首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
The seasonal and spatial distribution (density and biomass) of five size classes of two catfish species (Cathorops spixii and Cathorops agassizii) were studied along an estuarine ecocline to test the relative importance of the nursery function of each habitat. Seasonal vs. area interactions were significant for all size classes of both species. During the early rainy season, the middle estuary is an important nursery habitat for juveniles of both species. When environmental conditions change during the late rainy season, the C. spixii primary nursery habitat shifts to the lower estuary. During this period, juveniles of C. agassizii remain in the middle estuary. Another important ecological area is the upper estuary, which becomes a breeding, spawning and hatchery area during the late dry season for both species. The nursery function of habitats shifts according to the seasonal fluctuation of salinity and dissolved oxygen, and each species responds differently to this change.  相似文献   

2.
Freshwater pulses to subtropical estuaries often occur on time scales less than 1 week. In particular, introduction of low-level pulses are potentially important during the dry season (November–April) when freshwater is scarce. Determining potential ecological benefits of pulses requires an innovative method of data acquisition at the appropriate spatial and temporal scales. The South Florida Water Management District conducted a pilot study to assess changes in water column attributes with pulse releases to the Caloosahatchee River Estuary (CRE) from January to April 2012. An average inflow of 450 cfs was targeted for a series of freshwater pulses. This study utilized an onboard, flow-through system to record surface water temperature, salinity (S), pH, dissolved oxygen, turbidity, and in situ chlorophyll a (in situ CHL) at 5 s intervals along the 42-km length of the estuary. On each of seven research cruises, the vessel stopped at multiple stations to conduct vertical water column profiles. Salinity increased throughout the CRE as inflow decreased during the study period. Simple correlation and partial least squares regression were used to determine that the downstream locations of the S?=?10 isohaline and the maximum CHL concentration (in situ CHLmax) were positively related to inflow. While the in situ CHLmax was located 12–20 km downstream on five of the cruises, it was only a few kilometer from the estuary head on the first (1/12) and last (4/11) dates. It is possible that two circumstances related to freshwater inflow accounted for this pattern. First, water column stratification before January could have stimulated remineralization and primary production. Second, inflow ceased as water temperature increased to 26.0 °C by April to promote algal growth. Further study of the relationships among inflow, water level, flushing time, and CHL is warranted. Future efforts will examine the range of wet season discharge by incorporating a sensor for colored dissolved organic matter to fully connect inflow, salinity, submarine light, and phytoplankton attributes in the CRE.  相似文献   

3.
In southern Florida, a vast network of canals and water control structures mediate freshwater discharge into the coastal zone. Management protocol for one such canal network (C-111) is being modified in part to try to improve habitat for estuarine fish and wading birds in northeastern Florida Bay, an estuarine part of Everglades National Park. Changes in canal management could alter the spatial and temporal salinity regime in the estuary. To better predict the effect of such changes on estuarine habitat, abundances of submersed vegetation and benthic animals were sampled repeatedly at 12 stations that differed in salinity. A variety of other parameters were also measured (nutrients, light, temperature, oxygen, sediment characteristics, and others). Mean salinity among stations ranged from 11.4‰ to 33.1‰. Densities of benthic plants and animals differed among stations by several orders of magnitude. The standard deviation of salinity was the best environmental correlate with mean plant biomass and benthic animal density: less biota occurred at stations with greater fluctuations in salinity. The two stations with the least plant biomass also had the highest mean water temperatures. In a stepwise multiple regression analysis, standard deviation of salinity accounted for 59% of the variation in the logarithm of mean plant biomass among stations. For every 3‰ increase in the standard deviation, total benthic plant biomass decreased by an order of magnitude. Mean water temperature accounted for only 14% of the variation, and mean salinity was not included for lack of significance. At stations with widely fluctuating salinities, not only was biomass low, but species dominance also frequently changed. Severe fluctuation in salinity may have prevented abundant benthos by causing physiological stress that reduced growth and survival. Salinity may not have remained within the range of tolerance of any one plant species for long enough to allow the development of a substantially vegetated benthic community. Hence, gaining control over salinity fluctuation may be the key to estuarine habitat improvement through canal management in southern Florida.  相似文献   

4.
The Suwannee River watershed is one of the least developed in the eastern United States, but with increasing urbanization it is facing potential long-term alterations in freshwater flow to its estuary in the Gulf of Mexico. The purpose of this study was to develop biological indicators of oyster reef state along a natural salinity gradient in the Suwannee River estuary in order to allow the rapid assessment of the effect of changing freshwater input to this system. Percent cover and density of three size classes of living oysters, as well as the abundance of several predominant reef-associated invertebrates, were measured along a broad salinity gradient in the estuary and were correlated with salinity estimates from a long-term database for the preceding 12–24 mo. All eastern oyster,Crassostrea virginica, parameters (percent cover and density of three size classes) were significantly and negatively related to salinity. Data from samples collected near the lower intertidal were more closely dependent upon salinity than were samples from the higher intertidal at the same sites. Salinity differences were most closely reflected in differences in total oyster cover. This relationship corresponded with a general decline in oyster habitat with increasing distance from the mouth of the Suwannee River. Species richness was significantly and positively correlated with allC. virginica parameters (percent cover and density of three size classes), but the relationship explained only about half the variability. Density data of the hooked mussel,Ischadium recurvum, and a mud crab,Eurypanopeus depressus, were positively and strongly correlated withC. virginica parameters, likely reflecting the abundance of habitat provided byC. virginica shells. All of the biological indicators measured responded similarly along the salinity gradient, indicating they provide reliable indices of the effect of changing salinities in the Suwannee River estuary over the previous 1 or 2 yr. Some areas of positive relief defined as reefs 30 years ago are no longer oyster habitat, suggesting an ongoing decline, but nearshoreC. virginica were abundant. *** DIRECT SUPPORT *** A02BY003 00002  相似文献   

5.
Restoration of Florida’s Everglades requires scientifically supportable hydrologic targets. This study establishes a restoration baseline by developing a method to simulate hydrologic and salinity conditions prior to anthropogenic changes. The method couples paleoecologic data on long-term historic ecosystem conditions with statistical models derived from observed meteorologic and hydrologic data that provide seasonal and annual variation. Results indicate that pre-drainage freshwater levels and hydroperiods in major sloughs of the Everglades were about 0.15 m higher and two to four times greater, respectively, on average compared to today’s values. Pre-drainage freshwater delivered to the wetlands and estuaries is estimated to be 2.5 to four times greater than the modern-day flow, and the largest deficit is during the dry season. In Florida Bay, salinity has increased between 5.3 and 20.1 with the largest differences in the areas near freshwater outflow points. These results suggest that additional freshwater flows to the Everglades are needed for restoration of the freshwater marshes of the Everglades and estuarine environment of Florida Bay, particularly near the end of the dry season.  相似文献   

6.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   

7.
Physical and chemical parameters were measured in a subtropical estuary with a blind river source in southwest Florida, United States, to assess seasonal discharge of overland flow and groundwater in hydrologic mixing. Water temperature, pH, salinity, alkalinity, dissolved inorganic carbon (DIC), δ18O, and δ13CDIC varied significantly due to seasonal rainfall and climate. Axial distribution of the physical and chemical parameters constrained by tidal conditions during sampling showed that river water at low tide was a mixture of freshwater from overland flow and saline ground-water in the wet season and mostly saline groundwater in the dry season. Relationships between salinity and temperature, δ18O, and DIC for both the dry and wet seasons showed that DIC was most sensitive to seawater mixing in the estuary as DIC changed in concentration between values measured in river water at the tidal front to the most seaward station. A salinity-δ13CDIC model was able to describe seawater mixing in the estuary for the wet season but not for the dry season because river water salinity was higher than that of seawater and the salinity gradient between seawater and river water was small. A DIC-δ13CDIC mixing model was able to describe mixing of carbon from sheet flow and river water at low tide, and river water and seawater at high tide for both wet and dry seasons. The DIC-δ13CDIC model was able to predict the seawater end member DIC for the wet season. The model was not able to predict the seawater end member DIC for the dry season data due to secondary physical and biogeochemical processes that altered estuarine DIC prior to mixing with seawater. The results of this study suggest that DIC and δ13CDIC can provide additional insights into mixing of river water and seawater in estuaries during periods where small salinity gradients between river water and seawater and higher river water salinities preclude the use of salinity-carbon models.  相似文献   

8.
The goal of this study was to use an ecosystem-based approach to consider the effect of environmental conditions on the distribution and abundance of juvenile bay whiff and southern flounder within the Aransas Bay Complex, TX, USA. Species habitat models for both species were developed using boosted regression trees. Juvenile bay whiff were associated with low temperatures (<15 °C, 20–23 °C), moderate percent dry weight of sediments (25–60 %), salinity >10, and moderate to high dissolved oxygen (6–9 mg O2/l, 10–14 mg/l). Juvenile southern flounder were associated with low temperatures (<15 °C), low percent dry weight of sediment (<25 %), seagrass habitat, shallow depths (<1.2 m), and high dissolved oxygen (>8 mg O2/l). Our results indicate that conservation measures should focus along the eastern side of Aransas Bay and the north corner of Copano Bay to protect essential fish habitat. These findings provide a valuable new tool for fisheries managers to aid in the sustainable management of bay whiff and southern flounder and provide crucial information needed to prioritize areas for habitat conservation.  相似文献   

9.
In Florida, issues related to alterations of estuarine salinity caused by freshwater withdrawal have recently gained increasing attention. We examined nekton community structure in the Suwannee River estuary (1997–2000) and investigated the relationship between environmental factors and the abundance of fisheries resources. We compared nekton community structure and environmental factors seasonally and annually using multidimensional scaling (MDS) ordination and cluster analysis and observed a strong seasonal pattern. This pattern was consistent among years and closely paralleled those for temperature and river discharge. Representative species for cold seasons includedLeiostomus xanthurus andLagodon rhomboides, and those for warm seasons includedMembras martinica andAnchoa hepsetus. Species that contributed most to the dissimilarity in community structures between wet and dry seasons were abundant and generally preferred lower salinity (e.g.,L. xanthurus, Eucinostomus spp., andMenidia spp.). A period of low freshwater inflow during the latter portion of our study coincided with both decreases and increases in the abundances of some dominant and some economically important species. We have established a baseline which will assist in measuring the effects of long-term changes in freshwater input on the nekton communities of the Suwannee River estuary, but our ability to predict these effects is still limited.  相似文献   

10.
Fluctuations in freshwater input may affect the physiology and survival of submerged aquatic vegetation (SAV) occurring in oligoaline to mesohaline estuarine regions. Controls on the distribution of the freshwater angiosperm Vallisneria americana, were investigated by transplanting ramets. Pots (3.8-1) containing ramets were distributed among four sites (upstream site [least saline], donor site, near downstream site, and far downstream site [most saline]) in the Caloosahatchee Estuary (Southwest Florida) during wet (May–August) and dry (October–February) seasons. During 2–4 mo of each season, physiological indicators were monitored, including photosynthesis, glutamine synthetase activity, and protein content in shoots, and carbohydrates and total nitrogen and carbon in shoot and subterranean tissues. Where the physical environment (light or salinity) was suboptimal, all physiological indices, except photosynthetic rate, showed similar stress responses, which ranged from a slow decline to a rapid drop in physiological function. Levels of soluble carbohydrates decreased in response to unfavorable conditions more rapidly than did insoluble carbohydrates. Shoot protein of V. americana declined prior to transplant death, suggesting that measuring protein content may provide a rapid assessment of physiological health. V. americana transplants at the low-salinity upstream site died during both wet and dry season experiments, likely in response to light limitation and/or partial burial by sediments. At the far downstream site, death occurred within 2–4 wk, and was attributable to elevated salinities (>ca. 15‰). Comparison of physiological responses with salinity and light regimes at the donor and near downstream sites suggest that light may ameliorate salinity stress. This study demonstrates that V. americana, nominally classed as a freshwater macrophyte, is capable of a remarkable degree of halotolerance.  相似文献   

11.
Rapidly growing human populations have caused heavy modifications to the watersheds of many Mediterranean climate estuaries, subjecting them to excessive nutrient enrichment and harmful macroalgal blooms. Despite these impacts, comprehensive studies in these systems are rare and comparisons between systems are lacking. We surveyed five southern California estuaries that ranged in size from 93 to 1,000 ha and incorporated differing land usages and watershed sizes. We sampled environmental variables (sediment redox potential, organic content, total nitrogen and total phosphorus, water column nitrate, ammonium, and salinity) and macroalgal cover and biomass quarterly at three locations within each estuary over 15 months to compare spatial and wet vs. dry season patterns. Maximum mean water column nitrate concentration across all estuaries ranged from 47 to 1,700 μM, showing that all estuaries were highly enriched with nitrogen, at least at some times. Mean macroalgal biomass ranged from 0 to 1,500 g wet wt m?2. However, neither nutrient concentrations nor algal biomass showed consistent seasonal patterns as maximum values occurred in different seasons in different estuaries. Three-dimensional principal components analysis followed by regression analyses confirmed that macroalgal abundance was not directly related to water or sediment N concentrations. Rather each of these southern California estuaries showed individual patterns in all measured variables, which were most likely induced by a suite of physical modifications unique to each system and its watershed.  相似文献   

12.
Passive acoustic telemetry was used to monitor the movements of cownose rays (Rhinoptera bonasus) within the Caloosahatchee River estuary in Southwest Florida. Twelve rays were tracked within the river between January 2004 and May 2005 for periods up to 234 days. Linear home range was calculated for all individuals and ranged between 0 and 18.4 km (daily) and 1 and 22.3 km (overall). Ray position within the river was compared to changing water quality parameters throughout the study. Although home range size did not increase with increasing salinity, individuals did occur farther upriver with decreasing flow rates and increasing salinity. There were no differences detected between day and night distribution patterns. Movement and presence patterns demonstrated significant use of the estuarine river over all months, indicating that cownose rays in southwest Florida may not undertake long seasonal migrations as established for other parts of their range.  相似文献   

13.
Oyster reefs provide structural habitat for resident crabs and fishes, most of which have planktonic larvae that are dependent upon transport/retention processes for successful settlement. High rates of freshwater inflow have the potential to disrupt these processes, creating spatial gaps between larval distribution and settlement habitat. To investigate whether inflow can impact subsequent recruitment to oyster reefs, densities of crab larvae and post-settlement juveniles and adults were compared in Estero Bay, Florida, over 22 months (2005–2006). Three species were selected for comparison: Petrolisthes armatus, Eurypanopeus depressus, and Rhithropanopeus harrisii. All are important members of oyster reef communities in Southwest Florida; all exhibit protracted spawning, with larvae present throughout the year; and each is distributed unevenly on reefs in different salinity regimes. Recruitment to oyster reefs was positively correlated with bay-wide larval supply at all five reefs examined. Species-specific larval connectivity to settlement sites was altered by inflow: where connectivity was enhanced by increased inflow, stock–recruitment curves were linear; where connectivity was reduced by high inflows, stock–recruitment curves were asymptotic at higher larval densities. Maximum recruit density varied by an order of magnitude among reefs. Although live oyster density was a good indicator of habitat quality in regard to crab density, it did not account for the high variability in recruit densities. Variation in recruit density at higher levels of larval supply may primarily be caused by inflow-induced variation in larval connectivity, creating an abiotic simulation of what has widely been regarded as density dependence in stock–recruitment curves.  相似文献   

14.
Spatial patterns of estuarine biota suggest that some nearshore ecosystems are functionally linked to interacting processes of the ocean, watershed, and coastal geomorphology. The classification of estuaries can therefore provide important information for distribution studies of nearshore biodiversity. However, many existing classifications are too coarse-scaled to resolve subtle environmental differences that may significantly alter biological structure. We developed an objective three-tier spatially nested classification, then conducted a case study in the Alexander Archipelago of Southeast Alaska, USA, and tested the statistical association of observed biota to changes in estuarine classes. At level 1, the coarsest scale (100–1000’s km2), we used patterns of sea surface temperature and salinity to identify marine domains. At level 2, within each marine domain, fjordal land masses were subdivided into coastal watersheds (10–100’s km2), and 17 estuary classes were identified based on similar marine exposure, river discharge, glacier volume, and snow accumulation. At level 3, the finest scale (1–10’s km2), homogeneous nearshore (depths <10 m) segments were characterized by one of 35 benthic habitat types of the ShoreZone mapping system. The aerial ShoreZone surveys and imagery also provided spatially comprehensive inventories of 19 benthic taxa. These were combined with six anadromous species for a relative measure of estuarine biodiversity. Results suggest that (1) estuaries with similar environmental attributes have similar biological communities, and (2) relative biodiversity increases predictably with increasing habitat complexity, marine exposure, and decreasing freshwater. These results have important implications for the management of ecologically sensitive estuaries.  相似文献   

15.
Bahia de la Ascension (BA) is a shallow, mangrove-fringed coastal bay connected to the Caribbean through two inlets, outlined by the Mesoamerican Barrier Reef System. This work represents an initial investigation of the relative contribution of hydrometeorological and hydrodynamic forcing on salinity variation in this lagoon. Our objective is to assess the sensitivity of the salinity in BA to fluctuations in freshwater inflow and coastal oceanography. Two field trips were undertaken during rainy and dry seasons in 2007. Surface salinity was mapped across the system and CTD deployments carried out within BA and in the sea end-member to characterize temperature, conductivity, and water level. Also, cross-sectional CTD profiles were implemented to examine vertical stratification. The water balance indicated that 16 % of rainfall over the drainage basin (DB) becomes groundwater discharge plus surface runoff into BA during dry season, while 68 % of the precipitation input to the DB is supplied through groundwater–surface runoff to the bay during rainfalls. This combined inflow showed larger fluctuations than direct rainfall and, thus, has a greater potential to alter the seasonal salinity variations within BA. The tidal signal is selectively attenuated within BA, as diurnal frequencies are more readily filtered out than semidiurnal frequencies. Mesohaline conditions in the southwest bay are associated with freshwater sources, while saline water masses in the inlet are influenced by prevalent SE winds in the region and tidal phase, establishing a strong horizontal SW-NE estuarine salinity gradient.  相似文献   

16.
The behavior of the residual water level in estuarine environment is complex due to the highly nonlinear interaction between river flow and tide and the contributions made by these two external forcing to the dynamics of the residual water level are not yet fully understood. In this study, we investigate the effect of river-tide dynamics on the temporal-spatial changes of flow in terms of residual water level in the Pearl River channel networks, which is one of the complex channel networks in the world. Making use of a nonstationary tidal harmonic analysis, the continuous time series observations of water level covering a spring-neap cycle in 1999 (representing flood season) and 2001 (representing dry season) collected from around 60 stations in the Pearl River channel networks have been used to extract the temporal-spatial changes in stage and tidal properties (including amplitudes and phases) as a function of variable freshwater discharge and ocean tide. It was shown that the averaged residual water level during the flood season (ranging 0–5 m) is one order magnitude than that during the dry season (ranging 0–0.35 m). The distribution of the residual water level clearly indicates that the Pearl River channel networks feature two sub-systems, i.e., the central part of the channel networks being river-dominated with high value of residual water level and the eastern and western sides being tide-dominated with low value of residual water level. To understand the relative importance of river flow and tide on the temporal-spatial distribution of the residual water level, an idealized model is subsequently applied to the Modaomen estuary, which debouches the largest portion of river discharge into the South China Sea. Analytical results showed that the residual water level is mainly determined by the variation of the freshwater discharge for the flood season, while it is primarily controlled by the tidal forcing for the dry season and features a typical spring-neap cycle.  相似文献   

17.
Natural patterns of freshwater delivery to the Florida Bay estuary have been disrupted by flood-control and water-supply projects. Restoration efforts are likely to alter salinity regimes and patterns of nekton distribution and abundance. Spatial and seasonal community structure differences were analyzed for small-bodied and large-bodied nekton collected by fisheries-independent monitoring from 2006 through 2009 in the northeastern basins of Florida Bay. The small-bodied nekton community was dominated by resident fish that may be indicators of ecosystem health because they spend their lives within the bay and are not directly influenced by human harvest; the large-bodied nekton community was dominated by transient and, in some cases, economically important species. Differences in community structure revealed a gradient in similarity that was associated with freshwater influence, as determined by salinity variability over the study period. These observed changes associated with salinity regimes within and between basins underscore the importance of monitoring communities before and after alterations in freshwater inflow.  相似文献   

18.
The hydrogeochemical characterization of groundwater helps to assess the trend of salinization and freshening of the groundwater. The present study was carried out to understand the lateral and vertical variation of groundwater salinity and the process of salinization and freshening of the groundwater in a coastal aquifer comprising a freshwater lens. The partially isolated unconfined aquifer selected for the present study is lying just south of the Chennai City, one of the densely populated cities on the east coast of South India. Critical problems affecting this aquifer include a thin aquifer which is connected/surrounded by saltwater on all the sides, overexploitation of the groundwater, surface impermeabilization due to increasing residential areas, and destruction of existing dune morphology by conversion of barren land to the residential area which causes a reduction in their barrier effect to seawater intrusion. The process of salinization and freshening of the groundwater was studied and monitored by using electrical resistivity survey and hydrogeochemical analysis. The vertical electrical sounding was carried out at 17 locations, and 400 water samples were collected and analyzed from 50 locations during the period from August 2008 to May 2010 for this study. The apparent resistivity values were analyzed and compared with groundwater quality to demarcate the zone of seawater intrusion. The regional flow direction of the groundwater is westward and eastward with respect to the central stretch and groundwater level ranges from 4.96 m MSL at the dune morphology to 0 m MSL along the boundary on all the sides. Base exchange index indicates that salinization trend in the northern part of the study area is due to the extensive groundwater pumping which increases the possibility of seawater intrusion. The increase of base exchange index towards southern part indicates a better groundwater quality of the aquifer due to proper land use practices. A strong trend of quality alteration is clearly visible from the base exchange index in response to the seasonal change between monsoon and dry season. In the western side, the monsoonal variation in the salinization and freshening of the groundwater was not noticed; however, the salinity is slightly higher than freshwater due to the presence of clay.  相似文献   

19.
Disruption of the natural patterns of freshwater flow into estuarine ecosystems occurred in many locations around the world beginning in the twentieth century. To effectively restore these systems, establishing a pre-alteration perspective allows managers to develop science-based restoration targets for salinity and hydrology. This paper describes a process to develop targets based on natural hydrologic functions by coupling paleoecology and regression models using the subtropical Greater Everglades Ecosystem as an example. Paleoecological investigations characterize the circa 1900 CE (pre-alteration) salinity regime in Florida Bay based on molluscan remains in sediment cores. These paleosalinity estimates are converted into time series estimates of paleo-based salinity, stage, and flow using numeric and statistical models. Model outputs are weighted using the mean square error statistic and then combined. Results indicate that, in the absence of water management, salinity in Florida Bay would be about 3 to 9 salinity units lower than current conditions. To achieve this target, upstream freshwater levels must be about 0.25 m higher than indicated by recent observed data, with increased flow inputs to Florida Bay between 2.1 and 3.7 times existing flows. This flow deficit is comparable to the average volume of water currently being diverted from the Everglades ecosystem by water management. The products (paleo-based Florida Bay salinity and upstream hydrology) provide estimates of pre-alteration hydrology and salinity that represent target restoration conditions. This method can be applied to any estuarine ecosystem with available paleoecologic data and empirical and/or model-based hydrologic data.  相似文献   

20.
The Lower Hillsborough River, Florida is a short (16 km) riverine estuary which has a dam located at its upstream end. Salinity below the dam is influenced by freshwater that flows over or through the structure. Depending on location in the estuary, the response of salinity to changes in upstream freshwater inflows is normally not instantaneous, but lags behind the freshwater release. An analytical approach and a laterally averaged two-dimensional hydrodynamic model were used to examine the response time of salinity in the Lower Hillsborough River to changes in freshwater inflows from the upstream reservoir. A series of case studies were conducted using the model to determine how salinity in the river within one kilometer below the dam would respond to changes in freshwater inflows. The model results suggest that the time lag of salinity in the river depends on whether the upstream freshwater inflows are increasing or decreasing, as well as their magnitude. While the time lag for salinity is about six to eight days for decreasing inflows, it is much shorter for increasing inflows depending on the magnitude of the flow release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号