首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atmospheric measurement of radioactive xenon isotopes (radioxenon) plays a key role in remote monitoring of nuclear explosions, since it has a high capability to capture radioactive debris for a wide range of explosion scenarios. It is therefore a powerful tool in providing evidence for nuclear testing, and is one of the key components of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The reliability of this method is largely based on a well-developed measurement technology. In the 1990s, with the prospect of the build-up of a monitoring network for the CTBT, new development of radioxenon equipment started. This article summarizes the physical and technical principles upon which the radioxenon technology is based and the advances the technology has undergone during the last 10 years. In contrast to previously used equipment, which was manually operated, the new generation of radioxenon monitoring equipment is designed for automated and continuous operation in remote field locations. Also the analytical capabilities of the equipment were strongly enhanced. Minimum detectable concentrations of the recently developed systems are well below 1 mBq/m3 for the key nuclide 133Xe for sampling periods between 8 and 24 h. All the systems described here are also able to separately measure with low detection limits the radioxenon isotopes 131mXe, 133mXe and 135Xe, which are also relevant for the detection of nuclear tests. The equipment has been extensively tested during recent years by operation in a laboratory environment and in field locations, by performing comparison measurements with laboratory type equipment and by parallel operation. These tests demonstrate that the equipment has reached a sufficiently high technical standard for deployment in the global CTBT verification regime.  相似文献   

2.
Activity concentration data from ambient radioxenon measurements in ground level air, which were carried out in Europe in the framework of the International Noble Gas Experiment (INGE) in support of the development and build-up of a radioxenon monitoring network for the Comprehensive Nuclear-Test-Ban Treaty verification regime are presented and discussed. Six measurement stations provided data from 5 years of measurements performed between 2003 and 2008: Longyearbyen (Spitsbergen, Norway), Stockholm (Sweden), Dubna (Russian Federation), Schauinsland Mountain (Germany), Bruyères-le-Châtel and Marseille (both France). The noble gas systems used within the INGE are designed to continuously measure low concentrations of the four radioxenon isotopes which are most relevant for detection of nuclear explosions: 131mXe, 133mXe, 133Xe and 135Xe with a time resolution less than or equal to 24 h and a minimum detectable concentration of 133Xe less than 1 mBq/m3. This European cluster of six stations is particularly interesting because it is highly influenced by a high density of nuclear power reactors and some radiopharmaceutical production facilities. The activity concentrations at the European INGE stations are studied to characterise the influence of civilian releases, to be able to distinguish them from possible nuclear explosions. It was found that the mean activity concentration of the most frequently detected isotope, 133Xe, was 5–20 mBq/m3 within Central Europe where most nuclear installations are situated (Bruyères-le-Châtel and Schauinsland), 1.4–2.4 mBq/m3 just outside that region (Stockholm, Dubna and Marseille) and 0.2 mBq/m3 in the remote polar station of Spitsbergen. No seasonal trends could be observed from the data. Two interesting events have been examined and their source regions have been identified using atmospheric backtracking methods that deploy Lagrangian particle dispersion modelling and inversion techniques. The results are consistent with known releases of a radiopharmaceutical facility.  相似文献   

3.
Monitoring of radioactive noble gases, in particular xenon isotopes, is a crucial element of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The capability of the noble gas network, which is currently under construction, to detect signals from a nuclear explosion critically depends on the background created by other sources. Therefore, the global distribution of these isotopes based on emissions and transport patterns needs to be understood. A significant xenon background exists in the reactor regions of North America, Europe and Asia. An emission inventory of the four relevant xenon isotopes has recently been created, which specifies source terms for each power plant. As the major emitters of xenon isotopes worldwide, a few medical radioisotope production facilities have been recently identified, in particular the facilities in Chalk River (Canada), Fleurus (Belgium), Pelindaba (South Africa) and Petten (Netherlands). Emissions from these sites are expected to exceed those of the other sources by orders of magnitude. In this study, emphasis is put on 133Xe, which is the most prevalent xenon isotope. First, based on the emissions known, the resulting 133Xe concentration levels at all noble gas stations of the final CTBT verification network were calculated and found to be consistent with observations. Second, it turned out that emissions from the radioisotope facilities can explain a number of observed peaks, meaning that atmospheric transport modelling is an important tool for the categorization of measurements. Third, it became evident that Nuclear Power Plant emissions are more difficult to treat in the models, since their temporal variation is high and not generally reported. Fourth, there are indications that the assumed annual emissions may be underestimated by factors of two to ten, while the general emission patterns seem to be well understood. Finally, it became evident that 133Xe sources mainly influence the sensitivity of the monitoring system in the mid-latitudes, where the network coverage is particularly good.  相似文献   

4.
Both radioxenon and radioiodine are possible indicators for a nuclear explosion. Therefore, they will be, together with other relevant radionuclides, globally monitored by the International Monitoring System in order to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty once the treaty has entered into force. This paper studies the temporal development of radioxenon and radioiodine activities with two different assumptions on fractionation during the release from an underground test. In the first case, only the noble gases are released, in the second case, radioiodine is released as well while the precursors remain underground. For the second case, the simulated curves of activity ratios are compared to prompt and delayed atmospheric radioactivity releases from underground nuclear tests at Nevada as a function of the time of atmospheric air sampling for concentration measurements of 135I, 133I and 131I. In addition, the effect of both fractionation cases on the isotopic activity ratios is shown in the four-isotope-plot (with 135Xe, 133mXe, 133Xe and 131mXe) that can be utilized for distinguishing nuclear explosion sources from civilian releases.  相似文献   

5.
The value of the 133Xe/133mXe isometric activity ratio for the stationary regime of reactor work is about 35, and that for an instant fission (explosion) is about 11, which allowed estimation of the nuclear component of the instant (explosion) energy release during the NPP accident. Atmospheric xenon samples were taken at the trajectory of accident product transfers (in the Cherepovetz area); these samples were measured by a gamma spectrometer, and the 133Xe/133mXe ratio was determined as an average value of 22.4. For estimations a mathematic model was elaborated considering both the value of instant released energy and the schedule of reactor power change before the accident, as well as different fractionation conditions on the isobaric chain. Comparison of estimated results with the experimental data showed the value of the instant specific energy release in the Chernobyl NPP accident to be 2·105–2·10J/Wt or 6·1014–6·1015 J (100–1,000 kt). This result is matched up to a total reactor power of 3,200 MWt. However this estimate is not comparable with the actual explosion scale estimated as 10t TNT. This suggests a local character of the instant nuclear energy release and makes it possible to estimate the mass of fuel involved in this explosion process to be from 0.01 to 0.1% of total quantity.  相似文献   

6.
Monitoring of Xe and Kr radionuclides was conducted from August 2006 to 30 July 2008 within the framework of ISTC Project #2133. Cherepovets City in Vologda Province and St. Petersburg were chosen as monitoring locations. Kr–Xe concentrate samples were obtained as a result of processing of several thousand m3 of atmospheric air. New results of 85Kr monitoring show, that for last 15 years, the 85Kr volumetric activity in the atmospheric air of the northwest region of Russia has increased approximately 50% and has achieved a level of 1.5 Bq/m3. This value correlates well with similar data for Western Europe and Japan. The xenon fraction (80–160 cm3 under STP) is adsorbed on charcoal in the ampoule, which is measured in the well of HPGe gamma detector. Minimum detectable concentration (MDC) of 133Xe for this technique is 0.008 mBq/m3, and it is the most sensitive method used today. The 133Xe concentration in the atmospheric air of Cherepovets City varied in the monitoring period ranging from 0.09 to 2.5 mBq/m3. During the period of March 2007–30 July 2008, 133Xe activity concentration in the atmospheric air of St. Petersburg changed from background values (0.2–0.3 mBq/m3) to 185 mBq/m3 and for approximately 20% of the samples 135Xe was also measured with the 135Xe/133Xe activity ratio varied within the range of 0.03–3.5.  相似文献   

7.
The announced October 2006 nuclear test explosion in the Democratic People’s Republic of Korea (DPRK) has been the first real test regarding the technical capabilities of the verification system built up by the Vienna-based Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) to detect and locate a nuclear test event. This paper enhances the resolution of the DPRK events’ xenon source reconstruction published by Saey et al. (2007, “A long distance measurement of radioxenon in Yellowknife, Canada, in late October 2006”, GRL, Vol. 34, L20802) that was based solely on radio-xenon measurements taken at the remote radionuclide station in Yellowknife, Canada by involving additional measurements taken by a mobile noble gas system deployed quite close to the event location in the Republic of Korea (ROK). Moreover the horizontal resolution of the forward and backward atmospheric transport modelling methods applied for the source scenario reconstruction has been enhanced appropriately to reflect the considerably shorter source-receptor distances examined in comparison to the previously published source reconstruction. It is shown that the 133Xe measurements in Yellowknife could register 133Xe traces from the nuclear explosion during the first 3 days after the event, while the mobile measurements were rather sensitive to releases during days 2–4 after the explosion. According to the analysis, the most likely source scenario would consist of an initial (possibly up to 21 h delayed) venting of 1 × 10?15 Bq 133Xe during the first 24 h, followed by a two orders of magnitude weaker seepage during the following 3 days. Both measurements corroborate the scenario of a rather rapid venting and soil diffusion of the 133Xe yielded during the explosion. While the Swedish mobile measurements were crucial to enhancement of the reconstruction of the source scenario, given the installation status of the IMS xenon network at the time of the event, a sensitivity analysis revealed that the fully developed network would have been able to detect 133Xe traces from the Korean explosion at a number of stations and allowed for an even better constraint on the release function. The station Ussuriysk, Russia, being in operation in 2006, would have registered 133Xe within 1 day and with a three orders of magnitudes stronger signal compared to the detection at Yellowknife.  相似文献   

8.
A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System that will verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) once the treaty has entered into force. This paper studies isotopic activity ratios to support the interpretation of observed atmospheric concentrations of 135Xe, 133mXe, 133Xe and 131mXe. The goal is to distinguish nuclear explosion sources from civilian releases. Simulations of nuclear explosions and reactors, empirical data for both test and reactor releases as well as observations by measurement stations of the International Noble Gas Experiment (INGE) are used to provide a proof of concept for the isotopic ratio based method for source discrimination.  相似文献   

9.
Noble gas isotopes including 3He/4He, 40Ar/36Ar and Xe isotope ratios were determined for coexisting glass and olivine crystals in tholeiitic and alkalic basalts and dunite xenoliths from Loihi Seamount.Glass and coexisting olivine crystals have similar 3He/4He ratios (2.8–3.4) × 10?5, 20 to 24 times the atmospheric ratio (RA), but different 40Ar/36Ar ratios (400–1000). Based on the results of noble gas isotope ratios and microscopic observation, some olivine crystals are xenocrysts. We conclude that He is equilibrated between glass and olivine xenocrysts, but Ar is not.The apparent high 3He/4He ratio (3 × 10?5; = 21 RA) coupled with a relatively high 40Ar/36Ar ratio (4200) for dunite xenoliths (KK 17-5) may be explained by equilibration of He between MORB-type cumulates and the host magma.Except for the dunite xenoliths, noble gas data for these Loihi samples are compatible with a model in which samples from hot spot areas may be explained by mixing between P (plume)-type and M (MORB)-type components with the addition of A (atmosphere)-type component.Excess 129Xe has not been observed due to apparent large mass fractionation among Xe isotopes.  相似文献   

10.
In this paper we report Ne, Ar, Kr and Xe analyses of josephinite, Josephine Peridotite, and serpentinized Josephine Peridotite. In all three samples the elemental abundance patterns resemble patterns associated with surface waters, the Ne data do not exhibit the large21Ne enrichments observed earlier, and the Kr and Xe compositions are indistinguishable from atmospheric composition at all isotopes, including129Xe. Our data thus offer no significant evidence for isotopic anomalies in the noble gases. We also argue that the previous claims for primordial atmospheric-like Ar, anomalous Kr and Xe, excess129Xe, and 4.6 × 109-year age are all questionable interpretations which cannot be defended against more prosaic alternatives. This leaves excess21Ne as the only noble gas argument for exotic origin; we suggest that this might be an experimental artifact. Until the21Ne question can be settled by more definitive experimentation, we feel that noble gas data cannot be used to support arguments that the origin of josephinite is more exotic than crustal serpentinization.  相似文献   

11.
Nitrogen and noble gases were measured in samples of a glass inclusion and the surrounding basaltic matrix from the antarctic shergottite EETA 79001. A nitrogen component trapped in the glass, but not present in the matrix, has a δ15N value at least as high as +190‰. Ratios of40Ar/14N and15N/14N in the glass are consistent with dilution of a martian atmospheric component (δ15N = 620 ± 160‰,40Ar/14N= 0.33 ± 0.03) by either terrestrial atmosphere adsorbed on the samples or by indigenous nitrogen from the minerals of the rock. Trapped noble gases in the glass reproduce, within error, the elemental and isotopic compositions measured in Mars' atmosphere by Viking, and are in general agreement with previous measurements except for much lower abundances of neutron-generated krypton and xenon isotopes. The most reasonable explanation at the present time for the noble gas pattern and the isotopically heavy nitrogen is that a sample of martian atmosphere has been trapped in the EETA 79001 glass, and that this meteorite, and thus the shergottites and probably the nakhlites and chassignites as well, originated on Mars.Nitrogen in the non-glassy matrix of EETA 79001 amounts to less than 0.5 ppm and has a spallation-corrected δ15N value in the range 0 to ?20‰; it may reflect indigenous nitrogen in the basalt or a mixture of indigenous and adsorbed terrestrial nitrogen. Spallogenic noble gases yield single-stage exposure ages between 400,000 and 900,000 years, depending on irradiation geometry. Trapped argon may have an unusually low36Ar/38Ar ratio. Trapped krypton, except for a small excess at80Kr, is smoothly mass-fractionated with respect to either terrestrial or chondritic Kr. The trapped xenon composition is consistent with addition of neutron-capture, radiogenic and fissiogenic isotopes to a base composition resembling terrestrial atmospheric Xe. The elemental84Kr/132Xe ratio of 25 is close to the terrestrial value and very different from the chondritic ratio.  相似文献   

12.
A new method to date uranium-bearing minerals exclusively by means of a mass spectrometric determination of Xe and/or Kr isotopic ratios has been developed and experimentally tested. It is based on the compositional differences between Xe produced by spontaneous fission of238U in nature and Xe from235U fission induced by thermal neutrons in a nuclear reactor. Xe is extracted in 5–10 release fractions at successively higher temperatures. This relates the radiogenic Xe contained in various structural elements of different retention characteristics to the respective U concentrations and allows to account for natural Xe losses, which are quite common. A monazite monitor mineral of known age is included in each irradiation and its Xe isotopes are measured in the same way.The samples analyzed include uranium oxides, REE phosphates, tantalum niobates, zircon and others.The results and comparisons with reported ages obtained by other means demonstrate the applicability of the new dating method for minerals with U contents up to a few percent. In age spectra the low-temperature release fractions of some samples indicate radiogenic Xe losses, while at high temperatures age plateaux can be obtained.  相似文献   

13.
Detonation gases released by an underground nuclear test include trace amounts of 133Xe and 37Ar. In the context of the Comprehensive Nuclear Test Ban Treaty, On Site Inspection Protocol, such gases released from or sampled at the soil surface could be used to indicate the occurrence of an explosion in violation of the treaty. To better estimate the levels of detectability from an underground nuclear test (UNE), we developed mathematical models to evaluate the processes of 133Xe and 37Ar transport in fractured rock. Two models are developed respectively for representing thermal and isothermal transport. When the thermal process becomes minor under the condition of low temperature and low liquid saturation, the subsurface system is described using an isothermal and single-gas-phase transport model and barometric pumping becomes the major driving force to deliver 133Xe and 37Ar to the ground surface. A thermal test is simulated using a nonisothermal and two-phase transport model. In the model, steam production and bubble expansion are the major processes driving noble gas components to ground surface. After the temperature in the chimney drops below boiling, barometric pumping takes over the role as the major transport process.  相似文献   

14.
Some breccias from the lunar highlands have probably trapped solar wind gases at a very early epoch in the history of the moon, as implied by their high contents of parentless fissiogenic xenon and sometimes, of parentless radiogenic129Xe. Four samples of this type, on which noble gas data already exist, have been selected for analysis of nitrogen contents and isotopic composition, by using step-wise heating techniques: 14047, 14055, 14307, 60255. Since uncertainties in the evolution of the solar wind15N/14N ratio with time are due in part to uncertainties in the measurement of the epoch of exposure, those samples provided the opportunity to measure the isotopic composition of nitrogen which has been trapped in the remote past, avoiding the problems inherent in the use of spallogenic nuclides. Results show that, in the samples studied from the Apollo 14 landing site, nitrogen is not particularly light, and has not been acquired, as a whole, in very ancient times. The conflicting presence of both parentless xenon and nitrogen of relatively “recent” isotopic signature can be explained if the hypothetical light nitrogen is diluted by more abundant, heavier nitrogen. Accordingly, the very ancient soil components which are implied in these objects by the presence of excess fission xenon have been re-exposed at a much later epoch, or mixed with some younger soil components, before the compaction event. The present data do not question the hypothesis of a secular isotopic variation of lunar trapped nitrogen, but cannot prove that very light nitrogen was trapped together with parentless fission xenon in the soil components of the highlands soil breccias. The very unusual release pattern of nitrogen in breccia 60255 can result from nitrogen isotopic homogenization with gas loss.  相似文献   

15.
A neutron-irradiated bulk sample of the Murray (C-2) carbonaceous chondrite was etched with H2O2 and then divided into colloidal and non-colloidal fractions. The H2O2 treatment removed ~80% of the trapped Xe and greatly increased variations in the129Xe/132Xe ratio measured in stepwise heating. The colloid showed very little excess129Xe, but the anti-colloid gave a fairly good I-Xe correlation corresponding to formation 3.7 ± 2.1 m.y. after Bjurböle.Variations in the trapped Xe component were also observed; most notably the 550°C anti-colloid fraction has large deficiencies relative to AVCC at the heavy isotopes. A tentative decomposition suggests U-Xe, a “primitive” trapped component, as the dominant component with minor contributions from H-Xe, L-Xe, and S-Xe (s-process nucleosynthesis). The identification of U-Xe rests primarily on the agreement of themeasured134Xe/136Xe ratio with U-Xe. This observation lends support to proposals for such a “primitive” trapped Xe component and demonstrates that at least some carbonaceous chondrite phases sampled a xenon reservoir nearly devoid of H-Xe.  相似文献   

16.
The isotopic composition of xenon from CO2 gas from the Bueyeros Field, Harding County, New Mexico (U.S.A.) has been redetermined in a brand new mass spectrometer and sample system into which no previous sample had ever been inserted except for small calibration samples of air. The large excess found for129Xe agrees perfectly with earlier work on this sample and thus can in no way be attributed to meteoritic contamination of the measuring systems. An important constraint on the thermal history of the Earth implied by this result is valid as far as the experimental observations are concerned.  相似文献   

17.
Xenon isotopic analyses by stepwise heating are presented for two neutron-irradiated chondrites, Arapahoe (L5) and Bjurböle (L4). The iodine-xenon formation age of Arapahoe is the oldest yet observed, 9.9 ± 0.8 m.y. before that of Bjurböle. It is thus unlikely that younger ages found in carbonaceous chondrite magnetite record the condensation of the solar nebula. The composition of trapped xenon in Arapahoe is normal except for a deficiency of129Xe, where we infer 129/Xe132Xe= 0.56 ? 0.04, well below the apparent primordial solar system value. This need not conflict with higher values in other metamorphosed meteorites since growth of129Xe from decay of129I in xenon-depleted environments can be substantial. The contrast with apparent average solar system composition cannot be easily explained, however, since there is no way to generate one composition from the other. The simplest way to achieve low129Xe seems to be to suppose that before decay to129Xe r-process production at mass 129 condensed into dust as129I, and that Arapahoe's parent body formed in a region of the solar system substantially depleted of this dust before any isotopic homogenization by vaporization of the remaining dust. Arapahoe is not unique in having trapped129Xe-deficient xenon, nor in any other respect yet observed, so some such history evidently characterizes major groups of meteorites.  相似文献   

18.
The relationships between the major terrestrial volatile reservoirs are explored by resolving the different components in the Xe isotope signatures displayed by Harding County and Caroline CO2 well gases and mid-ocean ridge basalts (MORB). For the nonradiogenic isotopes, there is evidence for the presence of components enhanced in the light 124–128Xe/130Xe isotope ratios with respect to the terrestrial atmosphere. The observation of small but significant elevations of these ratios in the MORB and well gas reservoirs means that the nonradiogenic Xe in the atmosphere cannot be the primordial base composition in the mantle. The presence of solar-like components, for example U–Xe, solar wind Xe, or both, is required.For radiogenic Xe generated by decay of short-lived 129I and 244Pu, the 129Xerad/136Xe244 ratios are indistinguishable in MORB and the present atmosphere, but differ by approximately an order of magnitude between the MORB and well gas sources. Correspondence of these ratios in MORB and the atmosphere within the relatively small uncertainties found here significantly constrains possible mantle degassing scenarios. The widely held view that substantial early degassing of 129Xerad and 136Xe244 from the MORB reservoir to the atmosphere occurred and then ended while 129I was still alive is incompatible with equal ratios, and so is not a possible explanation for observed elevations of 129Xe/130Xe in MORB compared to the atmosphere. Detailed degassing chronologies constructed from the isotopic composition of MORB Xe are therefore questionable.If the present estimate for the uranium/iodine ratio in the bulk silicate Earth (BSE) is taken to apply to all interior volatile reservoirs, the differing 129Xerad/136Xe244 ratios in MORB and the well gases point to two episodes of major mantle degassing, presumably driven by giant impacts, respectively  20–50 Ma and  95–100 Ma after solar system origin assuming current values for initial 129I/127I and 244Pu/238U. The earlier time range, for degassing of the well gas source, spans Hf–W calculations for the timing of a moon-forming impact. The second, later impact further outgassed the upper mantle and MORB source. A single event that degassed both the MORB and gas well reservoirs at the time of the moon-forming collision would be compatible with their distinct 129Xerad/136Xe244 ratios only if the post-impact iodine abundance in the MORB reservoir was about an order of magnitude lower than current estimates. In either case, such late dates require large early losses of noble gases, so that initial inventories acquired throughout the Earth must have been substantially higher.The much larger 129Xerad/136Xe244 ratio in the well gases compared to MORB requires that these two Xe components evolve from separate interior reservoirs that have been effectively isolated from each other for most of the age of the planet, but are now seen within the upper mantle. These reservoirs have maintained distinct Xe isotope signatures despite having similar Ne isotope compositions that reflect similar degassing histories. This suggests that the light noble gas and radiogenic Xe isotopes are decoupled, with separate long-term storage of the latter. However, without data on the extent of heterogeneities within the upper mantle, this conclusion cannot be easily reconciled with geophysical observations without significant re-evaluation of present noble gas models. Nevertheless the analytic evidence that two different values of 129Xerad/136Xe244 exist in the Earth appears firm. If the uranium/iodine ratio is approximately uniform throughout the BSE, it follows that degassing events from separate reservoirs at different times are recorded in the currently available terrestrial Xe data.  相似文献   

19.
Fifteen submarine glasses from the East Pacific Rise (CYAMEX), the Kyushu-Palau Ridge (DSDP Leg 59) and the Nauru Basin (DSDP Leg 61) were analysed for noble gas contents and isotopic ratios. Both the East Pacific Rise and Kyushu-Palau Ridge samples showed Ne excess relative to Ar and a monotonic decrease from Xe to Ar when compared with air noble gas abundance. This characteristic noble gas abundance pattern (type 2, classified by Ozima and Alexander) is interpreted to be due to a two-stage degassing from a noble gas reservoir with originally atmospheric abundance. In the Kyushu-Palau Ridge sample, noble gases are nearly ten times more abundant than in the East Pacific Rise samples. This may be attributed to an oceanic crust contamination in the former mantle source.There is no correlation between the He content and that of the other noble gas in the CYAMEX samples. This suggests that He was derived from a larger region, independent from the other noble gases.Except where radiogenic isotopes are involved, all other noble gas isotopic ratios were indistinguishable from air noble gas isotopic ratios. The3He/4He in the East Pacific Rise shows a remarkably uniform ratio of (1.21±0.07)×10?5, while the40Ar/36Ar ranges from 700 to 5600.  相似文献   

20.
According to gas compositional and carbon isotopic measurement of 114 gas samples from the Kuqa depression, accumulation of the natural gases in the depression is dominated by hydrocarbon gases, with high gas dryness (C1/C1–4) at the middle and northern parts of the depression and low one towards east and west sides and southern part. The carbon isotopes of methane and its homologues are relatively enriched in 13C, and the distributive range of δ 13C1, δ 13C2 and δ 13C3 is ?32‰–?36‰, ?22‰–?24‰ and ?20‰–?22‰, respectively. In general, the carbon isotopes of gaseous alkanes become less negative with the increase of carbon numbers. The δ 13 \(C_{CO_2 } \) value is less than ?10‰ in the Kuqa depression, indicating its organogenic origin. The distributive range of 3He/4He ratio is within n × 10?8 and a decrease in 3He/4He ratio from north to south in the depression is observed. Based on the geochemical parameters of natural gas above, natural gas in the Kuqa depression is of characteristics of coal-type gas origin. The possible reasons for the partial reversal of stable carbon isotopes of gaseous alkanes involve the mixing of gases from one common source rock with different thermal maturity or from two separated source rock intervals of similar kerogen type, multistages accumulation of natural gas under high-temperature and over-pressure conditions, and sufficiency and diffusion of natural gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号