首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ads  Abdelaziz  Iskander  Magued  Bless  Stephan 《Acta Geotechnica》2020,15(4):815-826

Visualization of soil structure interaction during projectile penetration of clay is made possible by use of a surrogate composed of magnesium lithium phyllosilicate combined with high-speed photography and digital image correlation. A free-falling penetrator striking at 5.5 m/s simulated a projectile. Penetration resistance was constant within the resolution of the experiment; it was mainly due to the bearing resistance of the soil in contact with the nose, rather than skin friction. Bearing resistance in dynamic penetration for a hemispherical-nose rod was about 20% higher than quasi-static tests using a sphere. Bearing resistance was also about 20% higher for a hemispherical nose compared to a conical nose. Cavitation behind the nose is dependent on its shape with soils rebounding toward the projectile for conical noses but not hemispherical ones.

  相似文献   

2.
Projectile impact on soft,porous rock   总被引:1,自引:0,他引:1  
SummaryProjectile Impact on Soft, Porous Rock An experimental investigation was conducted to study the penetration phenomena associated with the normal impact of 60° conical and hemispherically-tipped cylindrical projectiles with a 6.35 mm diameter on green shale in the velocity range from 18 to 40 m/s. In addition to initial velocity, a special device measured the velocity history of the striker during penetration, and the deformation pattern of the target was obtained from grid lines inscribed on a vertical diametral section of the specimen which was reassembled by emplacement in a steel ring before testing. The results showed that the tip geometry controlled the penetration depth which was quadratically related to the initial kinetic energy. Comparison with other data using spherical strikers indicated that only the contact geometry, and not the configuration nor mass of the rest of the striker determined the indentation depth for the same initial bullet energy within the present range of impact parameters.The tests also indicated that target deformation was comprised of material compaction varying in degree from a maximum at the initial contact point towards the target interior and equivolumnial material distortion. A computational model was constructed incorporating both of these features based on an experimentalempirical relation between hydrostatic pressure and volumetric strain and two representations for the effective stress-strain relation of an elastic-perfectly plastic comportment of the material. It was found that good agreement was obtained between the observed deformation pattern and the predictions of this model when flow stress was considered to be independent of volumetric strain, but less so when this quantity was taken as a function of this strain. The model also adequately predicted the velocity history of the projectile both for the present tests and those involving spherical strikers conducted previously.With 15 Figures  相似文献   

3.
A new model for calculating the resistance to penetration into geological or geologically derived materials is proposed. We assume steady‐state flow of the target material over the penetrator. The target medium is described by a rate dependent constitutive equation that accounts for combined effects of strain rate and compaction on yielding. The wedge‐shaped penetrator is considered to be rigid. The influence of the characteristics of the penetrator/target interface, impact velocity, target mechanical properties and nose geometry on the resistance to penetration is investigated. It is found that for low to intermediate impact velocities, accounting for friction results in a blunter optimal wedge geometry for optimal penetration performance. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
陈士林  王德荣  谭可可 《岩土力学》2007,28(6):1103-1107
根据岩石(混凝土)类材料在射弹侵彻时所产生的变形和破坏现象,考虑靶体材料的可压缩性,建立靶体材料变形的数学模型,得出射弹在靶体中侵彻时所受的阻力,再根据牛顿运动定律建立射弹的运动方程,用增量方法求解方程,得到弹体侵彻过程中的参数及侵彻深度。与经验公式相比较,说明该方法具有实用性和可靠性。  相似文献   

5.
The development of a numerical procedure for the finite element analysis of anchors dynamically penetrating into saturated soils is outlined, highlighting its unique features and capabilities. The mechanical behaviour of saturated porous media is predicted using mixture theory. An algorithm is developed for frictional contact in terms of effective normal stress. The contact formulation is based on a mortar segment-to-segment scheme, which considers the interpolation functions of the contact elements to be of order N, thus overcoming a numerical deficiency of the so-called node-to-segment (NTS) contact algorithm. The nonlinear behaviour of the solid constituent is captured by the Modified Cam Clay soil model. The soil constitutive model is also adapted so as to incorporate the dependence of clay strength on strain rate. An appropriate energy-absorbing boundary is used to eliminate possible wave reflections from the artificial mesh boundaries. To illustrate the use of the proposed computational scheme, simulations of dynamically penetrating anchors are conducted. Results are presented and discussed for the installation phase followed by ‘setup’, i.e., pore pressure dissipation and soil consolidation. The results, in particular, reveal the effects of strain rate on the generation of excess pore pressure, bearing resistance and frictional forces. The setup analyses also illustrate the pattern in which pore pressures are dissipated within the soil domain after installation. Hole closure behind a dynamic projectile is also illustrated by an example.  相似文献   

6.
以福建标准砂为材料,采用宏细观模型试验方法,分析了转速比对松砂和密砂地基中螺旋挤扩钻具成孔特性的影响。宏观上,研究了竖向阻力、扭矩和土体应力随贯入深度的变化规律;细观上,结合环氧树脂砂土固化方法与数字图像分析技术,探讨了孔周土体相对密实度变化及其组构演化规律。试验结果表明,无论松砂还是密砂,钻具贯入时的竖向阻力、扭矩及孔周土体最大径向应力均随着转速比的增加而减小;钻具贯入导致松砂地基中钻头深度和孔周土体均发生挤密,而对于密砂则均发生不同程度的体胀;无论松砂还是密砂,孔周砂土切块环向面上的接触法向各向异性程度均随着转速比的增加而减小,而转速比对其径向面上的接触法向各向异性分布影响不大。该试验结果有助于提升对螺旋挤土桩成孔过程宏细观机制的认识。  相似文献   

7.
This paper deals with the problem of T‐bar penetration. New kinematically admissible velocity fields are derived from elastic solutions of incompressible material using Airy stress function. These velocity fields are used to obtain upper bounds to collapse loads. Two particular solutions are presented, one for a rough contact surface between the T‐bar and soil and the other for a smooth contact surface. The merit of the solutions is that within the boundaries of the velocity field, the soil is required to shear compatibly and continuously. Therefore, these solutions can easily be combined with the strain path method to estimate rate and softening effects. Analysis including consideration of strain rate effect showed that the new mechanisms predict, under certain conditions, lower values than previously published upper bound solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Finite element cavity expansion analysis investigating the effect of penetration rate on piezocone tests in clay is presented. A coupled analysis was performed, in which the rate of cavity expansion was linked to the penetration rate of the cone and the cone angle, using the assumption that the deformation was wholly radial, and took place only between the cone tip and the cone shoulder. The soil was modelled using modified cam clay with two sets of parameters and varying values of overconsolidation ratio (OCR). The influence of penetration rate on the stress and pore pressure distributions was examined. For slower penetration rates, the excess pore pressure at the cone shoulder is lower since consolidation is permitted coincident with penetration. The radial profiles of post‐penetration voids ratio demonstrate that partially drained penetration is permitted by volume change in the near field, in addition to radial movement in the far field. The radial distribution of excess pore pressure after slow penetration differs from the undrained case, with a relatively low radial gradient existing at the cone face. As a result, the dissipation curves after slow penetration lag behind those following fast penetration. The cone velocity is made dimensionless by normalizing with the coefficient of consolidation and the cone diameter. ‘Backbone’ curves of normalized velocity against normalized tip resistance and excess pore pressure capturing the transition from undrained to drained penetration are derived. The normalized pore pressure backbone curve is unique, whilst the normalized tip resistance shows a small dependency on OCR. These backbone penetration curves are compared with centrifuge model piezocone tests conducted at varying rates, and subsequent dissipation tests. The numerical and experimental results suggest that the value of consolidation coefficient operative during the dissipation phase is 2–4 times higher than the virgin compression value due to changes in the operative soil stiffness, as demonstrated from the stress paths of individual soil elements. The use of multi‐rate penetration tests to deduce values of consolidation coefficient is discussed, in light of these differences. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
基于ANSYS软件模拟桩的挤入过程   总被引:2,自引:0,他引:2  
唐世栋  李阳 《岩土力学》2006,27(6):973-976
基于ANSYS软件分析了桩土之间的相互作用,模拟了桩打入时土中的应力、应变情况。通过结合ANSYS中的接触分析和生死单元,以DP材料来模拟土体,采用循环命令的方式来分析桩土接触时复杂的应力状态。模拟结果得到了圆孔扩张理论和极限平衡法的验证。  相似文献   

10.
杨鹏  蒲诃夫  宋丁豹 《岩土力学》2019,40(10):4049-4056
简单介绍了真空-堆载联合预压下饱和软土竖井地基大变形固结沉降模型(VRCS1模型),该模型能考虑大应变、材料非线性、非达西流、真空折损和竖井未打穿等因素。使用该模型对澳大利亚巴利纳支路某现场沉降进行预测,结果与现场实测数据吻合良好。基于该工程案例,讨论了分级堆载、循环荷载、真空联合堆载、上边界为等应力/等应变条件以及排水板打入深度等因素对竖井地基固结过程的影响规律。计算结果表明:分级堆载可降低土体超静孔压峰值进而改善土体稳定性;循环荷载使土体固结过程发生震荡,且土体沉降峰值迟于超静孔压峰值和荷载峰值出现;真空荷载和堆载作用机制有本质区别,真空荷载不可简单以堆载替代;上边界等应变条件下的固结速率一般快于等应力条件,工程真实条件一般介于两者之间;排水板打入深度超过0.9倍土层厚度时,再加大打入深度加速固结效果不明显。  相似文献   

11.
The objective of the present paper is to present a numerical study on the penetration performance of concrete targets with 2 different water contents. Numerical analysis has been performed by using the finite element code Abaqus/Explicit, in which a coupled elastoplastic damage model has been developed for saturated/unsaturated concrete under a wide range of confining pressures. The performance of proposed model has been firstly verified by simulating the triaxial compression tests and penetration tests realized with saturated/dry concretes. Comparisons of available experimental results and numerical simulations show that the proposed model is able to reproduce satisfactorily the mechanical behavior of saturated and dry concretes. A higher failure stress and a more important pores closing are generally obtained in dry concrete samples with respect to saturated ones. Furthermore, the main observed patterns of penetration test realized with saturated concrete targets are also satisfactorily simulated by the numerical results. Therefore, the proposed model is used to numerically predict the penetration performance of dry concrete target, and the penetration performance of dry/saturated concrete target is discussed. We observe that in dry concrete target, the penetration of projectile is strongly declined, and a smaller damage zone is created. The numerical predictions and discussions can help engineers to enhance their understandings on the influence of hydraulic conditions on structural vulnerability of concrete structures subjected to near‐field detonations or impacts.  相似文献   

12.
冲击挤密作用下土体变形机理的有限元分析   总被引:1,自引:0,他引:1  
潜孔锤冲击挤密钻进过程中土体变形机理的分析是非常复杂的,既涉及到材料非线性、几何非线性,又涉及到界面接触摩擦,属于高度非线性问题。利用有限元分析软件ANSYS初步建立了潜孔锤在土中冲击挤密钻进的有限元模型,模拟分析了钻具周围土体的应力、应变位移情况。结果表明,冲击钻进过程中钻头下方土体随压力的不断增大而发生塑性流动,产生急剧变形而破坏。钻具周围的土被重塑和扰动,土的工程性质发生了较大的变化,孔壁周围比较密实稳定。   相似文献   

13.
This paper presents a numerical model for the analysis of cone penetration in soft clay based on the finite element method. The constitutive behaviour of the soil is modelled by modifying an elastic, perfectly-plastic soil model obeying Von-Mises yield criterion to take into account the strain-softening, rate dependent behaviour of soft clay. Since this is a problem involving large soil deformations, the analysis is carried out using an Arbitrary Lagrangian Eulerian method where the quality of the mesh is preserved during penetration. The variation of cone resistance is examined with various parameters such as rigidity index of the soil, in situ stress anisotropy and roughness at the cone–soil interface, which influence the penetration resistance of the cone. A theoretical correlation has been developed incorporating these parameters and the results have been compared with previous correlations based on the cavity expansion theory, finite element method and strain path method. With the increase in strain-softening, relative brittleness of the soil increases and the penetration resistance is significantly reduced. With the rising strain-rate dependency, penetration resistance increases but this increase is independent of the degree of brittleness of the soil.  相似文献   

14.
The stress field developed in the Brazilian disc is determined assuming that the disc is under the influence of a combination of two load distributions, namely normal (radial)- and shear (frictional)-stresses, both of them acting along two finite symmetric arcs of the disc periphery. The nature of the two distributions as well as the extent of the loaded arcs are obtained from the solution of the respective contact problem according to which the disc and the jaw are considered as a system of two elastic plane bodies in contact pressed against each other. Emphasis is given to the stresses due to friction since the stress field due to the specific distribution of radial pressure is already known. It is concluded that the role of friction cannot be ignored, especially in the immediate vicinity of the contact rim. Moreover, for high surface roughness the overall transverse normal stress component in this region becomes of tensile nature indicating increased possibility of premature local cracking (taking into account the low tensile strength of the materials tested using the Brazilian disc test). On the other hand, the stress field at the disc’s center is totally insensitive to both the exact distribution of radial pressure and also to the presence or absence of friction. It is thus indicated that in case fracture in the immediate vicinity of the contact rim is by some means suppressed (reducing for example drastically the coefficient of friction) the results of the Brazilian disc test correspond, in a satisfactory manner, to those predicted by Hondros’ classic approach.  相似文献   

15.
地埋管道与土相互作用平面分析与计算方法   总被引:1,自引:0,他引:1  
刘全林 《岩土力学》2007,28(1):83-88
地埋管道上实测的土压力并不是按现行计算方法假定形状分布的,其分布形式与管土的相对刚度及施工埋设方式密切相关。为此,依据现场实测和模型试验得到的地埋管道受力特征,在平面应变条件下,采用建立的管-土相互作用分析Vlazov模型来模拟管-土之间的相互作用,考虑管道不同的埋设条件、管周的不同充填介质及管-土相互作用引起的土压力状态等情况,建立了地埋管与土相互作用平面问题的传递矩阵分析法。并设计了可视化计算机软件,实现了计算手段的创新。运用此软件对现场埋管工程作了分析计算,并与实测结果进行比较,验证了所建立的计算方法的正确性。  相似文献   

16.
针对重力式挡土墙墙后分层填土对墙身受力影响的问题,深入研究分析墙背土压力动态变化值及规律性,利用大型通用有限元分析软件ADINA,建立了平面应变单元及墙、土接触单元的有限元计算模型,并且综合考虑墙后回填土Mo-hr-Coulomb材料本构模型,初始地应力场平衡、墙后回填土分层碾压填筑,设置墙、土之间的接触受力进行有限元...  相似文献   

17.
In this paper a constitutive model for soils incorporating small strain stiffness formulated in the multilaminate framework is presented. In the multilaminate framework, the stress–strain behaviour of a material is obtained by integrating the mechanical response of an infinite number of randomly oriented planes passing through a material point. Such a procedure leads to a number of advantages in describing soil behaviour, the most significant being capture of initial and induced anisotropy due to plastic flow in a physically meaningful manner. In the past, many soil models of varying degree of refinement in the multilaminate framework have been presented by various authors. However, the issue of high initial soil stiffness in the range of very small strains and its degradation with straining, commonly referred to as ‘small strain stiffness’, has not been addressed within the multilaminate framework. In this paper, we adopt a micromechanics‐based approach to derive small strain elastic stiffness of the soil mass. Comparison of laboratory test data with results obtained from numerical simulations based on the proposed constitutive model incorporating small strain stiffness is performed to demonstrate its predictive capabilities. The model is implemented in a finite element code and numerical simulations of a deep excavation are presented with and without incorporation of small strain stiffness to demonstrate its importance in predicting profiles of deformation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
王金安  周家兴  李飞 《岩土力学》2020,41(7):2155-2167
山体滑坡是威胁天然气管道安全运营的主要地质灾害,研究适应于滑坡演化规律及覆管力学响应状态的分析方法具有重要的工程意义。为此,首先采用坡体系统(阻滑段-下滑段)总势能平衡方程,即拉格朗日变分方程,并基于最小势能原理,获得坡体失稳滑移的临界条件——下滑段应变能释放量等于阻滑段破裂贯通所需要的应变能时,坡体即发生滑移,坡体内部储存的应变能转化为动能。一方面,根据滑动全过程中的岩土体颗粒与管道外壁接触关系,提出了滑坡两阶段的管道力学响应模式;另一方面,考虑岩土体颗粒的碎散度,分别构建岩质滑坡作用下管道的均匀受力模式及土质边坡管道的非均匀受力模式。鉴于此,从小尺度管土相互作用的力学响应出发,推导出岩质边坡与土质边坡滑动前后阶段的管道弹性部分受力表达式。最后,以川气东送EES244段天然气管道跨越滑坡为研究对象,建立了边坡系统总势能方程,分析出坡体的变形、失稳及滑移情况,计算出管道在不同滑动阶段的应力值,对管道的安全性进行了评价。同时,采用数值模拟的方法,从整体大尺度角度对全管段进行受力分析与安全性校核。结果表明:滑动区与未滑动区的交界面附近管道出现应力突变,滑动区内部应力小幅度增加,但整体处于安全稳定状态。因此,采用的小尺度理论计算与大尺度整体数值模拟的研究方法,对拟建管道前期设计、现役管道安全评价和后期管道维修等具有指导意义及实用价值。  相似文献   

19.
在弹丸侵彻混凝土的数值模拟过程中,材料模型及其相关参数的选取是一项关键且复杂的工作,其原因在于混凝土动力学材料模型参数众多,一般都在几十个以上,而且大多数参数无法通过试验直接获得,有些甚至没有明确的物理意义。通常的办法是通过试验确定少量参数,然后通过数值模拟计算结果反推其他模型参数。鉴于这种情况,非线性动力分析软件LS–DYNA增加了自动生成参数的功能,该成果是由Schwer等在损伤混凝土材料模型的基础上通过大量总结得到的,该特性很大程度上方便了用户在混凝土侵彻数值模拟方面的工作。利用LS–DYNA的该项功能,模拟了Forrestal的部分侵彻试验,并将计算结果同试验数据、经验公式计算结果做了对比分析。结果表明,自动生成参数功能是一种研究弹丸侵彻混凝土问题的简单而有效的办法。  相似文献   

20.
孙晓东 《探矿工程》2012,39(12):50-53
桩贯入土体产生的挤土效应问题较为复杂。利用ABAQUS软件建立了单桩贯入夹硬层土和均质土的二维轴对称有限元模型,经过分析比较,得出了单桩贯入夹硬层土体所特有的位移场及应力场的变化规律。分析表明:桩贯入夹硬层土过程中,软硬土层交界处土体水平位移变化剧烈;硬土层的存在,会使土体水平及竖向位移受到约束;夹硬层土的水平挤压应力要远大于均质土情况;与水平应力相比,竖向挤压应力在硬土层处明显偏小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号