首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomas Perina 《Ground water》2021,59(3):438-442
Time-domain analytical solution for groundwater flow to a fully penetrating flowing well is derived using the same substitution technique used to re-derive (Perina 2010) the Theis (1935) equation and the approximate solution by Mishra and Guyonnet (1992) is confirmed. The exponential integral-based flowing well function is a computationally effective alternative to the original Jacob and Lohman (1952) solution in integral form. For a constant drawdown test, the ratio of drawdown at an observation well to the flowrate is equivalent to drawdown response to pumping at unit constant rate; the transformed observations can be analyzed using the Theis (1935) function. Analysis of field test shows that simultaneous fitting to measurements of flow from the test well and drawdown at an observation well results in more accurate and better resolved estimates of aquifer properties than fitting to flow observations only.  相似文献   

2.
The constant-head pumping tests are usually employed to determine the aquifer parameters and they can be performed in fully or partially penetrating wells. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The mathematical model describing the aquifer response to a constant-head test performed in a fully penetrating well can be easily solved by the conventional integral transform technique under the uniform Dirichlet-type condition along the rim of wellbore. However, the boundary condition for a test well with partial penetration should be considered as a mixed-type condition. This mixed boundary value problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the Laplace and finite Fourier transforms in conjunction with the triple series equations method. This approach provides analytical results for the drawdown in a partially penetrating well for arbitrary location of the well screen in a finite thickness aquifer. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.  相似文献   

3.
An analytical model is presented for the analysis of constant flux tests conducted in a phreatic aquifer having a partially penetrating well with a finite thickness skin. The solution is derived in the Laplace transform domain for the drawdown in the pumping well, skin and formation regions. The time-domain solution in terms of the aquifer drawdown is then obtained from the numerical inversion of the Laplace transform and presented as dimensionless drawdown–time curves. The derived solution is used to investigate the effects of the hydraulic conductivity contrast between the skin and formation, in addition to wellbore storage, skin thickness, delayed yield, partial penetration and distance to the observation well. The results of the developed solution were compared with those from an existing solution for the case of an infinitesimally thin skin. The latter solution can never approximate that for the developed finite skin. Dimensionless drawdown–time curves were compared with the other published results for a confined aquifer. Positive skin effects are reflected in the early time and disappear in the intermediate and late time aquifer responses. But in the case of negative skin this is reversed and the negative skin also tends to disguise the wellbore storage effect. A thick negative skin lowers the overall drawdown in the aquifer and leads to more persistent delayed drainage. Partial penetration increases the drawdown in the case of a positive skin; however its effect is masked by the negative skin. The influence of a negative skin is pronounced over a broad range of radial distances. At distant observation points the influence of a positive skin is too small to be reflected in early and intermediate time pumping test data and consequently the type curve takes its asymptotic form.  相似文献   

4.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   

5.
This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.  相似文献   

6.
ABSTRACT

A borehole partially penetrating a confined aquifer and pumped at a constant rate is modelled, taking account of water stored within the casing of the borehole. A solution for drawdown in the Laplace transform domain is obtained. The proportion of aquifer water in well discharge is numerically evaluated, tabulated as a function of time and compared with results for a fully penetrating well. Modification of the fully penetrating well theory, for application to partially penetrating wells, was found to give comparable results to the more complete analysis for a partially penetrating well both at early and late times. A previous estimate of the time of pumping before sampling (ts) to minimize casing storage effects, based on the fully penetrating well theory, was confirmed by the partially penetrating well analysis and in fact was shown to be a conservative estimate (or overestimate) of the pumping time required when sampling from a partially penetrating well.  相似文献   

7.
A steady/quasi-steady model is developed for predicting flow into a partially penetrating well with skin zone in a confined aquifer overlying an impervious layer. The model takes into account flow through the bottom of the wellbore, finite skin thickness and finite horizontal and vertical extent of the aquifer. Moreover, the solution can be easily extended to include the mixed-type boundary condition at the well face, where a Dirichlet in the form of a specified hydraulic head and a Neumann in the form of zero flux coexist at the same time at different portions of the well face. The validity of the proposed solution is tested by comparing a few results obtained from the developed model with corresponding results obtained by analytical and numerical means. The study shows that, among other factors remaining constant, both the horizontal and vertical extent of an artesian aquifer, thickness of the skin zone, bottom flow and conductivity contrast of the skin and formation zones, play an important part in deciding flow to a well dug in the aquifer, and hence these factors must be considered while analyzing the problem. The model proposed here can be used to estimate skin thickness as well as hydraulic conductivities of the skin and formation zones of a well with skin zone in an artesian aquifer underlain by an impervious layer by utilizing pumping test data falling in the steady or quasi-steady state of a typical pumping test. As the proposed solution is of a general nature in the sense that it can handle, apart from partial penetration and bottom flow, the finite size skin zone and finite horizontal and vertical extent of an artesian aquifer together with the mixed-type boundary condition at the well face, it is hoped that the predictions coming out of the model will be more realistic than those obtained using solutions developed with more stringent assumptions.  相似文献   

8.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Commonly used analytical approaches for estimation of pumping-induced drawdown and stream depletion are based on a series of idealistic assumptions about the stream-aquifer system. A new solution has been developed for estimation of drawdown and stream depletion under conditions that are more representative of those in natural systems (finite width stream of shallow penetration adjoining an aquifer of limited lateral extent). This solution shows that the conventional assumption of a fully penetrating stream will lead to a significant overestimation of stream depletion (> 100%) in many practical applications. The degree of overestimation will depend on the value of the stream leakance parameter and the distance from the pumping well to the stream. Although leakance will increase with stream width, a very wide stream will not necessarily be well represented by a model of a fully penetrating stream. The impact of lateral boundaries depends upon the distance from the pumping well to the stream and the stream leakance parameter. In most cases, aquifer width must be on the order of hundreds of stream widths before the assumption of a laterally infinite aquifer is appropriate for stream-depletion calculations. An important assumption underlying this solution is that stream-channel penetration is negligible relative to aquifer thickness. However, an approximate extension to the case of nonnegligible penetration provides reasonable results for the range of relative penetrations found in most natural systems (up to 85%). Since this solution allows consideration of a much wider range of conditions than existing analytical approaches, it could prove to be a valuable new tool for water management design and water rights adjudication purposes.  相似文献   

10.
A mathematical model that describes the drawdown due to constant pumpage from a finite radius well in a two‐zone leaky confined aquifer system is presented. The aquifer system is overlain by an aquitard and underlain by an impermeable formation. A skin zone of constant thickness exists around the wellbore. A general solution to a two‐zone leaky confined aquifer system in Laplace domain is developed and inverted numerically to the time‐domain solution using the modified Crump (1976) algorithm. The results show that the drawdown distribution is significantly influenced by the properties and thickness of the skin zone and aquitard. The sensitivity analyses of parameters of the aquifer and aquitard are performed to illustrate their effects on drawdowns in a two‐zone leaky confined aquifer system. For the negative‐skin case, the drawdown is very sensitive to the relative change in the formation transmissivity. For the positive‐skin case, the drawdown is also sensitive to the relative changes in the skin thickness, and both the skin and formation transmissivities over the entire pumping period and the well radius and formation storage coefficient at early pumping time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Aquifer information carried by aquifer test data may be affected by the presence of a finite thickness skin around the wellbore. The mathematical treatment for an aquifer accounting for the skin zone can be characterized by five parameters, that is, the outer radius of the skin zone and the transmissivity and storativity for each of the skin and aquifer zones. Sensitivity analysis was performed to examine the ground water flow behavior in the skin and aquifer zones in terms of the constant-head test (CHT) data. The simulated annealing procedure was applied to simultaneously determine the skin and aquifer parameters from the analysis of CHT data. Toward the previously mentioned goals, four suites of CHT data were analyzed in this article. The analyses of wellbore flow rate at the test well and the specific drawdown at the observation well gave accurate estimates for the skin and aquifer parameters, respectively. Only the skin thickness and both the skin and the aquifer diffusivities could be accurately estimated from the analysis of drawdown data in the observation well. The estimates for all skin and aquifer parameters from the composite analysis of flow rate and drawdown data were the most accurate. The results of sensitivity analyses and parameter estimations provide instructive references in the analysis of the skin-affected CHT data.  相似文献   

12.
This paper presents a new semi‐analytical solution for a slug test in a well partially penetrating a confined aquifer, accounting for the skin effect. This solution is developed based on the solution for a constant‐flux pumping test and a formula given by Peres and co‐workers in 1989. The solution agrees with that of Cooper and co‐workers and the KGS model when the well is fully penetrating. The present solution can be applied to simulate the temporal and spatial head distributions in both the skin and formation zones. It can also be used to demonstrate the influences of skin type or skin thickness on the well water level and to estimate the hydraulic parameters of the skin and formation zones using a least‐squares approach. The results of this study indicate that the determination of hydraulic conductivity using a conventional slug‐test data analysis that neglects the presence of a skin zone will give an incorrect result if the aquifer has a skin zone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Uniform head in horizontal and vertical wells   总被引:1,自引:0,他引:1  
Steward DR  Jin W 《Ground water》2006,44(1):86-90
The steady-state head within a fully penetrating well may be estimated by evaluating the Thiem equation at the radius of the well. A method is presented here to extend results from the Thiem equation to horizontal wells and to partially penetrating wells. The particular model used in this investigation is based upon the analytic element method; it accurately reproduces a boundary condition of uniform head along the cylindrical surface at the perforated face of the well. This model is exercised over a representative range of parameters including the well's length, radius, and pumping rate, and the aquifer's hydraulic conductivity and thickness. Results are presented in a set of figures and tables that compare the well's drawdown to the drawdown that would have been obtained using the Thiem solution with the same pumping rate and radius. A methodology is presented to estimate the head within a horizontal or partially penetrating well by adding a correction term to results that can be readily obtained from computer models of vertical fully penetrating wells. This approach may also be used to contrast the differences in head between horizontal and vertical wells of various lengths, radii, and placement elevations.  相似文献   

14.
Wang X  Xu J  Cai Z 《Ground water》2012,50(3):348-354
A new finite layer method (FLM) is presented in this paper for transient flow analysis in layered radial two-zone aquifer systems. A radial two-zone system is an aquifer configuration in which a circular aquifer with finite radius is surrounded by a matrix possessing different permeability and storage properties. The aquifers can be pumped from fully or partially penetrating wells of infinitesimal radius. The trial function for drawdown is obtained through the use of piecewise linear correction functions in the present method. The trial function can satisfy the continuity conditions of flow and possess an appropriate continuity of C(0) at the two-zone interface. On the basis of Galerkin's method and the continuity condition of flow, the finite layer formulation is derived. The proposed method can cope with the anisotropy and layered heterogeneity in radial two-zone aquifer systems. Several numerical examples are presented to verify the validity of the present method through comparison with the analytical solution and the numerical results based on the finite difference method, in which a test of three-dimensional (3D) flow to a partially penetrating well in anisotropic two-zone aquifers is included. Furthermore, an additional application in simulating the two-zone flow in aquitard-aquifer systems is presented to demonstrate the applicability of FLM in modeling flow in more complex aquifer systems.  相似文献   

15.
Morozov  P. E. 《Water Resources》2020,47(3):430-437
Water Resources - A semianalytic and approximate analytical solution is given to the problem of slug test in a partially penetrating well in a confined or unconfined anisotropic aquifer. An...  相似文献   

16.
In order to understand the flow pattern around a pumping well partially penetrating a vertically extensive aquifer, a specially designed pumping test was carried out in Pakistan. In this paper salient features of the test have been described. The spatial distributions of drawdown have been shown graphically. Some of the preliminary conclusions made from the drawdown pattern include:
  • • The distance beyond which the flow is likely to be horizontal increases with decrease in the degree of aquifer penetration.
  • • In equidistant observation wells open at different depths, (1) the drawdowns tend to merge at larger times, provided the observation point is located within the screened section of the aquifer; (2) the less the depth of penetration is, the earlier the drawdowns start merging; and (3) the initial rate of drawdown near the aquifer top is slow but catches up with time to exceed those at deeper points.
  相似文献   

17.
Aquifer Properties Determined from Two Analytical Solutions   总被引:3,自引:0,他引:3  
In the analysis of pumping test data, the quality of the determined aquifer parameters can be greatly improved by using a proper model of the aquifer system. Moench (1995) provided an analytical solution for flow to a well partially penetrating an unconfined aquifer. His solution, in contrast to the Neuman solution (1974), accounts for the noninstantaneous decline of the water table (delayed yield). Consequently, the calculated drawdown in these two solutions is different under certain circumstances, and this difference may therefore affect the computation of aquifer properties from pumping test data. This paper uses an inverse computational method to calculate four aquifer parameters as well as a delayed yield parameter, α1 from pumping test data using both the Neuman (1974) and Moench (1995) solutions. Time-drawdown data sets from a pumping test in an unconfined alluvial aquifer near Grand Island, Nebraska, were analyzed. In single-well analyses, horizontal hydraulic conductivity values derived from the Moench solution are lower, but vertical hydraulic conductivity values are higher than those calculated from the Neuman solution. However, the hydraulic conductivity values in composite-well analyses from both solutions become very close. Furthermore, the Neuman solution produces similar hydraulic conductivity values in the single-well and composite-well analyses, but the Moench solution does not. While variable α1, seems to play a role in affecting the computation of aquifer parameters in the single-well analysis, a much smaller effect was observed in the composite-well analysis. In general, specific yield determined using the Moench solution could be slightly higher than the values from the Neuman solution; however, they are still lower than the realistic values for sand and gravel aquifers.  相似文献   

18.
An analytical approach is presented for solving problems of steady, two-dimensional groundwater flow with inhomogeneity boundaries. A common approach for such problems is to separate the problem domain into two homogeneous domains, search for solutions in each domain, and then attempt to match conditions, either exactly or approximately, along the inhomogeneity boundary. Here, we use classical solutions to problems with inhomogeneity boundaries with simple geometries, and map conformally the entire domain onto a new one. In this way, existing solutions are used to solve problems with more complex, and more practical, boundary geometries. The approach is general, but subject to some restrictions on the mapping functions that may be used.Using this approach, we develop explicit analytical solutions for two problems of practical interest. The first problem addresses aquifer interaction across a gap in an impermeable separating layer; flow regimes are defined and the interaction is quantified. The second solution represents flow in the vertical plane to a partially clogged stream bed that is partially penetrating the aquifer; the stream bed is modeled as a thin layer of low-permeability silt. Flow regimes for groundwater surface–water interaction are quantified analytically.  相似文献   

19.
20.
Abstract

Unconfined aquifer parameters, viz. transmissivity, storage coefficient, specific yield and delay index from a pumping test are estimated using the genetic algorithm optimization (GA) technique. The parameter estimation problem is formulated as a least-squares optimization, in which the parameters are optimized by minimizing the deviations between the field-observed and the model-predicted time–drawdown data. Boulton's convolution integral for the determination of drawdown is coupled with the GA optimization technique. The bias induced by three different objective functions: (a) the sum of squares of absolute deviations between the observed and computed drawdown; (b) the sum of squares of normalized deviations with respect to the observed drawdown; and (c) the sum of squares of normalized deviations with respect to the computed drawdown, is statistically analysed. It is observed that, when the time–drawdown data contain no errors, the objective functions do not induce any bias in the parameter estimates and the true parameters are uniquely identified. However, in the presence of noise, these objective functions induce bias in the parameter estimates. For the case considered, defining the objective function as the sum of the squares of absolute deviations between the observed and simulated drawdowns resulted in the best possible estimates. A comparison of the GA technique with the curve-matching procedure and a conventional optimization technique, such as the sequential unconstrained minimization technique (SUMT), is made in estimating the aquifer parameters from a reported field pumping test in an unconfined aquifer. For the case considered, the GA technique performed better than the other two techniques in parameter estimation, with the sum-of-squares errors obtained from the GA about one fourth of those obtained by the curve matching procedure, and about half of those obtained by SUMT.

Citation Rajesh, M., Kashyap, D. & Hari Prasad, K. S. (2010) Estimation of unconfined aquifer parameters by genetic algorithms. Hydrol. Sci. J. 55(3), 403–413.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号