首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catastrophic storm surge of tropical cyclone Nargis in May 2008 demonstrated Myanmar's exposure to coastal flooding. The investigation of sediments left by tropical cyclone Nargis and its predecessors is an important contribution to prepare for the impact of future tropical cyclones and tsunamis in the region, because they may extend the database for long-term hazard assessment beyond the relatively short instrumental and historical record. This study, for the first time, presents deposits of modern and historical tropical cyclones and tsunamis from the coast of Myanmar. The aim is to establish regional sedimentary characteristics that may help to identify and discriminate cyclones and tsunamis in the geological record, and to document post-depositional changes due to tropical weathering in the first years after deposition. These findings if used to interpret older deposits will extend the existing instrumental record of flooding events in Myanmar. Evaluating deposits that can be related to specific events, such as the 2006 tropical cyclone Mala and the 2004 Indian Ocean tsunami, indicates similar sedimentary characteristics for both types of sediments. Landward thinning and fining trends, littoral sediment sources and sharp lower contacts allow for the differentiation from underlying deposits, while discrimination between tropical cyclone and tsunami origin is challenging based on the applied methods. The modern analogues also demonstrate a rather low preservation potential of the sand sheets due to carbonate dissolution, formation of organic top soils, and coastal erosion. However, in coastal depressions sand sheets of sufficient thickness (>10 cm) may be preserved where the shoreline is prograding or stable. In the most seaward swale of a beach-ridge plain at the Rakhine coast, two sand sheets have been identified in addition to the deposits of 2006 tropical cyclone Mala. Based on a combination of optically stimulated luminescence, radiocarbon and 137Cs dating, the younger sand layer is related to 1982 tropical cyclone Gwa, while the older sand layer is most probably the result of an event that took place prior to 1950. Comparison with historical records indicates that the archive is only sensitive to tropical cyclones of category 4 (or higher) with landfall directly in or a few tens of kilometres north of the study area. While the presented tropical cyclone records are restricted to the last 100 years, optically stimulated luminescence ages of the beach ridges indicate that the swales landward of the one investigated in this study might provide tropical cyclone information for at least the past 700 years.  相似文献   

2.
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.  相似文献   

3.
Barrier dunes on the northern side of the Tawharanui Peninsula, north of Auckland, New Zealand, appear to have been overtopped by extreme waves that have deposited two large sand washover lobes in a back beach wetland. Present-day storm surges and storm waves are incapable of overtopping the barrier dunes. However, historical data and numerical models indicate tsunamis are amplified by resonance within the adjacent bay and Hauraki Gulf. Further, the location of nearshore reefs in close proximity to the washover lobes suggests that the interaction between tsunamis and the reefs further amplified the waves at those locations. The presence of a distinctive pumice (Loisels Pumice) within the washover deposits suggests that the deposits are associated with a 15th Century eruption from the submarine Mt Healy caldera located northeast of New Zealand.  相似文献   

4.
Four sand units deposited by tsunamis and one sand unit deposited by storm surge(s) were identified in a muddy marsh succession in a narrow coastal lowland along the Pacific coast of central Japan. Tsunamis in ad 1498, 1605, 1707 and 1854 that were related to large subduction‐zone earthquakes along the Nankai Trough, and storm surges in 1680 and/or 1699 were responsible for the deposition of these sand units. These sand units are distinguished by lithofacies, sedimentary structures, grain‐size and mineral composition, and radiocarbon ages; their ages are supported by events in local historical records. The tsunami deposits in the study area are massive or parallel‐laminated sands, with associated intraclasts, gravels, draping mud layers and, rarely, a return‐flow subunit. The storm surge deposits are devoid of these characteristics, and are composed of groups of thin, current ripple‐laminated sand layers. The differences in sedimentary structures between the tsunami and storm surge deposits are attributed to the different characteristics of tsunami and storm waves.  相似文献   

5.
《International Geology Review》2012,54(12):1462-1470
The Pacific coast of Mexico has repeatedly been exposed to destructive tsunamis. Recent studies have shown that rock magnetic methods can be a promising approach for identification of tsunami- or storm-induced deposits. We present new rock magnetic and anisotropy of magnetic susceptibility (AMS) results in order to distinguish tsunami deposits in the Ixtapa–Zihuatanejo area. The sampled, 80 cm-deep sequence is characterized by the presence of two anomalous sand beds within fine-grained coastal deposits. The lower bed is probably associated with the 14 March 1979 Petatlán earthquake (M W = 7.6), whereas the second one formed during the 21 September 1985 Mexico earthquake (M W = 8.1). Rock magnetic experiments discovered significant variations within the analysed sequence. Thermomagnetic curves reveal two types of behaviour: one in the upper part of the sequence, after the occurrence of the first tsunami, and the other in the lower part of the sequence, during that event and below. Analysis of hysteresis parameter ratios in a Day plot also allows us to distinguish two kinds of behaviour. The samples associated with the second tsunami plot in the pseudo-single-domain area. In contrast, specimens associated with the first tsunami and the time between both tsunamis display a very different trend, which can be ascribed to the production of a considerable amount of superparamagnetic grains, which might be due to pedogenic processes after the first tsunami. The studied profile is characterized by a sedimentary fabric with almost vertical minimum principal susceptibilities. The maximum susceptibility axis shows a declination angle D = 27°, suggesting a NNE flow direction which is the same for both tsunamis and normal currents. Standard AMS parameters display a significant enhancement within the transitional zone between both tsunamis. The study of rock magnetic parameters may represent a useful tool for the identification and understanding of tsunami deposits.  相似文献   

6.
中国东海、南海等近海临近琉球海沟、马尼拉海沟等俯冲带,地震频发。过去的海啸研究主要关注历史文献分析、海啸数值模拟等,据此评估中国近岸海啸灾害的历史和风险。历史时期是否引发了海啸,特别是具有特大致灾风险的大海啸记录,目前还不明确。近年来,本课题组通过对海岛、海洋沉积和海岸带及其岛屿的沉积过程、海啸遗迹和历史记录研究,阐述了确定古海啸的系列研究方法。首先通过对南海西沙群岛东岛湖泊沉积序列、大量砗磲和珊瑚块在海岛分布的特征分析,识别出距今千年的一次海啸事件。以此为标志,根据湖泊沉积结构作为识别海岛海啸沉积的特征。同时提出了确定海岛海啸发生时代的样品采集和定年方法,其中包括根据事件沉积层顶部和底部植物残体14C年龄定年和历史文献记录的印证。首次确定在过去1 300年中,南海发生过一次海啸,其发生时间为公元1076年。为了寻找更古老的海啸记录,结合对东海闽浙沿岸过去两千年海洋泥质沉积的分析,发现南海海啸在沉积序列中留下记录,但除此之外沉积记录中并无更强的扰动,因此东海在过去两千年中受到海啸的影响较小。1076年的海啸同时冲击了南海沿岸,通过对广东南澳岛考察发现,岛屿东南海岸保存着距今约1 000年的海啸沉积层,其中夹杂着宋代陶器瓷器残片。对遗迹数量变化的分析显示,岛上的文化受海啸破坏出现了长达500年的文化中断,直至明代中后期设镇之后才逐渐恢复。根据海啸层植物残体、贝壳14C测年、覆盖海啸层的海砂光释光定年以及瓷器碎片的年代鉴定了海啸的发生时代,并据此提出了海岸带古海啸沉积的定年方法。此外,不同环境下海啸沉积的特征也存在较大区别,需要结合地形、沉积物来源以及地球化学特征等多种指标进行识别。有迹象表明海南岛东侧海岸带有海啸破坏的明显证据,需要进行深入的研究。  相似文献   

7.
A layer of Mesoproterozoic tsunami deposits from the North China Craton was recently discovered and investigated in the Xingcheng area, Liaoning Province, China. They occur at the bottom of the Dahongyu Formation of the Changcheng Group (1.8–1.6 Ga). The tsunami deposits are identified based on the analysis of the sedimentary facies. They are markedly different from the normal deposits of shore‐shallow sea siliciclastics, and are characterized by rip‐up clasts, poorly sorted gravels, fining‐upward sequences, redeposited underlying materials, complex sources of underlying strata and erosional bases at the bottom of beds. They are compelling features of tsunamiites when they occur together. During the Mesoproterozoic, the Xingcheng area was in an active tectonic belt, the Yanshan Taphrogenic Trough. The origin of the tsunami was probably triggered by the earthquake, which resulted from the the activities of the Luanxian–Jianchang Fault in early Mesoproterozoic times. The deposition of tsunamiites occurred in a coastal environment and involved several stages, from the origin, propagation, inundation, and deposition to the backwash flow. The geodynamic backgrounds of the tsunami event in the North China Craton are consistent with the breakup event of the Columbia supercontinent in the Mesoproterozoic. Some events, such as tsunamis and volcanism, are all controlled by extensional rift systems and should be recognized as effects of the breakup of the Columbia supercontinent in the North China Craton. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Coastal boulder deposits and chevrons are two features whose origin have triggered controversial discussions. Boulders are often used as indicators of past tsunamis and storms, with the former interpretation in many cases preferred due to the clast size. Chevrons, defined as large parabolic sand bodies, were previously attributed to (mega-)tsunami, potentially caused by oceanic impacts, because of their dimensions, height above sea level and alignment of the central axis. This study documents that chevrons along the Quobba coast in Western Australia are parabolic dunes and not related to tsunami inundation; their age is consistent with an arid period at about 3·9 to 2·3 ka when the sea level was 1 to 2 m higher than today. The internal age distribution proves an inland migration. Weakly developed soil horizons represent phases of intermittent dune stabilization and later reactivation. The calculated velocities required for wind transport and the prevailing wind directions are consistent with on-site meteorological parameters. The boulders at Quobba are most likely to be remnants of in situ platform denudation that produces shell hash, coral clasts and boulders. An unknown portion of the boulders was certainly moved by tropical cyclones. A previously proposed tsunami origin is unsustainable because the observed features can be explained by processes other than tsunamis. Boulders were tilted during gravitative platform collapse, standing water caused dissolution of the boulder bottoms, creating ‘pseudo-rockpools’, consequently not applicable as upside-down criteria, and ages of attached encrusting organisms document their colonization at higher sea level and (sub)recent frequent inundation by wave splash during rough seas.  相似文献   

9.
The sandy deposits produced by tsunamis and liquefaction share many sedimentary features, and distinctions between the two are important in seismically active coastal zones. Both types of deposits are present in the wetlands bordering Puget Sound, where one or more earthquakes about 1100 years ago caused both tsunami flooding and sediment venting. This co‐occurrence allows an examination of the resulting deposits and a comparison with tsunami and liquefaction features of modern events. Vented sediments occur at four of five wetland field localities and tsunami deposits at two. In comparison with tsunami deposits, vented sediments in this study and from other studies tend to be thicker (although they can be thin). Vented sediments also have more variable thickness at both outcrop and map scale, are associated with injected dykes and contain clasts derived from underlying deposits. Further, vented sediments tend to contain a greater variety of sedimentary structures, and these structures vary laterally over metres. Tsunami deposits compared with vented sediments are commonly thinner, fine and thin landward more consistently, have more uniform thickness on outcrop and map scales, and have the potential of containing coarser clasts, up to boulders. For both tsunami deposits and vented sediments, the availability and grain size of source material condition the characteristics of the deposit. In the cases presented in this paper, both foraminifera and diatom assemblages within tsunami deposits and vented sediments consisted of brackish and marine species, and no distinction between processes could be made based on microfossils. In summary, this study indicates a need for more careful analysis and mapping of coastal sediments associated with earthquakes to avoid misidentification of processes and misevaluation of hazards.  相似文献   

10.
Onshore tsunami deposits may consist of inflow and backflow deposits. Grain sizes can range from clay to boulders of several metres in diameter. Grain‐size distributions reflect the mode of deposition and may be used to explore the hydrodynamic conditions of transport. The absence of unique sedimentary features identifying tsunami deposits makes it difficult in some cases to distinguish inflow from backflow deposits. On Isla Mocha off central Chile, the 27 February 2010 tsunami left behind inflow and backflow deposits of highly variable character. Tsunami inflow entrained sands, gravels and boulders in the upper shoreface, beach, and along coastal terraces. Boulders of up to 12 t were transported up to 300 m inland and 13 m above sea‐level. Thin veneers of coarse sand were found up to the maximum runup at 600 m inland and 19 m above sea‐level. Backflow re‐mobilized most of the sands and gravels deposited during inflow. The orientation of erosional structures indicates that significant volumes of sediment were entrained also during backflow. A major feature of the backflow deposits are widespread prograding fans of coarse sediment developed downcurrent of terrace steps. Fan sediments are mostly structureless but include cross‐bedding, imbrication and ripples, indicating deposition from bedload traction currents. The sediments are poorly sorted, grain sizes range between medium to coarse sand to gravel and pebbles. An assessment of the backflow transport conditions of this mixed material suggests that bedload transport at Rouse numbers >2·5 was achieved by supercritical flows, whereas deposition occurred when currents had decelerated sufficiently on the low‐gradient lower coastal plain. The sedimentary record of the February 2010 tsunami at Isla Mocha consists of backflow deposits to more than 90%. Due to the lack of sedimentary structures, many previous studies of modern tsunami sediments found that most of the detritus was deposited during inflow. This study demonstrates that an uncritical use of this assumption may lead to erroneous interpretations of palaeotsunami magnitudes and sedimentary processes if unknowingly applied to backflow deposits.  相似文献   

11.
《International Geology Review》2012,54(13):1584-1601
Tsunami deposits have been widely studied in temperate latitudes, but the intrinsic difficulties associated with tropical coastal environments, and the intensity of bioturbation in these habitats, limit the possibilities of analysing these formations. Here, we investigate the deposits on the Colima coast of Mexico, which overlies the subducting Rivera and Cocos Plates, in order to reconstruct the tsunami inundation history and related hazard. We developed a multi-proxy study aimed to recognize and date historical and palaeotsunami deposits, including historical data on the effects of a known tsunami, geomorphological mapping, stratigraphic, grain size, organic matter content, diatoms, geochemical composition, magnetic susceptibility, and anisotropy of magnetic susceptibility, together with radiometric dating (210Pb and 14C). We identified two probable tsunami deposits at Palo Verde estuary including a historical event associated with the Mw 6.9 earthquake on 22 June 1932 and a palaeotsunami most likely generated by a similar event in the fourteenth century. This work shows that it is possible to identify both historical and palaeotsunamis in the tropical environment of Mexico’s Pacific coast. These data will serve to enhance our understanding of tsunami deposits in tropical environments and of the regional tsunami hazard.  相似文献   

12.
According to the old documents, two historic tsunamis of volcanic origin attacked Hokkaido, northern Japan. They are the 1640 Komagatake event which killed more than 700 people and the 1741 Oshima-Ohshima event which killed 1467 people. In order to obtain more information of these old tsunami disasters, we studied onshore tsunami deposits associated with these events. Tsunami deposits are identified by their sedimentary structure and granulometric characteristics. We traced the 1640 and 1741 tsunami deposits showing similar features at outcrops, by making pits or trenches. Minimum runup heights of these historic tsunamis were revealed by these tsunami deposit distributions. Trench survey is one of the best way to find and study onshore paleo-tsunami deposit  相似文献   

13.
Far-field tsunami deposits observed in the Kahana Valley, O‘ahu, Hawai‘i (USA), were investigated for their organic-geochemical content. During short high-energy events, (tsunamis and storms) organic and chemical components are transported with sediment from marine to terrestrial areas. This study investigates the use of anthropogenic based organic geochemical compounds (such as polycyclic aromatic hydrocarbons, pesticides and organochlorides) as a means to identify tsunami deposits. Samples were processed by solid–liquid extraction and analyzed using gas chromatography–mass spectrometry. A total of 21 anthropogenic marker compounds were identified, of which 11 compounds were selected for detailed analysis. Although the tsunami deposits pre-date industrial activity in Hawai‘i by several hundred years, distinct changes were found in the concentrations of anthropogenic marker compounds between sandy tsunami deposits and the surrounding mud/peat layers, which may help in identifying tsunami deposits within cores. As expected, low overall concentrations of anthropogenic markers and pollutants were observed due to the lack of industrial input-sources and little anthropogenic environmental impact at the study site. This geochemical characterization of tsunami deposits shows that anthropogenic markers have significant potential as another high-resolution, multi-proxy method for identifying tsunamis in the sedimentary record.  相似文献   

14.
X-ray tomography is used to analyse the grain size and sedimentary fabric of two tsunami deposits in the Marquesas Islands (French Polynesia, Pacific Ocean) which are particularly exposed to trans-Pacific tsunamis. One site is located on the southern coast of Nuku Hiva Island (Hooumi) and the other one is on the southern coast of Hiva Oa Island (Tahauku). Results are compared with other techniques such as two-dimensional image analysis on bulk samples (particle analyser) and anisotropy of magnetic susceptibility. The sedimentary fabric is characterized through three-dimensional stacks of horizontal slices (following a vertical step of 2·5 mm along the cores), while grain-size distribution is estimated from two-dimensional vertical slices (following a step of 2 mm). Four types of fabric are distinguished: (a) moderate to high angle (15 to 75°); (b) bimodal low-angle (<15°); (c) low to high angle with at least two different orientations; and (d) dispersed fabric. The fabric geometry in a tsunami deposit is not only controlled by the characteristics of the flow itself (current strength, flow regime, etc.) but also sediment concentration, deposition rate and grain-size distribution. There is a notable correlation between unimodal high-angle fabric – type (a) – and finely-skewed grain-size distribution. The two tsunami deposits studied represent two different scenarios of inundation. As demonstrated here, X-ray tomography is an essential method for characterizing past tsunamis from their deposits. The method can be applied to many other types of sediments and sedimentary rocks.  相似文献   

15.
综述海啸沉积特征,认为岸上细粒海啸沉积物具有以下特点:(1)地层层序上向上变细、减薄;(2)水流方向的重复反向(即重复的双向水流);(3)含有撕裂的碎屑;(4)较差的分选性;(5)向陆地延伸更远;但将以上任何单一特征看成是海啸沉积的特征性依据都是不恰当的,需要将以上特征结合起来判断,才能作为海啸沉积的依据。而有关岸上巨砾的海啸或是风暴来源,至今仍争论不清,但较一致认为巨砾堤坝复合体是风暴成因。浅水碎屑海啸岩通常为夹在低能稳定状态的背景沉积粉砂—黏土层内的一套独特砂层,可以根据海啸能量的增加到衰减分为Tna—Tnd四个不同单元;而地震海啸岩通常具有震积岩—海啸岩的沉积序列;碳酸盐海啸岩则显示了与海啸入射流和回流相关的冲刷—充填结构。深海的海啸沉积作用机制仍然不清。尽管海啸传播阶段可以产生地中海A型均质岩,但深海海啸岩可能主要与海啸回流有关,如目前讨论最多的K—T撞击海啸岩。尽管目前的研究促进了对海啸的认识,但存在诸如海啸沉积机制仍然不明确,海啸沉积识别依然困难等许多问题,海啸沉积学的进一步发展将为解决这些问题提供坚实基础。  相似文献   

16.
Tsunami deposits in the geological record   总被引:2,自引:0,他引:2  
A review is presented here of tsunami deposits in the geological record. It begins with a discussion of the relationships between the processes of tsunami generation and propagation and the sedimentary responses. This is followed by a consideration of the sedimentary processes associated with the passage of tsunami waves across coastlines. Attention is also given to the sedimentary processes associated with tsunami-triggered gravity backwash flows and comparisons are made with turbidity current action. We observe that despite sedimentary evidence for recent tsunamiites, geological research on ancient tsunamis has not identified stratigraphic units associated with onshore tsunami sedimentation. Equally, it is noted that nearly all published studies of sedimentary processes associated with modern tsunamis have not considered patterns of sediment transport and deposition in the offshore zone.  相似文献   

17.
X‐ray computed microtomography is used to obtain high resolution imagery of a historical tsunami deposit in Andalusia, Spain (1755 Lisbon tsunami). The technique allows characterization of grain‐size distribution, structures, component analysis and sedimentary fabric of fine‐grained unconsolidated tsunami deposits at resolutions down to particle scale. The results are validated by comparing to data obtained using other techniques such as laser diffraction, anisotropy of magnetic susceptibility and X‐ray microfluorescence on the same deposits. Specific technical details such as sampling, scanning and image processing methods, and further improvements are addressed. The use of X‐ray computed microtomography provides new insights into the stratigraphy of the deposits and gives access to significantly more detailed view of key sedimentary features such as mudlines, rip‐up clasts, crude laminations, convolutions, floating outsized clasts and contacts between successive units. This analysis of the 1755 tsunami deposits using X‐ray computed microtomography allows the proposal of new hypotheses for the sedimentary processes forming tsunami deposits. Deposition by settling is limited and the section analysed here is dominated by a high shear stress leading to the development of traction carpets, with laminated mudlines corresponding to the basal frictional region of these carpets. The onset of the tsunami backwash is marked by a micro‐vortex resembling Kelvin–Helmoltz instabilities.  相似文献   

18.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

19.
《Sedimentary Geology》2006,183(1-2):145-156
Prehistoric depositional signatures for large-scale washover involving marine inundation events such as storms and tsunami have been the subject of considerable research over the last 15 years. Much of this research has focused on the identification of sandsheets in back-barrier environments as depositional records for extreme washover events. All these deposits must have a sediment source and, by their nature, the most likely source of sediment for washover into back-barrier environments is the barrier itself. This study identifies an erosional signature for large-scale washover from a small coastal barrier on the southeast Australian coast. A distinct lens of marine sand, up to 90 cm thick, confined vertically by peat, is found in the upper fill of a closed freshwater back-barrier lagoon sequence. This sand lens is attributed to a large-scale washover event during the last 800 years, and was possibly deposited by a tsunami. The hypothesis for this study was that any event that breached the dune system must have caused considerable geomorphic change to the dunes and hence may have left an erosional signature. Ground penetrating radar transects of the system show an erosional contact between a series of truncated pre-event dunes and several small overlying post-event dunes. This study outlines a relatively simple non-invasive method for the identification of an erosional signature for prehistoric large-scale washovers caused by storm surge, exceptionally large waves, or tsunami.  相似文献   

20.
We present the results of work on the compilation of a fuller and more comprehensive historical catalogue of earthquakes and tsunamis in the basin of the Black Sea and the Sea of Azov, an area of primary importance for the Russian Federation. In the 20th century, there were no significant tsunamis in the Black Sea; therefore, its coast was not considered tsunami-prone. A systematic search for new data sources, a revision of earlier ones, and the use of new approaches to the identification of tsunamigenic events resulted in a more than doubling of the number of known tsunamigenic events in this basin, bringing it up to 50. The total length of the new tsunami catalogue reached 3000 years, which makes it the second longest after the Mediterranean tsunami catalogue (about 4000 years). Taking into account the seismotectonic features of the Black Sea region, we processed data on historical tsunamis and analyzed the geographical and temporal distributions of their sources. For all tsunamigenic events we performed a parameterization of available information about their sources and coastal manifestations, evaluated the tsunami intensity based on the Soloviev-Imamura scale, and proposed a classification of tsunami and tsunami-like water wave disturbances based on their genesis. Tsunami run-up heights, inland penetration, and damage were estimated with regard for the newly found data. Among the identified historical events, there are devastating tsunamis with run-ups of 4-5 m, sometimes up to 6-8 m, which resulted in disastrous consequences for several ancient cities (Dioscuria, Sebastopolis, Bizone, and Panticapaeum) and many coastal settlements. Expert assessments of the most tsunami-prone areas of the coasts are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号