首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2003,6(2):215-229
Interpretation of satellite data in combination with regional field traverses, delineating the major structural features such as the Nagavali and Vamsadhara Shear Zones and associated fold patterns, provides a synoptic picture of the regional tectonic framework of the central part of the Eastern Ghats Mobile Belt. The complex geology of the study area can broadly be grouped into three distinct deformational events. D1 fabrics represented by near flat-lying gneissic foliations, paralleling the lithological banding are best preserved in low strain domains and are related to Middle to late Archaean thrusting (3000-2600 Ma). The second deformational event D2 is characterized by the development of shear zones and associated mylonitic fabrics and magmatism probably during 1450-850 Ma. The Pan-African thermal (500-550 Ma) overprint is restricted to shear zones in the form of reworking. Regionally, the central part of the Eastern Ghats Mobile Belt can be divided into five distinct structural domains based on structural geometry of folds, foliations and lineations. A three-dimensional block diagram of the Nagavali and Vamsadhara Shear Zones involving fold-thrust tectonics associated with westward thrusting is presented here. A correlation of Pan-African Shear Zones in adjacent continents wrapping around the Archaean Dharwar Craton in the reconstruction of Rodinia and East Gondwana supercontinent suggests an east-west convergence.  相似文献   

2.
Modelling of gravity and airborne magnetic data integrated with seismic studies suggest that the linear gravity and magnetic anomalies associated with Moyar Bhavani Shear Zone (MBSZ) and Palghat Cauvery Shear Zone (PCSZ) are caused by high density and high susceptibility rocks in upper crust which may represent mafic lower crustal rocks. This along with thick crust (44–45 km) under the Southern Granulite Terrain (SGT) indicates collision of Dharwar craton towards north and SGT towards south with N–S directed compression during 2.6–2.5 Ga. This collision may be related to contemporary collision northwards between Eastern Madagascar–Western Dharwar Craton (WDC) and Eastern Dharwar Craton (EDC). Arcuate shaped N and S-verging thrusts, MBSZ-Mettur Shear and PCSZ-Gangavalli Shear, respectively across Cauvery Shear zone system (CSZ) in SGT also suggest that the WDC, EDC and SGT might have collided almost simultaneously during 2.6–2.5 Ga due to NW–SE directed compressional forces with CSZ as central core complex in plate tectonics paradigm preserving rocks of oceanic affinity. Gravity anomalies of schist belts of WDC suggest marginal and intra arc basin setting.The gravity highs of EGFB along east coast of India and regional gravity low over East Antarctica are attributed to thrusted high-density lower crustal/upper mantle rocks at a depth of 5–6 km along W-verging thrust, which is supported by high seismic velocity and crustal thickening, respectively. It may represent a collision zone at about 1.0 Ga between India and East Antarctica. Paired gravity anomalies in the central part of Sri Lanka related to high density intrusives under western margin of Highland Complex and crustal thickening (40 km) along eastern margin of Highland Complex with several arc type magmatic rocks of about 1.0 Ga in Vijayan Complex towards the east may represent collision between them with W-verging thrust as in case of EGFB. The gravity high of Sri Lanka in the central part falls in line with that of EGFB, in case it is fitted in Gulf of Mannar and may represent the extension of this orogeny in Sri Lanka.  相似文献   

3.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   

4.
The crustal scale Shear Zone that can be traced from Gadag in the north to Mandya in the south in Dharwar Craton of southern India is considered as the boundary between two subcratonic blocks namely the Eastern Dharwar Craton (EDC) and the Western Dharwar Craton (WDC) in published literature. The present study on the Gadag-Mandya Shear Zone (GMSZ) in the Javanahalli-Hagalvadi sector has brought out a detailed account on the disposition, geometry and kinematics of the shear zone, and also the distinctive structural patterns of the two adjacent supracrustal belts, namely the Chitradurga schist belt (CSB) in the west and Javanahalli schist belt (JSB) in the east. The JSB has an overall N-S striking and gentle easterly dipping geometry, the structural features of which are indicative of a predominant noncoaxial deformation and westward transportation of the supracrustal assemblage. In contrast, deformation in the CSB, which is defined mainly by a flattening type of strain, has produced an overall verticality of the structures (dominant foliation, axial planes of regional folds).  相似文献   

5.
The Southern Granulite Terrain (SGT) is composed of high-grade granulite domain occurring to the south of Dharwar Craton (DC). The structural units of SGT show a marked change in the structural trend from the dominant north–south in DC to east–west trend in SGT and primarily consist of different crustal blocks divided by major shear zones. The Bouguer anomaly map prepared based on nearly 3900 gravity observations shows that the anomalies are predominantly negative and vary between −125 mGal and +22 mGal. The trends of the anomalies follow structural grain of the terrain and exhibit considerable variations within the charnockite bodies. Two-dimensional wavelength filtering as well as Zero Free-air based (ZFb) analysis of the Geoid-Corrected Bouguer Anomaly map of the region is found to be very useful in preparing regional gravity anomaly map and inversion of this map gave rise to crustal thicknesses of 37–44 km in the SGT. Crustal density structure along four regional gravity profiles cutting across major shear zones, lineaments, plateaus and other important geological structures bring out the following structural information. The Bavali Shear Zone extending at least up to 10 km depth is manifested as a plane separating two contrasting upper crustal blocks on both sides and the gravity high north of it reveals the presence of a high density mass at the base of the crust below Coorg. The steepness of the Moyar and Bhavani shears on either side of Nilgiri plateau indicates uplift of the plateau due to block faulting with a high density mass at the crustal base. The Bhavani Shear Zone is manifested as a steep southerly dipping plane extending to deeper levels along which alkaline and granite rocks intruded into the top crustal layer. The gravity high over Palghat gap is due to the upwarping of Moho by 1–2 km with the presence of a high density mass at intermediate crustal levels. The gravity low in Periyar plateau is due to the granite emplacement, mid-crustal interface and the thicker crust. The feeble gravity signature across the Achankovil shear characterized by sharp velocity contrast indicates that the shear is not a superficial structure but a crustal scale zone of deformation reaching up to mid-crustal level.  相似文献   

6.
Nepheline syenite plutons emplaced within the Terrane Boundary Shear Zone of the Eastern Ghats Mobile Belt west of Khariar in northwestern Orissa are marked by a well-developed magmatic fabric including magmatic foliation, mineral lineations, folds and S-C fabrics. The minerals in the plutons, namely microcline, orthoclase, albite, nepheline, hornblende, biotite and aegirine show, by and large, well-developed crystal faces and lack undulose extinction and dynamic recrystallization, suggesting a magmatic origin. The magmatic fabric of the plutons is concordant with a solid-state strain fabric of the surrounding mylonites that developed due to noncoaxial strain along the Terrane Boundary Shear Zone during thrusting of the Eastern Ghats Mobile Belt over the Bastar Craton. However, a small fraction of the minerals, more commonly from the periphery of the plutons, is overprinted by a solid state strain fabric similar to that of the host rock. This fabric is manifested by discrete shear fractures, along which the feldspars are deformed into ribbons, have undergone dynamic recrystallization and show undulose extinction and myrmekitic growth. The shear fractures and the magmatic foliations are mutually parallel to the C-fabric of the host mylonites. Coexistence of concordant solid state strain fabric and magmatic fabric has been interpreted as a transitional feature from magmatic state to subsolidus deformation of the plutons, while the nepheline syenite magma was solidifying from a crystal-melt mush state under a noncoaxial strain. This suggests the emplacement of the plutons synkinematic to thrusting along the Terrane Boundary Shear Zone. The isotopic data by earlier workers suggest emplacement of nepheline syenite at 1500 +3/−4Ma, lending support for thrusting of the mobile belt over the craton around that time.  相似文献   

7.
The composite airborne total intensity map of the Southern Granulite Terrain (SGT) at an average elevation of 7000' (≈ 2100 m) shows bands of bipolar regional magnetic anomalies parallel to the structural trends suggesting the distribution of mafic/ultramafic rocks that are controlled by regional structures/shear zones and thrusts in this region. The spectrum and the apparent susceptibility map computed from the observed airborne magnetic anomalies provide bands of high susceptibility zones in the upper crust associated with known shear zones/thrusts such as Transition Zone, Moyar-Bhavani and Palghat-Cauvery Shear Zones (MBSZ and PCSZ). The quantitative modelling of magnetic anomalies across Transition Zone, MBSZ and PCSZ suggest the presence of mafic rocks of susceptibility (1.5-4.0 × 10−3 CGS units) in upper crust from 8-10 km extending up to about 21-22 km, which may represent the level of Curie point geotherm as indicated by high upper mantle heat flow in this section.Two sets of paired gravity anomalies in SGT and their modelling with seismic constraints suggest gravity highs and lows to be caused by high density mafic rocks along Transition Zone and Cauvery Shear Zone (CSZ) in the upper crust at depth of 6-8 km and crustal thickening of 45-46 km south of them, respectively. High susceptibility and high density rocks (2.8 g/cm3) along these shear zones supported by high velocity, high conductivity and tectonic settings suggest lower crustal mafic/ultramafic granulite rocks thrusted along them. These signatures with lower crustal rocks of metamorphic ages of 2.6-2.5 Ga north of PCSZ and Neoproterozoic period (0.6-0.5 Ga) south of it suggest that the SGT represents mosaic of accreted crust due to compression and thrusting. These observations along with N-verging thrusts and dipping reflectors from Dharwar Craton to SGT suggest two stages of N-S directed compression: (i) between Dharwar Craton and northern block of SGT during 2.6-2.5 Ga with Transition Zone and Moyar Shear towards the west as thrust, and (ii) between northern and southern blocks of SGT with CSZ as collision zone and PCSZ as thrust during Neoproterozoic period (0.6-0.5 Ga). The latter event may even represent just a compressive phase without any collision related to Pan-African event. The proposed sutures in both these cases separate gravity highs and lows of paired gravity anomalies towards north and south, respectively. The magnetic anomalies and causative sources related to Moyar Shear, MBSZ and PCSZ join with those due to Transition Zone, Mettur and Gangavalli Shears in their eastern parts, respectively to form an arcuate-shaped diffused collision zone during 2.6-2.5 Ga.Most of the Proterozoic collision zones are highlands/plateaus but the CSZ also known as the Palghat Gap represents a low lying strip of 80-100 km width, which however, appears to be related to recent tectonic activities as indicated by high upper mantle heat flow and thin crust in this section. It is supported by low density, low velocity and high conductive layer under CSZ and seismic activity in this region as observed in case of passive rift valleys. They may be caused by asthenospheric upwarping along pre-existing faults/thrusts (MBSZ and PCSZ) due to plate tectonic forces after the collision of Indian and Eurasian plates since Miocene time.  相似文献   

8.
Structural mapping of the Pasupugallu pluton, an elliptical intrusive gabbro-anorthosite body, emplaced into the western contact zone between the Eastern Ghats Mobile Belt and the Archaean East Dharwar Craton, along the east coast of India, reveals concentric, helicoidal and inward dipping magmatic and/or tectonic foliations. We identify a <1 km-wide structural aureole characterized by pronounced deflection of regional structures into margin parallel direction, mylonitic foliations with S-C fabrics, sigmoidal clasts, moderately plunging stretching lineations, non-cylindrical intrafolial folds, and stretched elliptical mafic enclaves in the aureole rocks. Our results suggest that the pluton emplacement is syn-tectonic with respect to the regional ductile deformation associated with the terrane boundary shear zone at the western margin of the Eastern Ghats. We present a tectonic model for the emplacement of the pluton invoking shear-related ductile deformation, rotation and a minor component of lateral expansion of magma. The intrusive activity (1450-800 Ma) along the western margin of the Eastern Ghats can be correlated with the significant event of recurring mafic, alkaline and granitic magmatism throughout the global Grenvillian orogens associated with the continent-continent collision tectonics possibly related to the amalgamation and the breakup of the supercontinent Rodinia.  相似文献   

9.
《Gondwana Research》2011,19(4):565-582
New data from structural mapping and tectonic evaluation in the northern parts of the Eastern Ghats Mobile Belt (EGMB-north) involving the interpretation of satellite images, field traverses, critical outcrop mapping and kinematic studies of macro- as well as microstructures of the shear zone rocks together with the geometry and disposition of Gondwana basins led to, for the first time, the elucidation of post-Grenvillian structural architecture of the terrane. This helps in assessing the sequence of successive tectonothermal events that were responsible for the origin and progressive evolution of the Permo-Carboniferous coal bearing sediments along the Mahanadi rift that forms significant in the reconstruction models of east Gondwana.The composite terrane of high-grade metamorphic rocks (EGMB-north), strikes E–W in contrast to the regional NE–SW trend of the EGMB. The structural architecture obtained from this study is controlled by the boundary shear zones and associated link shear zones. The dextral kinematic displacements along the Northern Boundary Shear Zone (NBSZ) as well as the Mahanadi Shear Zone (MSZ) and Koraput–Sonapur–Rairakhol Shear Zone (KSRSZ) were derived from multi-scale field based structural observations. A N–S structural cross-section presents a crustal-scale ‘flower structure’ across the composite terrane exposing different domains displaying distinctive internal structures with widely varying different geological evolution history and strain partitioning, separated by crustal-scale shear zones. Deep seismic imaging and gravity signatures support ‘flower structure’ model. The pervasive first formed gneissic fabrics were continuously reworked and partitioned into a series of E–W, crustal-scale shear zones.The Neoproterozoic regional dextral transpressional tectonics along the shear zones and their repeated reactivation could be responsible for initiation and successive evolution of Gondwana basins and different episodes of sedimentation. Available geochronological data shows that the structural architecture presented here is post-Grenvillian, which has been repeatedly reactivated through long-lived transpressional tectonics. The composite terrane is characterized by all the typical features of an oblique convergent orogen with transpressional kinematics in the middle to lower crust. The kinematic changes from transpression to transtensional stresses were found to be associated with global geodynamics related to the transformation from Rodinia to Gondwana configuration.  相似文献   

10.
In many Precambrian provinces the understanding of the tectonic history is constrained by limited exposure and aeromagnetic data provide information below the surface cover of sediments,water,etc.and help build a tectonic model of the region.The advantage of using the aeromagnetic data is that the data set has uniform coverage and is independent of the accessibility of the region.In the present study,available reconnaissance scale aeromagnetic data over Peninsular India are analyzed to understand the magnetic signatures of the Precambrian shield and suture zones thereby throwing light on the tectonics of the region.Utilizing a combination of differential reduction to pole map,analytic signal,vertical and tilt derivative and upward continuation maps we are able to identify magnetic source distribution,tectonic elements,terrane boundaries,suture zones and metamorphic history of the region.The magnetic sources in the region are mainly related to charnockites,iron ore and alkaline intrusives.Our analysis suggests that the Chitradurga boundary shear and Sileru shear are terrane boundaries while we interpret the signatures of Palghat Cauvery and Achankovil shears to represent suture zones.Processes like metamorphism leave their signatures on the magnetic data:prograde granulites(charnockites)and retrograde eclogites are known to have high susceptibility.We fnd that charnockites intruded by alkali plutons have higher magnetization compared to the retrogressed charnockites.We interpret that the Dharwar craton to the north of isograd representing greenschist to amphibolite facies transition,has been subjected to metamorphism under low geothermal conditions.Some recent studies suggest a plate tectonic model of subductionecollisioneaccretion tectonics around the Palghat Cauvery shear zone(PCSZ).Our analysis is able to identify several west to east trending high amplitude magnetic anomalies with deep sources in the region from Palghat Cauvery shear to Achankovil shear.The magnetic high associated with PCSZ may represent the extruded high pressureeultra high temperature metamorphic belt(granulites at shallow levels and retrogressed eclogites at deeper levels)formed as a result of subduction process.The EW highs within the Madurai block can be related to the metamorphosed clastic sediments,BIF and mafc/ultramafc bodies resulting from the process of accretion.  相似文献   

11.
Zircon U–Pb ages of the Mesoproterozoic dyke swarms (Lakhna dyke swarm) at the interface between the Eastern Ghats Mobile Belt and Bastar Craton of the Indian Peninsula are reported here to decipher the tectonic evolution of the region. The dyke swarm, which is dominantly N–S in orientation, has intruded the Bastar Craton at ca. 1450 Ma. The dykes vary in composition from dolerite to trachyte and rhyolite and have been emplaced in a continental anorogenic setting. The above age puts a lower time constraint on the sedimentary sequences of the Purana basin (Khariar basin) that have been deposited unconformably over the Bastar Craton. The shale member of the Khariar basin shows evidence of synsedimentary shearing suggesting that the sedimentation probably continued up to 517 Ma, the age of shearing and overthrusting of the granulite nappes of the Eastern Ghats Mobile Belt on the Craton. Further, the compression accompanying thrusting of the nappes, uplifted the Purana basins during inversion.  相似文献   

12.
Broad-band and long period magnetotelluric measurements made at 63 locations along ~500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton(DC)and Eastern Ghat Mobile Belt(EGMB)in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick(~200 km)cratonic(highly resistive)lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the Cretaceous—Tertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin(~120 km)lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.  相似文献   

13.
The upper part of the lithosphere has been actively involved in various exogenic and endogenic processes which have left their imprint on the gravity field on the Indian Peninsula and the Himalaya. Analysis of the gravity field over the Dharwar craton shows that the greenstone belts of this craton have been formed as a result of development of deep fractures in the earth's crust during Archaean times. Precambrian mountain ranges such as the Aravallies, Vindhyans, Satpura and Eastern Ghats are located peripheral to Archaean cratons. Most of these mountain belts are characterized by gravity highs suggesting that the underlying crust is of higher than normal density. These mountain ranges with the exception of the Eastern Ghats do not appear to be locally compensated. Regional compensation seems to prevail over all these areas. Eastern Ghats ranges are also underlain by a crust of higher than normal density relative to the Dharwar and Bastar cratons and exist with a sharp contact with the cratons in the West. Isostatic compensation in the Eastern Ghats appears to have been achieved by thickening of the underlying crust. The Himalaya has attained a fairly high degree of isostatic compensation.  相似文献   

14.
T.R.K. Chetty   《Gondwana Research》2010,18(4):565-582
New data from structural mapping and tectonic evaluation in the northern parts of the Eastern Ghats Mobile Belt (EGMB-north) involving the interpretation of satellite images, field traverses, critical outcrop mapping and kinematic studies of macro- as well as microstructures of the shear zone rocks together with the geometry and disposition of Gondwana basins led to, for the first time, the elucidation of post-Grenvillian structural architecture of the terrane. This helps in assessing the sequence of successive tectonothermal events that were responsible for the origin and progressive evolution of the Permo-Carboniferous coal bearing sediments along the Mahanadi rift that forms significant in the reconstruction models of east Gondwana.The composite terrane of high-grade metamorphic rocks (EGMB-north), strikes E–W in contrast to the regional NE–SW trend of the EGMB. The structural architecture obtained from this study is controlled by the boundary shear zones and associated link shear zones. The dextral kinematic displacements along the Northern Boundary Shear Zone (NBSZ) as well as the Mahanadi Shear Zone (MSZ) and Koraput–Sonapur–Rairakhol Shear Zone (KSRSZ) were derived from multi-scale field based structural observations. A N–S structural cross-section presents a crustal-scale ‘flower structure’ across the composite terrane exposing different domains displaying distinctive internal structures with widely varying different geological evolution history and strain partitioning, separated by crustal-scale shear zones. Deep seismic imaging and gravity signatures support ‘flower structure’ model. The pervasive first formed gneissic fabrics were continuously reworked and partitioned into a series of E–W, crustal-scale shear zones.The Neoproterozoic regional dextral transpressional tectonics along the shear zones and their repeated reactivation could be responsible for initiation and successive evolution of Gondwana basins and different episodes of sedimentation. Available geochronological data shows that the structural architecture presented here is post-Grenvillian, which has been repeatedly reactivated through long-lived transpressional tectonics. The composite terrane is characterized by all the typical features of an oblique convergent orogen with transpressional kinematics in the middle to lower crust. The kinematic changes from transpression to transtensional stresses were found to be associated with global geodynamics related to the transformation from Rodinia to Gondwana configuration.  相似文献   

15.
In the eastern part of the Indian shield,late PaleozoiceMesozoic sedimentary rocks of the Talchir Basin lie precisely along a contact of Neoproterozoic age between granulites of the Eastern Ghats Mobile Belt(EGMB)and amphibolite facies rocks of the Rengali Province.At present,the northern part of the basin experiences periodic seismicity by reactivation of faults located both within the basin,and in the Rengali Province to the north.Detailed gravity data collected across the basin show that Bouguer anomalies decrease from the EGMB(wt15 mGal),through the basin(w 10 mGal),into the Rengali Province(w 15 mGal).The data are consistent with the reportedly uncompensated nature of the EGMB,and indicate that the crust below the Rengali Province has a cratonic gravity signature.The contact between the two domains with distinct sub-surface structure,inferred from gravity data,coincides with the North Orissa Boundary Fault(NOBF)that defnes the northern boundary of the Talchir Basin.Post-Gondwana faults are also localized along the northern margin of the basin,and present-day seismic tremors also have epicenters close to the NOBF.This indicates that the NOBF was formed by reactivation of a Neoproterozoic terrane boundary,and continues to be susceptible to seismic activity even at the present-day.  相似文献   

16.
The Southern Granulite Terrain with exposed Archean lower crustal rocks is studied using various geophysical tools. The crustal structure derived from seismic reflection and refraction/wide-angle reflection studies is used to understand the tectonic evolution of the region. Deep seismic reflection section along the Kolattur–Palani segment shows an oppositely dipping reflection fabric near the Moyar–Bhavani shear zone, which is interpreted as a signature of collision between the Dharwar craton and another crustal block in the south. The thickened crust due to collision was delaminated during the orogenic collapse and modified the central part, covering the Cauvery Shear Zone system, located between the Moyar–Bhavani and Karur–Oddanchatram shear zones. The delaminated lower crust is altered by magmatic underplating as evidenced by the high velocity layer just above the Moho. The velocity model of the region indicates crustal thickening at the boundary of the Dharwar craton and Moyar–Bhavani shear zone and thinning further south. Back-scattered seismic wave field with negative moveout and the Moho-offset indicate the spatial location and strike-slip nature of the shear zones. Present study suggests that the late Archean collision and suturing of the Dharwar craton with the southern crustal block at the Moyar–Bhavani shear zone may be responsible for the evolution of late Archean granulites. Late Neoproterozoic rifting is observed along the paleo-fault zones. The seismic studies constrained by gravity, magnetic and magnetotelluric data suggest that the Moyar–Bhavani and Karur–Oddanchatram shear zones of the Cauvery Shear Zone system mark terrane boundaries/suture zones.  相似文献   

17.
The Eastern Ghats are a prominent topographic feature on the Indian Peninsula, stretching from the southern tip of the peninsula to near Bhubaneswar (20°N, 86°E) along the east coast. The belt is characterised by occurrences of high grade metamorphic rocks such as pyroxene granulites, sillimanite gneisses, charnockites and gabbro-anorthosite masses. The gravity field over the Eastern Ghats is appreciably positive as compared to the surrounding low grade gneissic terrain.Analysis of the gravity field along the coastal and southern granulite terrain comprising the Eastern Ghats shows that a large number of gravity highs are associated with charnockites of basic and intermediate nature as well as gabbro-anorthosite masses. The lows appear to be associated with acid charnockites, syenite masses or granitic intrusives.The boundary between the Eastern Ghats terrain and the adjoining Dharwar/Bastar cratons appears to be a faulted one. The crust underneath the Eastern Ghats is inferred to be of a higher density than that of the Dharwar/Bastar cratons to its west. The gravity field over the Eastern Ghats is compared to that of similar terrains in other parts of the world. It is inferred that the Eastern Ghats are characterised by a crust of higher than normal density.  相似文献   

18.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

19.
In the north-western Gawler Craton of South Australia, the Karari Shear Zone defines a boundary between late-Archean to earliest Paleoproterozoic rocks, which have remained largely undisturbed since the earliest Paleoproterozoic, and younger Paleoproterozoic rocks that have been reworked through multiple late Paleoproterozoic and Mesoproterozoic metamorphic and deformation events. The history of movement across the Karari Shear Zone has been investigated via new U–Pb and 40Ar/39Ar geochronology, in combination with pre-existing geochronological and metamorphic constraints, as well as the structural geometry revealed by a recently acquired reflection seismic transect. The available data suggest a complex history of shear-zone movement in at least four stages, with contrasting sense of motion at different times. The first period of movement across the Karari Shear Zone is inferred to have been a period of extension at ca 1750–1720 Ma. This was likely closely followed by reactivation during the Kimban Orogeny between ca 1720 and 1680 Ma, although the sense of movement during this period is unclear. Further reactivation, in a thrust sense, occurred between ca 1580 and 1560 Ma, resulting in significant exhumation of marginal domains of the Gawler Craton to the north of the Karari Shear Zone. A final episode of largely strike-slip shear-zone movement occurred at ca 1450 Ma.  相似文献   

20.
《Gondwana Research》2003,6(2):321-325
Apatite fission-track analysis of the rocks within and adjoining the Terrane Boundary Shear Zone of the Eastern Ghats Mobile Belt, India, yield apparent ages ranging from 340246 to 268234 Ma. They are interpreted to be the result of slow (Ordovician to Recent) coolinglexhumation. Erosion rates are calculated at approximately 0.5–0.25″ C/My. Genetic algorithm modeling suggests the possibility of a minor heating event at approximately 120 Ma; this is the time when the region was passing over Kerguelen hot spot as the Indian plate separated from Antarctica. The rocks within and outside the shear zone do not show any difference in age suggesting that there has been no movement (reactivation) along the shear zone during this drifting. Based on this assumption, the slightly higher rates of cooling, following this event, are attributed to continued slow denudation as well as thermal relaxation of the continent subsequent to hot spot influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号