首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Relationships between weather conditions and rock fall occurrences have been acknowledged in the past, but seldom have such relationships been quantified and published. Rock falls are frequent hazards along transportation corridors through mountainous terrain, and predicting hazardous rock fall periods based on weather conditions can enhance mitigation approaches. We investigate the relationship between weather conditions and rock fall occurrences along a railway section through the Canadian Cordillera. Monthly weather-rock fall trends suggest that the seasonal variation in rock fall frequency is associated with cycles of freezing and thawing during the winter months. The intensity of precipitation and freeze–thaw cycles for different time-windows was then compared against recorded rock falls on a case-by-case approach. We found that periods when 90% of rock falls occurred could be predicted by the 3-day antecedent precipitation and freeze–thaw cycles. Some rock falls not predicted by this 3-day antecedent approach occurred during the first two weeks of spring thaw. These findings are used to propose a rock fall hazard chart, based on readily available weather data, to aid railway operators in their decision-making regarding safe operations.  相似文献   

2.
Railway alignments through the Canadian Cordillera are constantly exposed to slope instabilities. Proactive mitigation strategies have been in place for a few decades now, and instability record keeping has been recognized as an important aspect of them. Such a proactive strategy has enhanced the industry’s capacity to manage slope risks, and some sections have been recognized as critical due to the frequency of instabilities. At these locations, quantification of the risks becomes necessary. Risk analysis requires knowledge of some variables for which statistical data are scarce or not available, and elicitation of subjective probabilities is needed. A limitation of such approaches lies in the uncertainty associated to those elicited probabilities. In this paper, a quantitative risk analysis is presented for a section of railway across the Canadian Cordillera. The analysis focused on the risk to life of the freight train crews working along this section. Upper and lower bounds were elicited to cope with the uncertainties associated with this approach. A Monte Carlo simulation technique was then applied to obtain the probability distribution of the estimated risks. The risk probability distribution suggests that the risk to life of the crews is below previously published evaluation criteria and within acceptable levels. The risk assessment approach proposed focuses on providing a measure of the uncertainty associated with the estimated risk and is capable of handling distributions that cover more than two orders of magnitude.  相似文献   

3.
We evaluate rock fall hazard along the railway corridor to Jerusalem, Israel, in the Soreq and Refaim valleys. For the purpose, we use a combination of historical information on past rock fall events, field surveys aided by the interpretation of aerial photographs, and numerical rock fall modeling. Historical information indicates that on July 11, 1927 an m L 6.2 Dead-Sea transform earthquake caused rock falls in the studied area. The seismically induced rock falls damaged the railway tracks. Field observations revealed that the source area for the 1927 failures was located in the Aminadav formation, at the contact with the Moza formation. At the stratigraphic contact, rock blocks 100–101 m3 in size are formed as a result of tensile stresses and associated fracturing in the dolomite of the Aminadav formation, combined with continuous creep of the blocks on the marl of the underlying Moza formation. We use topographical, geological, and geomorphological information to calibrate a three-dimensional numerical simulation of rock falls in the studied area. We use the results of the numerical modeling, and additional independent information, to assess rock fall hazard and the associated risk in the Soreq and Refaim valleys. Results indicate that in the studied area, rock fall risk to the railway line to Jerusalem is due primarily to Dead-Sea transform earthquakes, with m L  > 6. We identify nine sections of the railway line where rock fall risk exists, for a total length of 2.5 km. We further note that seismically induced rock falls can produce damage to the road network in the studied area, make it difficult or impossible for earthquake casualties to reach hospitals in Jerusalem. We conclude offering recommendations on how to mitigate the risk posed by earthquake-induced rock falls in the studied area.  相似文献   

4.
Four cases are studied in this assessment of how the harsh 2010 winter weather affected rail freight operations in Norway, Sweden, Switzerland and Poland and also of the reactive behaviour rail managers mobilised to reduce the adverse outcomes. The results are utilised in a fifth case assessing the proportion of freight train delays in Finland during 2008–2010 by modelling the odds for freight train delays as a function of changes in met-states on the Finnish network and weather-induced infrastructure damage. The results show that rail operators were totally unprepared to deal with the powerful and cascading effects of three harsh weather elements—long spells of low temperatures, heavy snowfalls and strong winds—which affected them concurrently and shut down large swathes of European rail infrastructure and train operations. Rail traffic disruptions spread to downstream and upstream segments of logistics channels, causing shippers and logistics operators to move freight away from rail to road transfer. As a result, railways lost market share for high-value container cargo, revenues and long-term business prospects for international freight movement. Analyses of measures employed to mitigate the immediate damage show that managers improvised their ways of handling crises rather than drew on a priori contingency, i.e. fight-back programmes and crisis management skills. Modelling the co-variation between extreme weather and freight train delays in Finland during 2008–2010 revealed that 60 % of late arrivals were related to winter weather. Furthermore, the combined effect of temperatures below ?7 °C and 10–20 cm changes in snow depth coverage from 1 month to the next explained 62 % of the variation in log odds for freight train delays. Also, it has been shown that changes in the number of days with 10–20 cm snow depth coverage explained 66 % of the variation in late train arrivals, contributing to 626 min or 10.5 additional hours’ delay. Changes in the number of days with snowfalls over 5 mm accounted for 77 % variation in late train arrivals, implying that each additional day with this snowfall could contribute to 19.5 h’ delay. Finally, the combination of increased mean number of days with 5 mm snowfall and temperature below ?20 °C explained 79 % of the variation in late arrivals, contributing to 193 min or 3.25 h’ delay. All results were significant (p = 0.00).  相似文献   

5.
Grade-separated tunnels are even more vulnerable components in high-speed railway engineering structures. The dynamic characteristics of tunnels under a train load are key indicators that influence the safe operation and durability of the entire line. In this study, with consideration of the major factors influencing grade-separated tunnels for high-speed rails, such as train speed, traffic mode, surrounding rock type, between-tunnel height, and crossing angle, a parameterized finite element model is established based on an orthogonal experimental design. In the proposed model, tensile stress (under which any vibration-induced structural damage is caused) is defined as a main evaluation index, and thus the empirical formula for each influencing factor is obtained. When the index was determined under multiple factors and at different levels, rock height between tunnels is found to be the biggest factor influencing the response of grade-separated tunnels to the vibratory load of the trains, followed by train speed, surrounding rock level, and crossing angle. Finally, based on the relevant standards for concrete stress, the zoning of grade-separated tunnels under the vibratory load of trains is established by multiple factors. Such zoning provides important theoretical references for future structural design, maintenance, and reinforcement of grade-separated tunnels for high-speed rails.  相似文献   

6.
鉴于目前城市地下铁路隧道平行、交叠的情况逐年增加,且对多列车耦合荷载作用下地表振动规律尚不清楚,本文建立了大直径盾构隧道下穿双线地铁隧道三维数值分析模型,并通过现有运行列车参数建立了刚体列车模型以及实体轨道模型。采用Hertz接触模拟了运动列车轮与钢轨的接触,通过罚接触与硬接触模拟了隧道与围岩的非线性接触,利用无限元人工边界模拟了无限半空间。使用时域显式整体分析方法模拟了编组列车在隧道内的运行并与实测地表振动加速度结果进行了对比,结果表明本文建立的数值模型能够较好地反映出真实地铁列车运行时地表的振动响应。在此基础上,分析了多线隧道交汇段不同列车运行工况下地表竖向加速度的时频特性以及分布规律。  相似文献   

7.
Permafrost along the Qinghai-Tibet railway is featured by abundant ground ice and high ground temperature. Under the influence of climate warming and engineering activities, the permafrost is under degradation process. The main difficulty in railway roadbed construction is how to prevent thawing settlement caused by degradation of permafrost. Therefore the proactively cooling methods based on controlling solar radiation, heat conductivity and heat convection were adopted instead of the traditional passive methods, which is simply increasing thermal resistance. The cooling methods used in the Qinghai-Tibet railway construction include sunshine-shielding roadbeds, crushed rock based roadbeds, roadbeds with rock revetments, duct-ventilated roadbeds, thermosyphon installed roadbeds and land bridges. The field monitored data show that the cooling methods are effective in protecting the underlying permafrost, the permafrost table was uplifted under the embankments and therefore the roadbed stability was guaranteed.  相似文献   

8.
邓鹏  郭林  蔡袁强  王军 《岩土力学》2015,36(Z2):148-156
目前用于轨道路堤分析计算的参数多是通过三轴试验获得,而列车荷载经过时土单元应力路径与循环三轴试验加载路径的显著差异可能导致预测失真而引发工程问题。针对某城市轨道进行了三维计算,并分析了移动列车荷载下土单元应力幅值、循环周数、主应力轴旋转的分布规律。在该基础上,采用空心圆柱循环扭剪试验对该复杂应力路径进行了模拟,研究了饱和软黏土的孔压及变形累积特性。结果表明,列车荷载经过时地基土单元大主应力将在(-90°, 90°)内发生旋转;该主应力轴旋转将显著促进软黏土孔压和应变的累积,竖向应力幅值为15 kPa时,循环扭剪试验产生的孔压值比循环三轴试验高77%,累积应变增大了近50%;随着循环应力水平提高,二者累积孔压及累积应变的差值还会进一步增大,甚至出现循环三轴下仅产生较小应变而循环扭剪下已破坏的本质性差异。  相似文献   

9.
为探明川藏铁路通麦?鲁朗段浅层地质结构特征,有效评估铁路沿线地质灾害风险,保障铁路设施安全运转,基于短周期密集台阵波形数据利用背景噪声层析成像技术获得了浅地表高分辨率的S波精细速度结构,并结合地质调查结果,精确判断沿线断层几何形态及活动特征.S波速度结构和地质调查结果显示沿线低速区和断层分布有很好的对应关系,断裂F1~F6较好地控制了下方低速区的几何形态.结合地质及地震资料可推断:(1)米林Ms6.9地震发震构造可能属于一条由一系列叠瓦状和背冲式断裂组成的断裂体系,该断裂体系的地震活动存在不断向北西端发育的趋势,地震危险性较高.在断裂体系北西端的拉月隧道,未来可能有较强的地震活动性.(2)嘉黎断裂南支西兴拉断裂在剖面处属于隐伏断裂,F5和F6可能都属于贡日嘎布曲分支,呈高角度W倾,强烈的壳内破碎带特征,可能与嘉黎断裂不断地高角度右旋逆冲剪切运动有关.(3)研究区密集的断裂控制着地下热流循环,高温流体的溶蚀作用加剧了构造作用中岩体的破碎程度,降低了岩体稳定性,易引发多种类型的地质灾害;因此,川藏铁路通麦?鲁朗段应配备能有效应对地质灾害的监测预警系统及应急机制,保障隧道及铁路设施的正常运转.   相似文献   

10.
安宝晟  程国栋 《冰川冻土》2013,35(5):1292-1300
青藏铁路的开通, 在加快西藏经济社会发展速度的同时, 对西藏的生态环境变化也会产生重要影响. 运用生态足迹法, 从铁路客运和货运两个方面, 计算2006-2011年青藏铁路开通带给西藏的生态足迹的变化及趋势, 探讨了青藏铁路开通对西藏生态足迹变化的影响. 铁路客运产生的生态足迹主要体现在旅游生态足迹方面, 主要包括铁路入藏游客的住宿、餐饮和购物产生的生态足迹;货运方面主要包括货物运入和运出两个方面. 结果表明: 铁路客运产生的旅游生态足迹中, 住宿比重最高, 购物次之, 餐饮最少. 总体铁路输入的旅游生态足迹仅占不考虑铁路开通时西藏总生态足迹的1%左右;而铁路货物运入的生态承载力逐年上升, 且占不考虑铁路开通时西藏总生态足迹的比重较大, 最大达到51%, 对西藏生态足迹产生重要影响;铁路开通输入的生态足迹远远小于铁路为西藏增加的生态承载力.  相似文献   

11.
Fuzzy set approaches to classification of rock masses   总被引:6,自引:0,他引:6  
A. Aydin   《Engineering Geology》2004,74(3-4):227-245
Rock mass classification is analogous to multi-feature pattern recognition problem. The objective is to assign a rock mass to one of the pre-defined classes using a given set of criteria. This process involves a number of subjective uncertainties stemming from: (a) qualitative (linguistic) criteria; (b) sharp class boundaries; (c) fixed rating (or weight) scales; and (d) variable input reliability. Fuzzy set theory enables a soft approach to account for these uncertainties by allowing the expert to participate in this process in several ways. Hence, this study was designed to investigate the earlier fuzzy rock mass classification attempts and to devise improved methodologies to utilize the theory more accurately and efficiently. As in the earlier studies, the Rock Mass Rating (RMR) system was adopted as a reference conventional classification system because of its simple linear aggregation.

The proposed classification approach is based on the concept of partial fuzzy sets representing the variable importance or recognition power of each criterion in the universal domain of rock mass quality. The method enables one to evaluate rock mass quality using any set of criteria, and it is easy to implement. To reduce uncertainties due to project- and lithology-dependent variations, partial membership functions were formulated considering shallow (<200 m) tunneling in granitic rock masses. This facilitated a detailed expression of the variations in the classification power of each criterion along the corresponding universal domains. The binary relationship tables generated using these functions were processed not to derive a single class but rather to plot criterion contribution trends (stacked area graphs) and belief surface contours, which proved to be very satisfactory in difficult decision situations. Four input scenarios were selected to demonstrate the efficiency of the proposed approach in different situations and with reference to the earlier approaches.  相似文献   


12.
The benefits of quantitative risk assessments for landslide management have been discussed and illustrated in several publications. However, there still are some challenges in its application for low-probability, high-magnitude events. These challenges are associated with the difficulties in populating our models for risk calculations, which largely require the input of expert opinion. This paper presents a quantitative risk assessment to a very slow moving rock slope within a dam reservoir in the Province of British Columbia, Canada. The assessment is focused on the risk to the population in the vicinity of the dam and the populated areas downstream. Expert opinions quantified the slope failure probabilities in the order of 10?3 to 10?1 per year for the smallest failure scenario considered and less than 10?6 for a failure of the entire slope. However, these estimations are associated with high levels of uncertainty. Our approach starts with the calculation and assessment of the magnitude and probability of the potential slope failure consequences, minimizing the uncertainties associated with estimated slope failure probabilities. Then, these consequences and failure probabilities are combined to obtain a measure of risk. The uncertainty associated with the slope failure probabilities is managed by the estimation of plausible ranges for these. The calculated risk levels are then presented as ranges of values and assessed against adopted evaluation criteria. The consequence and risk assessment of the rock slope suggest that the risk to the population exposed in the vicinity of the dam and populated areas downstream is under adequate control. The probability of large consequence scenarios is extremely low, in the order of 10?7 chance of an event causing more than 100 fatalities. We propose an observational technique to assess changes in risk levels and decide when to update the risk management approach or deploy emergency measures. The technique is focused on the detection of changes in the slope deformation patterns that would indicate an increase in the potential failure volumes or an imminent failure. It can be considered an extension to the current early warning system in place, easy to implement and enhanced with the strength of the comprehensive analysis required for a quantitative risk assessment.  相似文献   

13.
盐岩地下储气库受盐岩蠕变特性影响会产生较大的体积收缩变形,影响储气库安全稳定运行。目前对地下储气库体积稳定性分析方法和评价准则各国没有统一标准,国内主要采用数值计算的方法来评价储气库体积稳定性。以江苏金坛盐矿地下储气库体积收敛数值分析为基础,借鉴国外盐岩地下储气库稳定性评价标准,建立盐岩地下储气库体积收敛失效风险评价矩阵,采用一次二阶矩法显示功能函数分析储气库体积收敛失效概率,分析得出:储气库在长期恒定内压工况下体积收敛失效概率随内压的增大而减小;在短期调峰低压工况下体积收敛失效概率随内压的减小而增大;最小内压应保持在4.2 MPa以上。通过交变气压条件下层状盐岩地下储气库大型三维地质力学模型试验得出:储气库体积收敛变形随内压的增大而减小;短期运行最小内压应大于4.0 MPa。模型试验结果与失效概率分析结论较为相似。因此,为避免盐岩地下储气库产生体积收敛破坏,应保证调峰短期最小内压在4.0 MPa以上。  相似文献   

14.
软岩长期以来都是工程建设中重点关注的对象,在具有高地应力、高温、高水压等复杂环境特点的川藏铁路廊道更是不可忽视的难题,但目前区域软岩的发育分布特征及其工程效应还未有深入的研究.本文在铁路廊道及邻区地质填图成果的基础上,结合岩体结构调查、岩石回弹测试以及微观分析,发现缝合带对软岩发育有着明显的控制效应.取得如下认识:(1...  相似文献   

15.
Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation (R 2) and root mean square error (RMSE) of the model were calculated (R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.  相似文献   

16.
京张高铁怀来段位于怀涿、延矾盆地复合部位,盆地内土体工程地质特性的差异及隐伏断裂稳滑活动产生的地面沉降无疑会威胁京张高铁的安全运行。依据工程地质钻孔及地球物理探测资料,构建跨活动断层地基土体二维地层结构模型,通过数值模拟手段开展考虑断层效应的高铁列车动载荷对地面沉降的影响机理研究。研究表明:列车动荷载主要影响50 m深度范围内的土体,随车速增加动荷载造成的土体竖向位移降低,随车重增加竖向位移增加;在列车动荷载和断层滑移双重作用下,随深度增加,土体竖向位移以受列车动荷载影响为主转为以断层滑移影响为主,50 m以下土体竖向位移全部由断层滑移所致,且紧邻断层两侧距离相同位置上盘土体竖向位移大于下盘。   相似文献   

17.
An automated method for the calculation of P–T paths based on garnet zoning is presented and used to interpret zoning in metapelitic schist from the southern Canadian Cordillera. The approach adopted to reconstruct the P–T path is to match garnet compositions along a radial transect with predictions from thermodynamic forward models, while iteratively modifying the composition to account for fractional crystallization. The method is applied to a representative sample of garnet‐ and staurolite‐bearing schist from an amphibolite facies Barrovian belt in the southern Canadian Omineca belt. Garnet zoning in these schists is concentric and largely continuous from core to rim. Three zones are present, the first two of which coincide with sector‐zoned cores of garnet crystals. Similar zoning is developed in rocks that contain or lack staurolite, respectively, suggesting garnet growth was restricted to the initial part of the prograde P–T path prior to the development of staurolite. Growth zoning in large garnet crystals has not been significantly modified by diffusion. This interpretation is based on zoning characteristics of garnet crystals and is further supported by results of a forward model incorporating the effects of simultaneous fractional crystallization and intracrystalline diffusion. The P–T path calculated for this rock includes an initial, linear stage with a high dP/dT, and a later stage dominated by heating. The approach adopted in this study may have application to other garnet‐bearing rocks in which growth zoning is preserved.  相似文献   

18.
Summary This paper focuses on the methodology and techniques developed to characterize the rock fragments produced by blasting in an underground environment. This work formed part of an integrated approach to the optimization of blasting design at a Canadian mine. Details are given of the photographic and image analysis techniques adopted, together with data from a program of full scale, study blasts in the mine. Features of the observed fragmentation are reviewed which related to controlled variation in the blast designs, together with other factors which were observed both to influence fragmentation characteristics and to interact with loading equipment productivity.  相似文献   

19.
刘先珊 《岩土力学》2006,27(Z2):91-95
岩体饱和–非饱和渗流、应力耦合作用对工程岩体的强度和稳定性有十分重要的影响。目前对于裂隙岩体饱和渗流应力耦合的研究取得了一些进展,但在很多工程领域不能简单地采用饱和渗流分析。根据DDA力学计算和非饱和渗流计算原理,提出了新的基于DDA方法的非饱和渗流应力耦合模型。并给出了在库水位骤降工况下的边坡水力耦合算例,其计算结果显示在库水位骤降情况下:考虑水力耦合且库水位下降较快时的安全系数要小于库水位下降慢时的安全系数;考虑水力耦合的边坡稳定安全系数要小于不考虑耦合时的安全系数。仿真实验和工程应用表明其计算成果是符合实践规律的。  相似文献   

20.
红层泥岩是一种典型侏罗系沉积岩,其含有微量黏土矿物,易遇水软化、失水崩解,具有一定膨胀性,是引起兰新高速铁路路基持续上拱变形的一个重要因素,故重新判定该种土体膨胀性对高速铁路无砟轨道设计和施工具有重要意义。为此,选取等效蒙脱石含量、阳离子交换量、自由膨胀率和液限为泥岩膨胀性判别指标,通过兰新高速铁路上拱地段大量钻孔实测资料,提出了泥岩膨胀等级分级标准,采用改进层次分析法、基尼系数法和直觉模糊理论确定了判别指标组合权重,基于逼近理想解排序法(TOPSIS法)建立了泥岩膨胀性直觉模糊综合评价模型。结果表明:直觉模糊综合评价模型将泥岩膨胀性进行了定量化,克服了同一试样不同指标属于不同等级判别缺陷;室内膨胀量试验验证了膨胀等级分级标准和直觉模糊综合评价模型对兰新高铁地基泥岩适用性和准确性。研究成果对地基红层泥岩高速铁路路基长期持续上拱变形风险评估和工程控制措施提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号