against 30 Sverdrups of deep water formation.The winds and tides are the only possible source of mechanical energy to drive the interior mixing. Tidal dissipation is known from astronomy to equal 3.7 TW (2.50±0.05 TW from M2 alone), but nearly all of this has traditionally been allocated to dissipation in the turbulent bottom boundary layers of marginal seas. However, two recent TOPEX/POSEIDON altimetric estimates combined with dynamical models suggest that 0.6–0.9 TW may be available for abyssal mixing. A recent estimate of wind-driving suggests 1 TW of additional mixing power. All values are very uncertain.A surprising conclusion is that the equator-to-pole heat flux of 2000 TW associated with the meridional overturning circulation would not exist without the comparatively minute mechanical mixing sources. Coupled with the findings that mixing occurs at a few dominant sites, there is a host of questions concerning the maintenance of the present climate state, but also that of paleoclimates and their relation to detailed continental configurations, the history of the Earth–Moon system, and a possible great sensitivity to details of the wind system.  相似文献   

5.
The spring-neap cycle of global energy dissipation by ocean tides is calculated with a view to trying to explain an observed anomaly in the tidal fluctuations in the length of day. Calculations are performed in three ways: dissipation by friction linearly proportional to semidiurnal tide velocity, by quadratic friction, and by the torques of the lunar and solar tidal forces on the solar and lunar ocean tides, respectively. All methods give comparable results equivalent to an amplitude of about 0.1 μs change in the length of day with a small phase lag. These are inadequate to explain the observed anomaly of about 3 μs and 0.1 rad phase lag. Further investigations, to determine the generation of a non-equilibrium global MSf wave of equatorial amplitude 0.9 mm by nonlinear interactions in shallow seas using global tide models and observations, are suggested.  相似文献   

6.
The sea-surface height signatures of internal tides in the deep ocean, amounting to a few centimeters or less, are studied using two complementary measurement types: satellite altimetry and island tide gauges. Altimetry can detect internal tides that maintain coherence with the astronomical forcing; island gauges can monitor temporal variability which, in some circumstances, is due to internal tides varying in response to changes in the oceanic medium. This latter mechanism is at work at Hilo and other stations on the northern coasts of the Hawaiian Islands. By detecting spatially coherent low-frequency internal-tide modulations, the tide gauges, along with inverted echo sounders at sea, suggest that the mean internal tide is also spatially coherent; satellite altimetry confirms this. At Hawaii and in many other places, Topex/Poseidon altimetry detects mean surface waves, spatially coherent and propagating great distances (> 1000 km) before decaying below background noise. When temporal variability is small, the altimetry (plus information on ocean density) sets useful constraints on energy fluxes into internal tides. At the Hawaiian Ridge, 15 GW of tidal power is being converted from barotropic to first-mode baroclinic motion. Examples elsewhere warn that a simplistic interpretation of the altimetry, without regard to variability, noise, or in situ information, may be highly misleading. With such uncertainties, extension of the Hawaiian results into a usefully realistic estimate of the global internal-tide energy balance appears premature at this time.  相似文献   

7.
A frequency-wavenumber tidal analysis for deriving internal-tide harmonic constants from TOPEX/Poseidon (T/P) measurements of sea-surface height (SSH) has been developed, taking advantage of the evident temporal and spatial coherence and the weak dissipation of internal tides. Previous analyses consisted of simple tidal analysis at individual points, which gave inconsistent harmonic constants at altimeter track crossover points. Such analyses have difficulty in distinguishing between the effects of interference, incoherence, and dissipation. The frequency-wavenumber analysis provides an objective way to interpolate the internal tides measured along altimetry tracks to any arbitrary point, while leveraging all available data for optimal tidal estimates. Tidal analysis of T/P data from 2000 to 2007 is used to predict in situ time series measured during the 2001-2002 Hawaiian Ocean mixing experiment (HOME), the 1987 reciprocal tomography experiment (RTE87), and the 1991 acoustic mid-ocean dynamics experiment (AMODE), demonstrating both the temporal coherence and the lack of incoherent elements to this wave propagation. It has been conjectured that significant energy would be lost from mode-1 internal tides as they cross the 28.9°N critical latitude of parametric subharmonic instability (PSI). No apparent change in amplitude at 28.9°N was detected by this analysis, however. Further, after correcting for changes in background stratification, the amplitude of the mode-1 internal tide was found to decrease by less than 20% over the 2000 km between the Hawaiian Ridge and 40°N. A significant fraction of the variability of internal waves, that component associated with mode-1 internal tides, appears to be predictable over most of the world's oceans, using harmonic constants derived from satellite altimetry.  相似文献   

8.
The global distributions of eight principal tidal constituents, M2 , S2 , K1 , O1 , N2 , K2 , P1 , and Q1 , are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the derived harmonics at 7000 subsatellite track crossover points shows that the root mean square (RMS) values of the tidal height differences of the above eight constituents range from 1.19 cm to 2.67 cm, with an average of about 2 cm. The RMS values of the tidal height differences between T/P-J solutions and the harmonics from ground measurements at 152 tidal gauge stations for the above constituents range from 0.34 cm to 1.08 cm, and the relative deviations range from 0.031 to 0.211. The root sum square of the RMS differences of these eight constituents is 2.12 cm, showing the improvement of the present model over the existing global ocean tidal models. Based on the obtained tidal model the global ocean tidal energetics is studied and the global distribution of the tidal power input density by tide-generating force of each constituent is calculated, showing that the power input source regions of semidiurnal tides are mainly concentrated in the tropical belt between 30 S and 30 N, while the power input source regions of diurnal tides are mainly concentrated off the tropic oceans. The global energy dissipation rates of the M2 , S2 , K1 , O1 , N2 , P1 , K2 and Q1 tides are 2.424, 0.401, 0.334, 0.160, 0.113, 0.035, 0.030 and 0.006 TW, respectively. The total global tidal dissipation rate of these eight constituents amounts to 3.5 TW.  相似文献   

9.
内潮耗散与自吸-负荷潮对南海潮波影响的数值研究   总被引:1,自引:0,他引:1  
利用非结构三角形网格的FVCOM海洋数值模式,在其传统二维潮波方程中加入参数化的内潮耗散项和自吸-负荷潮项,计算了南海及其周边海域的M_2、S_2、K_1和O_1分潮的分布。与实测值的比较表明,引入这两项对模拟准确度的提高有明显效果。根据模式结果本文计算分析了研究海域的潮能输入和耗散。能量输入计算表明,能通量是潮能输入的最主要构成部分,通过吕宋海峡断面进入南海的M_2和K_1分潮能通量分别为38和29GW;半日周期的自吸-负荷潮能量输入以负值居多,而全日周期的自吸-负荷潮能量输入以正值居多,因而自吸-负荷潮减弱了南海的半日潮,并加强了南海的全日潮。引潮力的作用也减弱了半日潮而加强了全日潮,但其作用要小于自吸-负荷潮。潮能耗散的分析显示底摩擦耗散在沿岸浅水区域起主导作用,内潮耗散则主要发生在深水区域。内潮耗散的最大值出现在吕宋海峡,且位于南海之外的海峡东部的耗散量大于位于南海之内的海峡西部的耗散量。对M_2和K_1分潮吕宋海峡的内潮耗散总值分别达到16和23GW。  相似文献   

10.
Tidal data inversion: interpolation and inference   总被引:1,自引:0,他引:1  
Initial efforts in applying inverse methods to studies of ocean tides have focused on making the best use of a small number of observations to map tidal fields in a large area. As such, inversion can be viewed as an objective analysis scheme which uses a dynamically appropriate spatial covariance, derived from the shallow water equations, to interpolate and smooth a sparse data set. Data from recent altimetry missions are not sparsely distributed relative to tidal wavelengths in the open ocean, apparently reducing the need for complicated dynamically based interpolation schemes. Altimetric data sets are also quite large, making application of rigorous inversion methods to global tidal modeling a challenging computational problem. We describe here a new iterative solution scheme which allows us for the first time to fit the full set of TOPEX/Poseidon cross-over differences. The resulting solution (TPXO.3) fits validation tide gauges significantly better than previous inverse solutions. TPXO.3 also reduces residual cross-over variances relative to other recent inverse and empirical solutions, particularly in shallow water where improvements are dramatic. With the new solution approach very significant improvements in global tidal models should be possible in shallow areas and in the vicinity of complex bathymetry, where high-accuracy tidal modeling remains a challenging problem. With the recent improvements in the definition of tidal elevations in the open ocean it should now also be possible to resolve some long unanswered questions about tidal energetics and dynamics. Inverse methods provide a natural framework for addressing these issues, and making inferences about tidal dynamics. In particular, by bringing data and dynamics together in a single solution, we can rigorously test the consistency of the two. We present results of global and local inversions which suggest that over elongated bathymetric features oriented perpendicular to tidal flows, energy dissipation in the open ocean is significantly enhanced, presumably due to conversion of barotropic tidal motions into baroclinic modes. For the M2 tide our preliminary results suggest that perhaps as much as 0.5 TW of energy is dissipated in this manner. However, due to the simplified linear dynamics and limited spatial resolution used for our inversion, there are significant uncertainties associated with these results. A more careful application of inverse methods to make more rigorous inferences about tidal energetics, including use of more reasonable prior dynamics, and the highest possible spatial resolution, should allow for closure of the tidal energy budget within the next few years.  相似文献   

11.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

12.
P. Mazzega 《Marine Geodesy》2013,36(3):335-363
Abstract

The recovery of ocean tides from satellite altimetry, an attractive alternative to the hydrodynamical‐numerical approach, is investigated to create a global model of the M2 tide. From the outline of the difficulties faced in altimetry interpretation, we bring out general guidelines to extract the tidal information from a short span of measurements. In particular, we discuss the choice of a reference surface and the effect of the orbit error and tidal aliasing on the recovery. From space‐time harmonic analyses of twenty‐four days of SEASAT altimetry, we derive M2 solutions expanded into series of surface spherical harmonics for the Indian, Pacific, and Atlantic Oceans separately and for the world ocean. The M2 cotidal maps we obtain feature qualitatively realistic tidal patterns and are consistent with the deep sea gages data. We then cast the bases to estimate the error budget of the altimeter tide solutions. The M2 fundamental harmonics involved in tidal energetics are evaluated from a spectral convolution of the global solutions with the ocean function and are used to test and discuss our results.

The present tidal recoveries must still be considered as preliminary trials because they are strongly dependent on the limits of the SEASAT mission and subject to improvements via an updating of our analysis procedure. But the altimeter approach of the open ocean tide modelling proves to be efficient, and the objective—to produce highly reliable models with the support of the next generation of satellite altimeters—is reasonably optimistic.  相似文献   

13.
吐噶喇海峡是西北太平洋重要的内潮产生区域,该区域内产生的内潮对于东海陆架和西北太平洋的混合和物质输运有十分重要的作用。水平分辨率为3km的JCOPE-T(JapanCoastalOcean PredictabilityExperiment—Tides)水动力学模式的结果表明,吐噶喇海峡的内潮主要产生在地形变化剧烈的海山和海岛附近,其引起的等密面起伏振幅可达30m。吐噶喇海峡的内潮在垂直于等深线方向分为两支向外传播:一支向西北方向传播,进入东海陆架后迅速减小;另一支向东南方向传播,进入西北太平洋。吐噶喇海峡潮能丰富,其在约半个月内的平均输入的净正压潮能通量为13.92GW,其中约有3.73GW转化为内潮能量。生成的内潮能量有77.2%在当地耗散,传出的内潮能通量为0.84GW,主要通过西北和东南两个边界传出。该区域潮能通量有显著的大小潮变化,大潮期间输入的正压潮净能通量和产生的内潮能通量均约为小潮期间的2倍,但其主要产生区域基本不变,且内潮能量耗散比率均在产生的内潮通量的76%—79%。另外,内潮能通量的传播方向也没有发生变化,仍主要通过西北和东南两个边界传出。因此,大小潮的变化仅影响吐噶喇海峡处产生的内潮能量的大小,不影响其产生区域、传播方向和耗散比率。  相似文献   

14.
印度尼西亚海(简称印尼海)位于热带太平洋和印度洋交汇的海域,是全球最大的内潮生成海域.内潮耗散导致强烈的潮致混合,一方面将温跃层以下的海水卷入上层,降低印尼海海表温度,之后通过海气相互作用产生显著的天气和气候效应;另一方面对穿越印尼海的印度尼西亚贯穿流的物质与能量输运也有着重要影响.自Ar-lindo计划以来,人们对印...  相似文献   

15.
Due to limit of coverage in TOPEX/Poseidon (T/P) satellite and sparseness of in-situ tide gauges around Antarctica, the accuracy of global ocean tide models in Antarctic seas is relatively poorer than in low- and mid-latitude regions. To better understand ocean tides in Prydz Bay, east Antarctica, a GPS receiver was deployed on floating sea ice to measure tide-induced ice motion in multiple campaigns. Four online Precise Point Positioning (PPP) services are used to process the GPS data in the kinematic PPP mode, and UTide software is used to separate the major tidal constituents. Comparison between results from different processing methods (relative processing solutions from Track, kinematic PPP solutions from online services) and with bottom pressure gauge (BPG) shows that, high-accuracy tidal information can be obtained from GPS observations on floating sea ice, the root-sum-square (RSS) for the eight major constituents (O1, K1, P1, Q1, M2, S2, N2, K2) is below 4 cm. We have also studied the impacts of data span and filter edge effects at daily boundaries on the accuracy of tide estimates, and found that to obtain reliable tide estimates and neglect the filter edge effects, continuous observation longer than 30 days is necessary. Our study suggests that GPS provides an independent method to estimate tides in Prydz Bay, and can be an alternative to tidal gauges, which are costly and hard to maintain in Antarctica.  相似文献   

16.
海洋是多尺度强迫-耗散系统,机械能主要在大尺度输入,在小尺度耗散。在大、中尺度运动的能量向小尺度湍流传递过程中,内波扮演着重要角色。内波的生成和破碎可打破海洋动力平衡,而在陆架区,内波(主要是内孤立波)的浅化演变与耗散则是驱动湍流混合的关键过程。通过长期的理论、观测与数值模拟研究,目前已认识到内波浅化过程中主要发生如下演变:波形调制、极性转变、裂变、破碎与耗散。相较于直接发生破碎,浅化演变过程中的裂变及其引发的剪切不稳定和对流不稳定是内孤立波在陆架区的主要耗散机制,显著调制陆架区的跃层混合。从能量串级的角度讲,内孤立波浅化裂变为动力不稳定的高频内波是潮能串级的重要通道。本文简要回顾南海北部陆架区内波的研究历史,并着重总结内波在陆架区演变与耗散机制的研究进展。  相似文献   

17.
A global ocean tide model (NAO.99b model) representing major 16 constituents with a spatial resolution of 0.5° has been estimated by assimilating about 5 years of TOPEX/POSEIDON altimeter data into barotropic hydrodynamical model. The new solution is characterized by reduced errors in shallow waters compared to the other two models recently developed; CSR4.0 model (improved version of Eanes and Bettadpur, 1994) and GOT99.2b model (Ray, 1999), which are demonstrated in comparison with tide gauge data and collinear residual reduction test. This property mainly benefits from fine-scale along-track tidal analysis of TOPEX/POSEIDON data. A high-resolution (1/12°) regional ocean tide model around Japan (NAO.99Jb model) by assimilating both TOPEX/POSEIDON data and 219 coastal tide gauge data is also developed. A comparison with 80 independent coastal tide gauge data shows the better performance of NAO.99Jb model in the coastal region compared with the other global models. Tidal dissipation around Japan has been investigated for M2 and K1 constituents by using NAO.99Jb model. The result suggests that the tidal energy is mainly dissipated by bottom friction in localized area in shallow seas; the M2 ocean tidal energy is mainly dissipated in the Yellow Sea and the East China Sea at the mean rate of 155 GW, while the K1 energy is mainly dissipated in the Sea of Okhotsk at the mean rate of 89 GW. TOPEX/POSEIDON data, however, detects broadly distributed surface manifestation of M2 internal tide, which observationally suggests that the tidal energy is also dissipated by the energy conversion into baroclinic tide.  相似文献   

18.
南海是存在强湍流混合的边缘海之一, 但前人对南海湍流混合的研究更多关注的是中上层, 对底层则鲜有关注。本文基于高分辨率温度传感器于2019年5月在南海东北部22个站位海底上方0.5m处持续观测4.4d的温度数据, 分析了2216~3200m深度范围内底层海水温度的时间变化特征, 并探讨了地形粗糙度和内潮对底层湍流混合的影响。分析结果表明, 南海东北部各站位底层海水的温度变化量级约为10-4~10-3℃; 温度变化趋势与正压潮变化趋势不同, 温度能谱显示多数站位在全日和半日频带区间出现谱峰, 温度变化更多地受斜压潮影响, 全日、半日内潮起主要调制作用。陆坡-深海盆过渡区及深海盆底层的湍动能耗散率量级为10-10~10-9m2∙s-3, 涡扩散系数量级为10-4~10-3m2∙s-1。观测数据未能显示底层湍流混合与地形粗糙度存在明显的相关性。底层湍流混合的空间分布与过去观测到的南海北部深海盆内潮的南北不对称性分布一致。  相似文献   

19.
Luni-solar tides affect Earth's rotation in a variety of ways. We give an overview of the physics and focus on the excitation of Earth rotational variations by ocean tides under the conservation of angular momentum. Various models for diurnal and semidiurnal tidal height and tidal current fields have been derived, following a legacy of a number of theoretical tide models, from the Topex/Poseidon (T/P) ocean altimetry data. We review the oceanic tidal angular momenta (OTAM) predicted by these T/P models for the eight major tides (Q1, O1, P1, K1, N2, M2, S2, K2), and their excitations on both Earth's rotational speed variation (in terms of length-of-day or UT1) and polar motion (prograde diurnal/semidiurnal components and retrograde semidiurnal components). These small, high-frequency effects have been unambiguously observed in recent years by precise Earth rotation measurements via space geodetic techniques. Here we review the comparison of the very-long-baseline-interferometry (VLBI) data with the T/P OTAM predictions. The agreement is good with discrepancies typically within 1 – 2 microseconds for UT1 and 10 – 30 microarcseconds for polar motion. The eight tides collectively explain the majority of subdaily Earth rotation variance during the intensive VLBI campaign Cont94. This establishes the dominant role of OTAM in exciting the diurnal/semidiurnal polar motion and paves the way for detailed studies of short-period non-OTAM excitations, such as atmospheric and oceanic angular momentum variations, earthquakes, the atmospheric thermal tides, Earth librations, and the response of the mantle lateral inhomogeneities to tidal forcing. These studies await further improvements in tide models and Earth rotation measurements.  相似文献   

20.
南海潮汐主要分潮振幅变化趋势研究   总被引:1,自引:1,他引:0  
潮汐变化研究对于海洋工程、沿海地区洪涝灾害预防、海上交通等各个方面都有着重要的意义。由于验潮站都集中在近海,所以之前潮汐变化研究主要集中在近海海域。相比之下,深海地区由于长期高频水位观测的缺乏导致相关的潮汐变化研究非常少。基于近海验潮站数据和深海卫星高度计数据,本文首次用非平稳潮汐调和分析工具包S_TIDE提取了南海4大主要分潮(M2、S2、K1、O1)振幅的长期趋势。研究发现在南海大部分地区,4大主要分潮的振幅都是比较稳定的,不存在显著的上升趋势或下降趋势。在南海少部分地区4大主要分潮的振幅存在显著的趋势,最大的上升趋势可达2.91 mm/a,最大的下降趋势可达3.50 mm/a。该海域潮汐的长期趋势可能与内潮海表面信号的变化有关。卫星观测到的潮汐既包含正压潮,也包含内潮海表面信号。南海作为全球内潮活动最活跃的海域之一,其内潮海表面信号是非常显著的。而内潮对海洋层化的变化是非常敏感的,海洋层化的变化会影响内潮的生成、传播和耗散以及内潮在海表的显示,最终引起该海域潮汐振幅的长期趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号