首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Magnetically mediated disk outflows are a leading paradigm to explain winds and jets in a variety of astrophysical sources, but where do the fields come from? Since accretion of mean magnetic flux may be disfavored in a thin turbulent disk, and only fields generated with sufficiently large scale can escape before being shredded by turbulence, in situ field production is desirable. Nonlinear helical inverse dynamo theory can provide the desired fields for coronae and outflows. We discuss the implications for contemporary protostellar disks, where the (magneto-rotational instability (MRI)) can drive turbulence in the inner regions, and primordial protostellar disks, where gravitational instability drives the turbulence. We emphasize that helical dynamos are compatible with the magneto-rotational instability, and clarify the relationship between the two.  相似文献   

3.
We show that a steady mean-field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean-field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi-scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non-linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean-field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.  相似文献   

4.
5.
The term 'dynamo' means different things to the laboratory fusion plasma and astrophysical plasma communities. To alleviate the resulting confusion and to facilitate interdisciplinary progress, we pinpoint conceptual differences and similarities between laboratory plasma dynamos and astrophysical dynamos. We can divide dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic field against resistive decay and drive the magnetic geometry towards the lowest energy state, 2. flow-driven helical dynamos which amplify or sustain large-scale magnetic fields in an otherwise turbulent flow and 3. flow-driven non-helical dynamos which amplify fields on scales at or below the driving turbulence. We discuss how all three types occur in astrophysics whereas plasma confinement device dynamos are of the first type. Type 3 dynamos require no magnetic or kinetic helicity of any kind. Focusing on Types 1 and 2 dynamos, we show how different limits of a unified set of equations for magnetic helicity evolution reveal both types. We explicitly describe a steady-state example of a Type 1 dynamo, and three examples of Type 2 dynamos: (i) closed volume and time dependent; (ii) steady state with open boundaries; (iii) time dependent with open boundaries.  相似文献   

6.
7.
We formulate a complete system of equations of two-phase multicomponent mechanics including the relative motion of the phases, coagulation processes, phase transitions, chemical reactions, and radiation in terms of the problem of reconstructing the evolution of the protoplanetary gas-dust cloud that surrounded the proto-Sun at an early stage of its existence. These equations are intended for schematized formulations and numerical solutions of special model problems on mutually consistent modeling of the structure, dynamics, thermal regime, and chemical composition of the circumsolar disk at various stages of its evolution, in particular, the developed turbulent motions of a coagulating gas suspension that lead to the formation of a dust subdisk, its gravitational instability, and the subsequent formation and growth of planetesimals. To phenomenologically describe the turbulent flows of disk material, we perform a Favre probability-theoretical averaging of the stochastic equations of heterogeneous mechanics and derive defining relations for the turbulent flows of interphase diffusion and heat as well as for the “relative” and Reynolds stress tensors needed to close the equations of mean motion. Particular attention is given to studying the influence of the inertial effects of dust particles on the properties of turbulence in the disk, in particular, on the additional generation of turbulent energy by large particles near the equatorial plane of the proto-Sun. We develop a semiempirical method of modeling the coefficient of turbulent viscosity in a two-phase disk medium by taking into account the inverse effects of the transfer of a dispersed phase (or heat) on the growth of turbulence to model the vertically nonuniform thermohydrodynamic structure of the subdisk and its atmosphere. We analyze the possible “regime of limiting saturation” of the subdisk atmosphere by fine dust particles that is responsible for the intensification of various coagulation mechanisms in a turbulized medium. For steady motion when solid particles settle to the midplane of the disk under gravity, we analyze the parametric method of moments for solving the Smoluchowski integro-differential coagulation equation for the particle size distribution function. This method is based on the fact that the sought-for distribution function a priori belongs to a certain parametric class of distributions.  相似文献   

8.
An attempt is made to construct a phenomenological model of turbulence as a self-organization process in an open system. The representation of a turbulized continuum in the form of a thermodynamic complex consisting of two subsystems—the subsystem of averaged motion and the subsystem of turbulent chaos, which is considered, in turn, as a conglomerate of vortex structures of different space–time scales—made it possible to obtain, by methods of nonequilibrium thermodynamics, the defining relationships for the turbulent fluxes and forces that describe most comprehensively the transport and structurization processes in such a continuum. Using two interpretations of the Kolmogorov parameter (as a quantity that describes the rate of dissipation of energy into heat and as the rate of transfer of turbulent energy in the eddy cascade), the defining relationships were found for this quantity, thereby making the thermodynamic approach self-sufficient. An introduction into the model of internal parameters of the medium, which characterize the excitation of macroscopic degrees of freedom, made it possible to describe thermodynamically the Kolmogorov cascade process and to obtain a variety of kinetic equations (of the Fokker–Planck type in the configuration space) for the functions of distribution of small-scale turbulence characteristics, including the unsteady kinetic equation for the distribution of probability of dissipation of turbulent energy. As an example, a detailed derivation of such relationships is given for the case of stationary turbulence, when a tendency toward local isotropy is observed. In view of the wide occurrence of this phenomenon in nature, one might expect that the developed approach to the problem of modeling strong turbulence will find its use in astrophysical and geophysical applications.  相似文献   

9.
We consider evolution of the regular magnetic field in turbulent astrophysical jets. The observed lateral expansion of a jet is approximately described by a linear in coordinates regular velocity field (the Hubble flow). It is shown that in expanding turbulent jets with non-vanishing mean helicity of the turbulence temporal amplification and effective realignment of the regular magnetic field occurs with the field changing orientation from the transverse to the longitudinal one along the jet axis. The distance at which the realiggment occurs depends on parameters of the jet, in particular, on the power of the central source. Estimates for the jet in a weak source 3C 31 favourably agree with observations.  相似文献   

10.
The decay of kinetic helicity is studied in numerical models of forced turbulence using either an externally imposed forcing function as an inhomogeneous term in the equations or, alternatively, a term linear in the velocity giving rise to a linear instability. The externally imposed forcing function injects energy at the largest scales, giving rise to a turbulent inertial range with nearly constant energy flux while for linearly forced turbulence the spectral energy is maximum near the dissipation wavenumber. Kinetic helicity is injected once a statistically steady state is reached, but it is found to decay on a turbulent time scale regardless of the nature of the forcing and the value of the Reynolds number (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We formulate a two-stage scheme for astrophysical turbulence in the frame of a revised Kolmogorov self-similar theory, hierarchical in nature. According to this approach, graviaation is revealed to be the main source of dissipated energy supporting the turbulent cascade. Results are compared with observational data about molecular clouds in the Galaxy and with the forecastings of an intermittent model of the same authors.  相似文献   

12.
This paper considers, in the context of modeling the evolution of a protoplanetary cloud, the hydrodynamic aspects of the theory of concurrent processes of mass transfer and coagulation in a two-phase medium in the presence of shear turbulence in a differentially rotating gas–dust disk and of polydisperse solid particles suspended in a carrying flow of solid particles. The defining relations are derived for diffuse fluxes of particles of different sizes in the equations of turbulent diffusion in the gravitational field, which describe the convective transfer, turbulent mixing, and sedimentation of disperse dust grains onto the central plane of the disk, as well as their coagulation growth. A semiempirical method is developed for calculating the coefficients of turbulent viscosity and turbulent diffusion for particles of different kinds. This method takes into account the inverse effects of dust transfer on the turbulence evolution in the disk and the inertial differences between disperse solid particles. To solve rigorously the problem of the mutual influence of the turbulent mixing and coagulation kinetics in forming the gas–dust subdisk, the possible mechanisms of gravitational, turbulent, and electric coagulation in a protoplanetary disk are explored and the parametric method of moments for solving the Smoluchowski integro-differential coagulation equation for the particles' size distribution function is considered. This method takes into account the fact that this distribution belongs to a definite parametric class of distributions.  相似文献   

13.
The evolution of magnetic fields is studied using simulations of forced helical turbulence with strong imposed shear. After some initial exponential growth, the magnetic field develops a large-scale travelling wave pattern. The resulting field structure possesses magnetic helicity, which is conserved in a periodic box by the ideal magnetohydrodynamics equations and can hence only change on a resistive time-scale. This strongly constrains the growth time of the large-scale magnetic field, but less strongly constrains the length of the cycle period. Comparing this with the case without shear, the time-scale for large-scale field amplification is shortened by a factor Q , which depends on the relative importance of shear and helical turbulence, and which also controls the ratio of toroidal to poloidal field. The results of the simulations can be reproduced qualitatively and quantitatively with a mean-field α Ω-dynamo model with alpha-effect and turbulent magnetic diffusivity coefficients that are less strongly quenched than in the corresponding α 2-dynamo.  相似文献   

14.
The influence of non-thermal Dupree turbulence and the plasma shielding on the electron–ion collision is investigated in astrophysical non-thermal Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed.  相似文献   

15.
Mechanisms of nonhelical large‐scale dynamos (shear‐current dynamo and effect of homogeneous kinetic helicity fluctuations with zero mean) in a homogeneous turbulence with large‐scale shear are discussed. We have found that the shearcurrent dynamo can act even in random flows with small Reynolds numbers. However, in this case mean‐field dynamo requires small magnetic Prandtl numbers (i.e., when Pm < Pmcr < 1). The threshold in the magnetic Prandtl number, Pmcr = 0.24, is determined using second order correlation approximation (or first‐order smoothing approximation) for a background random flow with a scale‐dependent viscous correlation time τc = (νk 2)–1 (where ν is the kinematic viscosity of the fluid and k is the wave number). For turbulent flows with large Reynolds numbers shear‐current dynamo occurs for arbitrary magnetic Prandtl numbers. This dynamo effect represents a very generic mechanism for generating large‐scale magnetic fields in a broad class of astrophysical turbulent systems with large‐scale shear. On the other hand, mean‐field dynamo due to homogeneous kinetic helicity fluctuations alone in a sheared turbulence is not realistic for a broad class of astrophysical systems because it requires a very specific random forcing of kinetic helicity fluctuations that contains, e.g., low‐frequency oscillations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
J. Salmon  S. Charnoz 《Icarus》2010,209(2):771-785
Planetary rings are common in the outer Solar System but their origin and long-term evolution is still a matter of debate. It is well known that viscous spreading is a major evolutionary process for rings, as it globally redistributes the disk’s mass and angular momentum, and can lead to the disk’s loosing mass by infall onto the planet or through the Roche limit. However, describing this process is highly dependent on the model used for the viscosity. In this paper we investigate the global and long-term viscous evolution of a circumplanetary disk. We have developed a simple 1D numerical code, but we use a physically realistic viscosity model derived from N-body simulations (Daisaka et al., 2001), and dependent on the disk’s local properties (surface mass density, particle size, distance to the planet). Particularly, we include the effects of gravitational instabilities (wakes) that importantly enhance the disk’s viscosity. This method allows to study the global evolution of the disk over the age of the Solar System.Common estimates of the disk’s spreading time-scales with constant viscosity significantly underestimate the rings’ lifetime. We show that, with a realistic viscosity model, an initially narrow ring undergoes two successive evolutionary stages: (1) a transient rapid spreading when the disk is self-gravitating, with the formation of a density peak inward and an outer region marginally gravitationally stable, and with an emptying time-scale proportional to (where M0 is the disk’s initial mass), (2) an asymptotic regime where the spreading rate continuously slows down as larger parts of the disk become non-self-gravitating due to the decrease of the surface density, until the disk becomes completely non-self-gravitating. At this point its evolution dramatically slows down, with an emptying time-scale proportional to 1/M0, which significantly increases the disk’s lifetime compared to the case with constant viscosity. We show also that the disk’s width scales like t1/4 with the realistic viscosity model, while it scales like t1/2 in the case of constant viscosity, resulting in much larger evolutionary time-scales in our model. We find however that the present shape of Saturn’s rings looks like a 100 million-years old disk in our simulations. Concerning Jupiter’s, Uranus’ and Neptune’s rings that are faint today, it is not likely that they were much more massive in the past and lost most of their mass due to viscous spreading alone.  相似文献   

17.
The analysis of the transition from the large-scale fluid regime to the short-scale kinetic range of wavelengths in the development of the turbulent cascade of energy is nowadays subject of fervent discussion in the space plasmas scientific community. We make use of Hybrid Vlasov-Maxwell simulations where the full kinetic dynamics of ions is taken into account, while electrons are treated as a fluid. We investigate the development of turbulence in the solar wind, in 1D-3V phase space configuration and in the frequency range across the ion cyclotron frequency. These simulations allow for the analysis of the role of kinetic effects in the short-scale region of the energy spectra in the direction parallel to the background magnetic field. Our numerical results show the presence of a significant electrostatic activity at small wavelengths, triggered by the resonant interaction of ions with longitudinal waves. Our model does not allow to take into account the evolution of the turbulent spectra in the plane perpendicular to the ambient field, due to limited dimensionality in phase space. On the other hand, this model permits to isolate and study the possibility of transferring the electromagnetic large-scale energy on the small-scale kinetic electrostatic component of the spectrum. Peculiar features observed in the spacecraft data in the solar wind are qualitatively reproduced within the hybrid-Vlasov model, such as the generation of perpendicular temperature anisotropy and accelerated longitudinal beams of ions in the distribution of particle velocities as well as the appearance of a marked peak of electrostatic activity in the short-scale termination of the turbulent spectra.  相似文献   

18.
This paper considers the modern approach to the thermodynamic modeling of developed turbulent flows of a compressible fluid based on the systematic application of the formalism of extended irreversible thermodynamics (EIT) that goes beyond the local equilibrium hypothesis, which is an inseparable attribute of classical nonequilibrium thermodynamics (CNT). In addition to the classical thermodynamic variables, EIT introduces new state parameters—dissipative flows and the means to obtain the respective evolutionary equations consistent with the second law of thermodynamics. The paper presents a detailed discussion of a number of physical and mathematical postulates and assumptions used to build a thermodynamic model of turbulence. A turbulized liquid is treated as an indiscrete continuum consisting of two thermodynamic sub-systems: an averaged motion subsystem and a turbulent chaos subsystem, where turbulent chaos is understood as a conglomerate of small-scale vortex bodies. Under the above formalism, this representation enables the construction of new models of continual mechanics to derive cause-and-effect differential equations for turbulent heat and impulse transfer, which describe, together with the averaged conservations laws, turbulent flows with transverse shear. Unlike gradient (noncausal) relationships for turbulent flows, these differential equations can be used to investigate both hereditary phenomena, i.e., phenomena with history or memory, and nonlocal and nonlinear effects. Thus, within EIT, the second-order turbulence models underlying the so-called invariant modeling of developed turbulence get a thermodynamic explanation. Since shear turbulent flows are widespread in nature, one can expect the given modification of the earlier developed thermodynamic approach to developed turbulence modeling (see Kolesnichenko, 1980; 1998; 2002–2004; Kolesnichenko and Marov, 1985; Kolesnichenko and Marov, 2009) to be used in research on a broad class of dissipative phenomena in various astro- and geophysical applications. In particular, a major application of the proposed approach is the reconstruction of the processes in the preplanetary circumsolar disk, which might help solve the fundamental problems of stellar-planetary cosmogony.  相似文献   

19.
An accretion disk is an inevitable part of the star forming process. Recent years have witnessed dramatic progress in our understanding of how turbulence arises and transports angular momentum in astrophysical accretion disks. The key conceptual point is that the combination of a subthermal magnetic field and outwardly decreasing differential rotation is subject to the magnetorotational instability. This rapidly generates magnetohydrodynamical (MHD) turbulence, leading to greatly enhanced angular momentum transport. Purely hydrodynamic disks, on the other hand, are stable. Disks that are too cool to couple effectively to the magnetic field will not be turbulent. Fully global three dimensional MHD simulations are now beginning to probe the properties of accretion disks from first principles.  相似文献   

20.
We use direct numerical simulations of forced MHD turbulence with a forcing function that produces two different signs of kinetic helicity in the upper and lower parts of the domain. We show that the mean flux of magnetic helicity from the small‐scale field between the two parts of the domain can be described by a Fickian diffusion law with a diffusion coefficient that is approximately independent of the magnetic Reynolds number and about one third of the estimated turbulent magnetic diffusivity. The data suggest that the turbulent diffusive magnetic helicity flux can only be expected to alleviate catastrophic quenching at Reynolds numbers of more than several thousands. We further calculate the magnetic helicity density and its flux in the domain for three different gauges. We consider the Weyl gauge, in which the electrostatic potential vanishes, the pseudo‐Lorenz gauge, where the speed of light is replaced by the sound speed, and the ‘resistive gauge’ in which the Laplacian of the magnetic vector potential acts as a resistive term. We find that, in the statistically steady state, the time‐averaged magnetic helicity density and the magnetic helicity flux are the same in all three gauges (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号