首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper we outlined the chaotic attractor of the precursory field evolution of the seismogenic system and its fractal dimension of the precursory time and space distribution. We developed the calculative method of reconstruction complex system dynamics from single time series and analysed the descent dimension phenomena of the precursory distribution before large earthquakes. We also showed the time-space synthesis method constructed complex system dynamics by many stations or many methodes in the seismogenic system consists of large area tectonic network. This method can describe the self-organization behavior of the system more accurately and get rid of the uncertainty and randomness caused by single station or single method. As an example, we calculated the chaotic attractor of the precursory field evolution and the fractal dimension of the precursory time and space distribution and its change tendencies before large earthquakes in Beijing-Tianjing area. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 463–469, 1993.  相似文献   

2.
Abstract

The problem of identifying and reproducing the hydrological behaviour of groundwater systems can often be set in terms of ordinary differential equations relating the inputs and outputs of their physical components under simplifying assumptions. Conceptual linear and nonlinear models described as ordinary differential equations are widely used in hydrology and can be found in several studies. Groundwater systems can be described conceptually as an interlinked reservoir model structured as a series of nonlinear tanks, so that the groundwater table can be schematized as the water level in one of the interconnected tanks. In this work, we propose a methodology for inferring the dynamics of a groundwater system response to rainfall, based on recorded time series data. The use of evolutionary techniques to infer differential equations from data in order to obtain their intrinsic phenomenological dynamics has been investigated recently by a few authors and is referred to as evolutionary modelling. A strategy named Evolutionary Polynomial Regression (EPR) has been applied to a real hydrogeological system, the shallow unconfined aquifer of Brindisi, southern Italy, for which 528 recorded monthly data over a 44-year period are available. The EPR returns a set of non-dominated models, as ordinary differential equations, reproducing the system dynamics. The choice of the representative model can be made both on the basis of its performance against a test data set and based on its incorporation of terms that actually entail physical meaning with respect to the conceptualization of the system.

Citation Doglioni, A., Mancarella, D., Simeone, V. & Giustolisi, O. (2010) Inferring groundwater system dynamics from hydrological time-series data. Hydrol. Sci. J. 55(4), 593–608.  相似文献   

3.
ABSTRACT

The scientific literature has focused on uncertainty as randomness, while limited credit has been given to what we call here the “seventh facet of uncertainty”, i.e. lack of knowledge. This paper identifies three types of lack of understanding: (i) known unknowns, which are things we know we don’t know; (ii) unknown unknowns, which are things we don’t know we don’t know; and (iii) wrong assumptions, things we think we know, but we actually don’t know. Here we discuss each of these with reference to the study of the dynamics of human–water systems, which is one of the main topics of Panta Rhei, the current scientific decade of the International Association of Hydrological Sciences (IAHS), focusing on changes in hydrology and society. In the paper, we argue that interdisciplinary studies of socio-hydrological dynamics leading to a better understanding of human–water interactions can help in coping with wrong assumptions and known unknowns. Also, being aware of the existence of unknown unknowns, and their potential capability to generate surprises or black swans, suggests the need to complement top-down approaches, based on quantitative predictions of water-related hazards, with bottom-up approaches, based on societal vulnerabilities and possibilities of failure.
Editor D. Koutsoyiannis; Associate editor S. Weijs  相似文献   

4.
ABSTRACT

There is a lack of suitable methods for creating precipitation scenarios that can be used to realistically estimate peak discharges with very low probabilities. On the one hand, existing methods are methodically questionable when it comes to physical system boundaries. On the other hand, the spatio-temporal representativeness of precipitation patterns as system input is limited. In response, this paper proposes a method of deriving spatio-temporal precipitation patterns and presents a step towards making methodically correct estimations of infrequent floods by using a worst-case approach. A Monte Carlo approach allows for the generation of a wide range of different spatio-temporal distributions of an extreme precipitation event that can be tested with a rainfall–runoff model that generates a hydrograph for each of these distributions. Out of these numerous hydrographs and their corresponding peak discharges, the physically plausible spatio-temporal distributions that lead to the highest peak discharges are identified and can eventually be used for further investigations.
Editor A. Castellarin; Associate editor E. Volpi  相似文献   

5.
ABSTRACT

The scientific literature has focused on uncertainty as randomness, while limited credit has been given to what we call here the “seventh facet of uncertainty”, i.e. lack of knowledge. This paper identifies three types of lack of understanding: (i) known unknowns, which are things we know we don’t know; (ii) unknown unknowns, which are things we don’t know we don’t know; and (iii) wrong assumptions, things we think we know, but we actually don’t know. Here we discuss each of these with reference to the study of the dynamics of human–water systems, which is one of the main topics of Panta Rhei, the current scientific decade of the International Association of Hydrological Sciences (IAHS), focusing on changes in hydrology and society. In the paper, we argue that interdisciplinary studies of socio-hydrological dynamics leading to a better understanding of human–water interactions can help in coping with wrong assumptions and known unknowns. Also, being aware of the existence of unknown unknowns, and their potential capability to generate surprises or black swans, suggests the need to complement top-down approaches, based on quantitative predictions of water-related hazards, with bottom-up approaches, based on societal vulnerabilities and possibilities of failure.
Editor D. Koutsoyiannis; Associate editor S. Weijs  相似文献   

6.
ABSTRACT

“Panta Rhei – Everything Flows” is the science plan for the International Association of Hydrological Sciences scientific decade 2013–2023. It is founded on the need for improved understanding of the mutual, two-way interactions occurring at the interface of hydrology and society, and their role in influencing future hydrologic system change. It calls for strategic research effort focused on the delivery of coupled, socio-hydrologic models. In this paper we explore and synthesize opportunities and challenges that socio-hydrology presents for data-driven modelling. We highlight the potential for a new era of collaboration between data-driven and more physically-based modellers that should improve our ability to model and manage socio-hydrologic systems. Crucially, we approach data-driven, conceptual and physical modelling paradigms as being complementary rather than competing, positioning them along a continuum of modelling approaches that reflects the relative extent to which hypotheses and/or data are available to inform the model development process.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned  相似文献   

7.
This paper discusses the analysis and modelling of the hydrological system of the basin of the Kara River, a transboundary river in Togo and Benin, as a necessary step towards sustainable water resources management. The methodological approach integrates the use of discharge parameters, flow duration curves and the lumped conceptual model IHACRES. A Sobol sensitivity analysis is performed and the model is calibrated by applying the shuffled complex evolution algorithm. Results show that discharge generation in three nested catchments of the basin is affected by landscape physical characteristics. The IHACRES model adequately simulates the rainfall–runoff dynamics in the basin with a mean modified Nash-Sutcliffe efficiency measure of 0.6. Modelling results indicate that parameters controlling rainfall transformation to effective rainfall are more sensitive than those routing the streamflow. This study provides insights into understanding the catchment’s hydrological system. Nevertheless, further investigations are required to better understand detailed runoff generation processes.
EDITOR M.C. Acreman; ASSOCIATE EDITOR N Verhoest  相似文献   

8.
Abstract

The paper analyses delineation of hydrological regional classes in the light of regional taxonomy. A brief review of terminological and methodological aspects of regional taxonomy is outlined. The analysis of identification of hydrological regional classes from the point of view of the definition of the basic spatial unit, formulation of the regional taxonomic problem and evaluation of the hydrological response of the physical regional classes is then followed. A more detailed delineation of physical regional classes and a marked separation concerning their hydrological response are achieved if the basic spatial unit is defined as a small basin. Formulation of a hydrological regionalization or regional typification by means of problems defined in regional taxonomy can remove ambiguous and inconsistent features in identifying regional classes. The physical regional classes formed for the purpose of regional flood frequency analysis are considered as regional also from the hydrological point of view only if they satisfy both conditions of intra-class similarity and of inter-class dissimilarity regarding the hydrological attributes.  相似文献   

9.
ABSTRACT

“Panta Rhei – Everything Flows” is the science plan for the International Association of Hydrological Sciences scientific decade 2013–2023. It is founded on the need for improved understanding of the mutual, two-way interactions occurring at the interface of hydrology and society, and their role in influencing future hydrologic system change. It calls for strategic research effort focused on the delivery of coupled, socio-hydrologic models. In this paper we explore and synthesize opportunities and challenges that socio-hydrology presents for data-driven modelling. We highlight the potential for a new era of collaboration between data-driven and more physically-based modellers that should improve our ability to model and manage socio-hydrologic systems. Crucially, we approach data-driven, conceptual and physical modelling paradigms as being complementary rather than competing, positioning them along a continuum of modelling approaches that reflects the relative extent to which hypotheses and/or data are available to inform the model development process.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned  相似文献   

10.
ABSTRACT

From ancient times dice have been used to denote randomness. A dice throw experiment is set up in order to examine the predictability of the die orientation through time using visualization techniques. We apply and compare a deterministic-chaotic model and a stochastic model and we show that both suggest predictability in die motion that deteriorates with time, just as in hydro-meteorological processes. Namely, a die’s trajectory can be predictable for short horizons and unpredictable for long ones. Furthermore, we show that the same models can be applied, with satisfactory results, to high temporal resolution time series of rainfall intensity and wind speed magnitude, occurring during mild and strong weather conditions. The difference among the experimental and two natural processes is in the time length of the high-predictability window, which is of the order of 0.1 s, 10 min and 1 h for dice, rainfall and wind processes, respectively.  相似文献   

11.
Y. R. Liu  J. Sun 《水文科学杂志》2020,65(12):2057-2071
ABSTRACT

In this study, a two-stage fuzzy-stochastic factorial analysis (TFFA) method is developed and applied to the Vakhsh watershed (upper reaches of Aral Sea basin, Central Asia) for daily streamflow simulation. TFFA has advantages in identifying the major parameters that have important individual and interactive effects on model outputs, as well as assessing multiple uncertainties resulting from randomness and vagueness characteristics of model parameters. The results reveal that (a) nine major parameters (from a total of 24) have significant effects on Soil Water Assessment Tool (SWAT) simulation performance for the study watershed; and (b) snowmelt-related parameters (including snowfall temperature, threshold temperature for snowmelt and s nowmelt factor) and runoff curve number (CN2) are most sensitive parameters for the runoff generation. The results also show that the proposed TFFA method can help enhance the hydrological model’s capability for runoff simulation/prediction, particularly for in data-scarce and high-mountainous watersheds.  相似文献   

12.
In this paper, by means of the statistical analysis method of stochastic spatial point process, statistical analysis of spatial distribution of earthquakes in the large northern region of China is made. Emphasis is on the test and analysis of the complete spatial randomness, correlation of earthquake distribution in the different magnitude interval and random labeling. It is shown by the analysis that the spatial distribution of earthquakes in the large northern region is “clustered”, the distributions of earthquakes in different magnitude interval are positively correlated and can be modeled by a two-dimensional process. The results obtained in the paper can be used for the establishment of a reasonable spatial distribution model and have some application in the reasonable estimation of seismic hazard. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 129–135, 1993.  相似文献   

13.
Abstract

An artificial neural network, mid- to long-term runoff forecasting model of the Nenjiang basin was established by deciding predictors using the physical analysis method, combined with long-term hydrological and meteorological information. The forecasting model was gradually improved while considering physical factors, such as the main flood season and non-flood season by stage, runoff sources and hydrological processes. The average relative errors in the simulation tests of the prediction model were 0.33 in the main flood season and 0.26 in the non-flood season, indicating that the prediction accuracy during the non-flood season was greater than that in the main flood season. Based on these standards, forecasting accuracy evaluation was conducted by comparing forecasting results with actual conditions: for 2001 to 2003 data, the pass rate of forecasting in the main flood season was 50%, while it was 93% in the non-flood season; for 2001–2010, the respective values were 45% and 72%. The accuracy of prediction was found to decrease as the length of record increases.

Editor D. Koutsoyiannis, Associate editor A. Viglione

Citation Li, H.-Y. Tian, L., Wu, Y., and Xie, M., 2013. Improvement of mid- to long-term runoff forecasting based on physical causes: application in Nenjiang basin, China. Hydrological Sciences Journal, 58 (7), 1414–1422.  相似文献   

14.
Abstract

An aquifer can be used not only as water source but also as a regulating reservoir linked to a water supply system, planning the operation of such reservoirs calls for a good knowledge of the characteristics and limitations of the aquifer, an estimate of its natural replenishment and outflows, as weil as the determination of a programme for pumping and artificial recharge.

A limestone aquifer of karstic nature, heavily exploited and artificially recharged, has been studied recently with respect to its storage capacity and responses to a planned scheme of operations established for the national water supply systems.

The physical characteristics of this aquifer, its inflows, outflows and dynamic behaviour, were first determined by geological and hydrological investigations. The dynamic model obtained was then verified and improved by use of a resistor-capacitor electric analog constructed for this purpose. Later on, several operational alternatives were tested on the same analog. An optimization analysis was performed on a simplified single cell model representing the aquifer system. The methodology of such integrational operation is discussed in light of the results obtained.  相似文献   

15.
A system identification approach can be incorporated in groundwater time series analysis, revealing information concerning the local hydrogeological situation. The aim of this work was to analyse water table fluctuations in an outcrop area of the Guarani Aquifer System (GAS) in Brotas/SP, Brazil, using data from a groundwater monitoring network. The water table dynamic was modelled using continuous time series models that reference the hydrogeological system upon which they operate. The model’s climatological inputs of precipitation and evapotranspiration generate impulse response (IR) functions with parameters that can be related to the physical conditions concerning the hydrological processes involved. The interpretation of the model parameters from two sets of monitoring wells selected at different land-use sites is presented, exemplifying the effect of different water table depths and the distance to the nearest drainage location. Systematic trends of water table depths were also identified from model parameters at specific periods and related to plant development, crop harvest and land-use changes.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR L. Ruiz  相似文献   

16.
Abstract

The changes in groundwater quality that result from man's activities are reviewed. This paper considers the various geochemical reactions, the biochemical processes and the physical processes that take place as well as the sources of pollution. Suggestions are made for future research and practical guidance given for avoidance of pollution of groundwater or minimizing its effects.  相似文献   

17.
Abstract

It is shown, through calculation and physical arguments, that in a smoothly stratified fluid thermal diffusion plays a damping role comparable to that of viscosity only in the interior of the fluid, and not in the boundary layers.  相似文献   

18.
Abstract

We introduce a general expansion approach to obtain a fully consistent closed set of magnetohydrodynamic equations in two independent variables, which is particularly useful to describe axially symmetric, time-dependent problems with weak variation of all quantities in the radial direction. This is done by considering the hierarchy of expanded magnetofluid equations in cylindrical coordinates and equating terms with equal powers in the radial coordinate r. From geometrical considerations it is shown that the radial expansions of the pertaining physical quantities are either even series or odd series in r; this introduces a significant reduction in the number of variables and equations. The closure of the system is provided by appropriate boundary conditions. Among other possible applications, the method is relevant for the analysis of structure and dynamics of magnetic field concentrations in stellar atmospheres.  相似文献   

19.
20.
Abstract

Abstract A flood forecasting system is a crucial component in flood mitigation. For certain important large-scale reservoirs, cooperation and communication among federal, state, and local stakeholders are required when heavy flood events are encountered. The Web-based environment is emerging as a very important development and delivery platform for real-time flood forecasting systems. In this paper, the findings of a case study are presented of the development of a Web-based flood forecasting system for reservoirs using Java 2 platform Enterprise Edition (J2EE). J2EE of Sun Microsystems is chosen as the development solution for the Web-based flood forecasting system, Weblogic 6.0 of BEA as the container provider, and JBuilder 7.0 of Borland as the development tool. One of the key objectives in this project is to establish a collaborative platform for flood forecasting via Web technology in order to render hydrological models and data available to stakeholders and experts involved and thus offer an efficient medium for transferring and sharing information, knowledge and experiences among them. Compared with general Web-based query systems and traditional flood forecasting systems, the Web-based flood forecasting system is more focused on the on-line analysis of model-based forecasting of floods and provides opportunities for improving the transfer of information and knowledge from the hydrological scientists and managers to decision makers. Finally, a prototype system is used to demonstrate the system application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号