首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Nominally anhydrous phases (clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol)) of peridotite xenoliths hosted by the Cenozoic basalts from Beishan (Hebei province), and Fansi (Shanxi province), Western part of the North China Craton (WNCC) have been investigated by Fourier transform infrared spectrometry (FTIR). The H2O contents (wt.) of cpx, opx and ol are 30–255 ppm, 14–95 ppm and ~ 0 ppm, respectively. Although potential H-loss during xenolith ascent cannot be excluded for olivine, pyroxenes (cpx and opx) largely preserve the H2O content of their mantle source inferred from (1) the homogenous H2O content within single pyroxene grains, and (2) equilibrium H2O partitioning between cpx and opx. Based on mineral modes and assuming a partition coefficient of 10 for H2O between cpx and ol, the recalculated whole-rock H2O contents range from 6 to 42 ppm. In combination with previously reported data for other two localities (Hannuoba and Yangyuan from Hebei province), the H2O contents of cpx, opx and whole-rock of peridotite xenoliths (43 samples) hosted by the WNCC Cenozoic basalts range from 30 to 654 ppm, 14 to 225 ppm, and 6 to 262 ppm respectively. The H2O contents of the Cenozoic lithospheric mantle represented by peridotite xenoliths fall in a similar range for both WNCC and the eastern part of the NCC (Xia et al., 2010, Journal of Geophysical Research). Clearly, the Cenozoic lithospheric mantle of the NCC is dominated by much lower water content compared to the MORB source (50–250 ppm). The low H2O content is not caused by oxidation of the mantle domain, and likely results from mantle reheating, possibly due to an upwelling asthenospheric flow during the late Mesozoic–early Cenozoic lithospheric thinning of the NCC. If so, the present NCC lithospheric mantle mostly represents relict ancient lithospheric mantle. Some newly accreted and cooled asthenospheric mantle may exist in localities close to deep fault.  相似文献   

2.
We report the finding of peridotite xenoliths in the Early Cretaceous Longmengou olivine-bearing diabase (138 Ma) in the Northern Taihang Mountains in the central North China Craton. Based on the modal proportions of olivine, clinopyroxene, amphibole and anorthite, these peridotite xenoliths can be divided into three zones: clinopyroxene-bearing olivine zone (COZ), olivine-clinopyroxene zone (OCZ), and amphibole-bearing anorthite-clinopyroxene zone (AACZ). The core of olivine grains in clinopyroxene-bearing olivine zone have higher Mg# (> 95), SiO2 (41.80–42.53 wt%) and lower CaO (< 0.07 wt%), FeO (3.91–4.54 wt%) than the rim (Mg# = 92.5–93.4, SiO2 = 41.27–41.98 wt%, CaO = 0.20–0.34 wt%, and FeO = 7.02–8.87 wt%), suggesting that rim is reaction product. The core of olivine grains with higher Mg# (> 95) and lower NiO content (< 0.04 wt%) in the clinopyroxene-bearing olivine zone was derived from ultra-depleted mantle subsequently altered by high Mg# melts/magma with low Ni. Two generations of olivine grains occur in the OCZ where the first generation shows exsolution of ilmenite and magnetite rods containing up to 0.35 wt% TiO2, and was likely derived from garnet peridotite hydrated by water. The second generation shows high Mg# (96.2–97.1) and cataclastic texture, and was possibly formed by decomposition of the COZ. The occurrence of aluminous spinel suggests the role of melts with extremely high Al and Mg. Clinopyroxene in the AACZ shows systematic core-rim compositional variation with CaO and SiO2 contents increasing towards the rim, and MgO and Fe2O3 concentrations decreasing from the core to the rim, indicating that the amphibole-bearing anorthite-clinopyroxene zone is a product of the reaction between mantle xenoliths and mafic magma. Plagioclase with high An value (92.0–99.95, average 97.79) indicates that the metasomatic melts have high Ca/Na and Al/Si ratios, possibly produced by the partial melting of ultra-depleted mantle under “wet” conditions. Combined with the data on other mantle xenoliths discovered in the NCC, our results suggest that the Mesozoic lithospheric mantle beneath the North Taihang Mountains within the central NCC is composed of ultra-depleted Archean and Paleoproterozoic peridotites and dunites modified by complex melts. We also propose that the destruction of eastern part of the NCC mainly occurred during Early Cretaceous, and that the boundary of the lithospheric destruction coincides with the Taihang Mountains.  相似文献   

3.
Lithospheric thinning beneath the North China Craton is widely recognized, but whether the Yangtze block has undergone the same process is a controversial issue. Based on a detailed petrographic study, a suite of xenoliths from the Lianshan Cenozoic basalts have been analyzed for the compositions of minerals and whole rocks, and their Sr–Nd isotopes to probe the nature and evolution of the subcontinental lithospheric mantle beneath the lower Yangtze block. The Lianshan xenoliths can be subdivided into two Types: the main Type 1 xenoliths (9–15% clinopyroxene and olivine-Mg# < 90) and minor Type 2 peridotites (1.8–6.2% clinopyroxene and olivine-Mg# > 90). Type 1 peridotites are characterized by low MgO, high levels of basaltic components (i.e., Al2O3, CaO and TiO2), LREE-depleted patterns in clinopyroxenes and whole rocks, and relatively high 143Nd/144Nd (0.513219–0.513331) and low 86Sr/87Sr (0.702279–0.702789). These features suggest that Type 1 peridotites represent fragments of the newly accreted fertile lithospheric mantle that have undergone ~ 1% of fractional partial melting and later weak silicate–melt metasomatism, similar to Phanerozoic lithospheric mantle beneath the eastern North China Craton. Type 2 peridotites may be shallow relics of the older lithospheric mantle depleted in basaltic components, with LREE-enriched and HREE-depleted patterns, relatively low 143Nd/144Nd (0.512499–0.512956) and high 86Sr/87Sr (0.703275–0.703997), which can be produced by 9–14% partial melting and subsequent carbonatite–melt metasomatism. Neither type shows a correlation between equilibration temperatures and Mg# in olivine, indicating that the lithospheric mantle is not compositionally stratified, but both types coexist at similar depths. This coexistence suggests that the residual refractory lithospheric mantle (i.e., Type 2 peridotites) may be irregularly eroded by upwelling asthenosphere materials along weak zones and eventually replaced to create a new and fertile lithosphere mantle (i.e., Type 1 xenoliths) as the asthenosphere cooled. Therefore, the subcontinental lithospheric mantle beneath the lower Yangtze block shared a common evolutional dynamic environment with that beneath the eastern North China Craton during late Mesozoic–Cenozoic time.  相似文献   

4.
Relative to the North China Craton, the subcontinental lithospheric mantle (SCLM) beneath the Central Asian Orogenic Belt is little known. Mantle-derived peridotite xenoliths from the Cenozoic basalts in the Xilinhot region, Inner Mongolia, provide samples of the lithospheric mantle beneath the eastern part of the belt. The xenoliths are predominantly lherzolites with minor harzburgites, and can be subdivided into three groups, based on the REE patterns of clinopyroxenes. Group 1 peridotites (LREE-enriched), with low modal Cpx (3–7%), high Mg# in olivine (> 90.6) and Cr# in spinel (> 43.8), low whole-rock CaO + Al2O3 contents (1.62–3.22 wt.%) and estimated temperatures of 1043–1126 °C, represent moderately refractory SCLM that has experienced carbonatite-related metasomatism. Group 2 peridotites (LREE-depleted), with high modal Cpx (9–13%), low Mg# in olivine (< 90.6) and Cr# in spinel (< 20.0), high whole-rock CaO + Al2O3 contents (4.93–6.37 wt.%) and estimated temperatures of 814–970 °C, show affinity with Phanerozoic fertile SCLM that has undergone silicate-related metasomatism. Group 3 peridotites (convex-upward REE patterns), show wide ranges of olivine-Mg# (88.4–90.6), spinel-Cr# (11.5–47.6), and modal Cpx (3–14%) that overlap Groups 1 and 2. Their spinels have high TiO2 contents (> 0.41 wt.%), implying involvement of reactions between melt and peridotites. The estimated temperatures of Group 3 (1033–1156 °C) are similar to those of Group 1. We suggest that the pre-existing moderately refractory lithospheric mantle (i.e., Group 1) beneath the eastern part of the Central Asian Orogenic Belt was strongly penetrated by upwelling asthenospheric material, and the cooling of this material produced fertile lithospheric mantle (i.e., Group 2). The present lithospheric mantle of this area consists of interspersed volumes of younger fertile and older more refractory lithosphere, with the fertile type dominating the shallower levels of the mantle.  相似文献   

5.
Spinel-bearing mantle xenoliths have been recovered in the pyroclastic breccia surrounding the Lake Nyos maar. These include spinel lherzolites, spinel harzburgites and olivine websterites. They exhibit coarse granular or protogranular to weakly porphyroclastic textures, and show variations in mineral chemistry, modal compositions and equilibrium temperature. The xenoliths consist of four mineral phases typical of upper mantle origin: olivine (Fo89–Fo91.5, NiO = 0.29–0.38 wt%, CaO = 0.02–0.17 wt%), enstatite (Mg# = 90–92, Cr2O3 = 0.35 ± 0.04 wt%), Cr-diopside (Mg# = 92–98, Cr2O3 = 0.7–1.65 wt%, TiO2 = 0.26–0.6 wt%) and spinel (high Mg# of 70–80, low TiO2  0.4 wt%). Spinels are aluminous (Cr# = 9.7–11) in most lherzolites, and become increasingly chromiferous from websterites (Cr#Sp = 15.3–19.8) to harzburgites (Cr#Sp = 19–33.6). The lherzolites are composed of olivine (48–58%), orthopyroxene (22–30%), and clinopyroxene (8–15%). The harzburgites modes are olivine (60–81%), orthopyroxene (11–29%), and clinopyroxene (<5%). The websterites are mainly composed of pyroxene (~62%) with variable amounts of olivine (23–31%). Temperatures of mineral equilibration in the xenoliths have been estimated from the two-pyroxene thermometer of Wells (1977) and range between 850 and 1050 °C, corresponding to about 10–30 kbar at a depth mantle of 30 km at least. These P–T conditions show significant variations between different petrographical types, the maximum conditions being recorded in two spinel lherzolites (NY-05 and NY-23) that have atypical chemical compositions and textures suggesting that they were initially formed in an environment close to the garnet stability field, then re-equilibrated within the spinel stability field prior to their incorporation in the host magma. With the exception of minerals from these two lherzolite nodules, all the minerals exhibit depletion of light REE, a typical feature of abyssal peridotites implying that some xenoliths from the Cameroon volcanic line were probably sampled in a part of the sub-continental mantle that is chemically similar to sub-oceanic mantle. The variations observed in the mineral chemistry and modal compositions of xenoliths suggest that the spinel harzbugite nodules which represent residues of a significant degree of partial melting of lherzolitic mantle were affected by infiltration of alkali-enriched metasomatizing melts (or fluids) within the uppermost mantle to produce pargasitic amphiboles prior to their sampling by the host lava. The features of this metasomatism event occur in the rocks of all three petrographical facies xenoliths from Lake Nyos.  相似文献   

6.
Despite the occurrence of highly variable lithium (Li) elemental distribution and isotopic fractionation in mantle mineral, the mechanism of Li heterogeneity and fractionation remains a controversial issue. We measured Li contents and isotopic compositions of olivine and clinopyroxene xenocrysts and phenocrysts from kamafugite host lavas, as well as minerals in melt pockets occurring as metasomatic products in peridotite xenoliths from the Western Qinling, central China. The olivine xenocrysts in the kamafugites show compositional zonation. The cores have high Mg# (100 × Mg/(Mg+Fe); 91.0–92.2) and Li abundances (5.63–21.7 ppm), low CaO contents (≤0.12 wt%) and low δ7Li values (−39.6 to −6.76‰), which overlap with the compositional ranges of the olivines in the melt pockets as well as those in peridotite xenoliths. The rims of the olivine xenocrysts display relatively low Mg# (85.9–88.2), high CaO contents (0.19–0.38 wt%) and high δ7Li values (18.3–26.9‰), which are comparable to the olivine phenocrysts (Mg#: 86.4–87.1; CaO: 0.20–0.28 wt%; Li: 12.4–36.8 ppm; δ7Li: 18.1–26.0‰) and the silicate-melt metasomatized olivines. The clinopyroxene phenocrysts and clinopyroxenes in the melt pockets have no distinct characteristics with respect to the Li abundances and δ7Li values, but show higher and lower CaO contents, respectively, than the clinopyroxenes from silicate and carbonatite metasomatized samples. These features indicate that Li concentration and isotopic signatures of the cores of the xenocrysts recorded carbonatite melt-peridotite reaction (carbonatite metasomatism) at mantle depth, and the variations in the rims probably resulted from xenocryst–host magma interaction during ascent. Our results reveal that the interaction with carbonatite and silicate melts gave rise to an increase in Li abundance in minerals of peridotite xenoliths at mantle depth or during transportation. In terms of δ7Li, the carbonatite and silicate melts produced remarkably contrasting δ7Li variations in olivine. Based on the systematic variations of Li abundances and Li isotopes in olivines, we suggest that the δ7Li value of olivine is a more important indicator than that of clinopyroxene in discriminating carbonatite and silicate melt interaction agents with peridotites.  相似文献   

7.
The destruction (or reactivation) of the North China Craton (NCC) is one of the important issues related to the Phanerozoic evolution of eastern China, although the processes of destruction remain debated. Two main mechanisms – delamination and thermal/chemical erosion – have been proposed based on the geochemistry of Mesozoic–Cenozoic basalts and entrained deep–seated xenoliths. A key criterion in distinguishing between these mechanisms is the nature of the melt, derived from delaminated crust or the asthenosphere, that modified the lithospheric mantle. Here we investigate the mechanism of destruction of the NCC based on mineral compositions and oxygen isotopic data from olivines, and strontium isotopic data for clinopyroxenes within websterite xenoliths from the Early Cretaceous Feixian basalts in the eastern NCC. Olivines in websterite xenoliths have higher Mg# (86–86.4), Ni content (2187–2468 ppm), and lower Ca (983–1134 ppm), Ti (58.1–76.1 ppm), and Mn (1478–1639 ppm) contents than olivine phenocrysts (Mg# = 71.0–77.3, Ni = 233–1038 ppm, Ca = 1286–2857 ppm, Ti = 120–300 ppm, and Mn = 2092–4106 ppm) from Late Cretaceous basalts. Additionally, olivines in websterite xenolith have δ18O values of 7.10 ± 0.21‰ to 8.40 ± 0.21‰, evidently higher than those of typical mantle-derived olivines. Similarly, orthopyroxenes (Opx) and clinopyroxenes (Cpx) in the websterite xenoliths have much higher Mg# (86.3–89.2 and 87.5–90.3, respectively), and Ni contents (1097–1491 ppm and 581–809 ppm, respectively) than orthopyroxene- and clinopyroxene-phenocrysts (Opx: Mg# = 82.2–83.9, Ni = 730–798 ppm; Cpx: Mg# = 74.2–84.6, Ni = 117–277 ppm) from Late Cretaceous basalts. The 87Sr/86Sr ratios of clinopyroxenes in the websterite xenoliths range from 0.70862 to 0.70979, and are much higher than those of clinopyroxene grains from peridotite xenoliths and basalts. These data indicate that olivines are the residue of ancient lithospheric mantle that was modified intensively by a melt derived from recycled continental crust, and that the silicic and calcic metasomatic melt might have been derived from the partial melting of the subducted Yangtze slab and delaminated lower crust of the NCC. The existence of recycled continental crust in the Mesozoic lithospheric mantle implies that delamination was an important mechanism of destruction of the NCC.  相似文献   

8.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

9.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

10.
High-Mg# peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory mineral compositions (Fo > 91.5) and highly heterogeneous Sr–Nd isotopic compositions (87Sr/86Sr = 0.7031–0.7048, 143Nd/144Nd = 0.5130–0.5118) ranging from MORB-like to EM1-type mantle, which are similar to those of peridotites from Archean cratons. Thus, the high-Mg# peridotites may represent relics of the ancient lithospheric mantle. Published Re–Os isotopic data for Cenozoic basalt-borne xenoliths show TRD ages of 3.0–1.5 Ga for the peridotites from Hebi (the center of the craton), 2.2–0 Ga for those from Hannuoba and Jining (north margin of the craton), and 2.6–0 Ga for those from Fanshi and Yangyuan (midway between the center and north margin of the craton). In situ Re–Os data of sulfides in Hannuoba peridotites suggest that whole-rock Re–Os model ages represent mixtures of multiple generations of sulfides with varying Os isotopic compositions. These observations indicate that initial lithospheric mantle beneath the Central Zone of the North China Craton formed during the Archean and was refertilized by multiple melt additions after its formation. The refertilization became more intensive from the interior to the margin of the craton, leading to the high heterogeneity of the lithospheric mantle: more ancient and refractory peridotites with highly variable Sr–Nd isotopic compositions in the interior, and more young and fertile peridotites with depleted Sr–Nd isotopic composition in the margin. Our data, coupled with published petrological and geochemical data of peridotites from the Central Zone of the North China Craton, suggest that the lithospheric mantle beneath this region is highly heterogeneous, likely produced by refertilization of Archean mantle via multiple additions of melts/fluids, which were closely related to the Paleoproterozoic collision between the Eastern and the Western Blocks and subsequent circum-craton subduction events.  相似文献   

11.
Post-collisional ultrapotassic magmatic rocks (15.2–18.8 Ma), containing mantle xenoliths, are extensively distributed in the Sailipu volcanic field of the Lhasa terrane in south Tibet. They could be subdivided into high-MgO and low-MgO subgroups based on their petrological and geochemical characteristics. The high-MgO subgroup has olivine-I (Fo87–92), phlogopite and clinopyroxene as phenocryst phases, while the low-MgO subgroup consists mainly of phlogopite, clinopyroxene and olivine-II (Fo77–89). These ultrapotassic magmatic rocks have high MgO (4.6–14.5 wt%), Ni (145–346 ppm), Cr (289–610 ppm) contents, and display enrichment in light rare earth element (REE) over heavy REE and enriched large ion lithophile elements (LILE) relative to high field strength elements (HFSE) with strongly negative Nb-Ta-Ti anomalies in primitive mantle-normalized trace element diagrams. They have extremely radiogenic (87Sr/86Sr)i (0.7167–0.7274) and unradiogenic (143Nd/144Nd)i (0.5118–0.5120), high (207Pb/204Pb)i (15.740–15.816) and (208Pb/204Pb)i (39.661–39.827) at a given (206Pb/204Pb)i (18.363–18.790) with high δ18O values (7.3–9.7‰). Strongly linear correlations between depleted mid-ocean ridge basalt-source mantle (DMM) and the Indian continental crust (HHCS) in Sr-Nd-Pb-O isotopic diagrams indicate that the geochemical features could result from reaction between mantle peridotite and enriched components (fluids and melts) released by the eclogitized Indian continental crust (HHCS) in the mantle wedge. The high-MgO (13.7–14.5 wt%) subgroup displays higher (143Nd/144Nd)i, lower (87Sr/86Sr)i and (206Pb/204Pb)i ratios and lower δ18O values compared with the low-MgO (4.6–8.8 wt%) subgroup. High Ni (850–4862 ppm) contents of olivine phenocrysts and high whole-rock SiO2, NiO, low CaO contents indicate that the low-MgO ultrapotassic magmatic rocks are derived from partial melting of olivine-poor mantle pyroxenite. However, lower Ni concentrations of olivine phenocryst and lower whole-rock SiO2, NiO, higher CaO contents of the high-MgO ultrapotassic rocks may indicate their peridotite mantle source. This could be attributed to different amounts of silicate-rich components added into the mantle sources of the parental magmas in the mantle wedge caused by the northward subduction of the Indian continental lithosphere. The reaction-formed websterite xenoliths, reported for the first time in this study, are made up of anhedral and interlocking clinopyroxene (45–65 vol%) and orthopyroxene (30–50 vol%) with minor phlogopite (< 3 vol%) and quartz (< 2 vol%) and are suggested to be formed by silicate metasomatism of the mantle peridotite. The harzburgites, another major type of mantle xenolith in south Tibet, have a mineral assemblage of olivine (60–75 vol%), orthopyroxene (20–35 vol%), clinopyroxene (< 3 vol%), phlogopite (< 2 vol%) and spinel (< 2 vol%) and may have experienced subduction-related metasomatism. Combined with two types of ultrapotassic magmas, we propose that compositions of mantle wedge beneath south Tibet may gradually evolve from harzburgite through lherzolite to websterite with strong metasomatism of silicate-rich components in their mantle source region. Partial melting of the enriched mantle sources could be triggered by rollback of Indian continental slab during 25–8 Ma in south Tibet.  相似文献   

12.
The Songshugou mylonitized peridotites within the Qinling Group metamorphic rocks in Central China are distributed in the northern part of the Shang-Dan Suture Zone (SDSZ) and contain abundant dunites and harzburgites. The dunites were intensely deformed and mylonitized converting the coarse-grained type to medium- and fine-grained types which contain prominent lenticular structure and relict olivine (Ol) porphyroclasts. Mineralogical and geochemical compositions suggest that the protoliths of the mylonitized peridotites were coarse-grained peridotites of lithospheric mantle origin. The harzburgites occur as enclaves within mylonitic peridotites in the form of lenses or veins. The orthopyroxenes in harzburgites were formed at the expense of Ol and have similar compositions to those of metasomatized harzburgites, characterized by low Al2O3, CaO and Cr2O3 contents. The harzburgites exhibit the gently U-type REE patterns with enriched incompatible elements (Rb, Ba, Sr, Zr and Hf), suggesting the metasomatic origin. The obvious ductile deformation of the large porphyroclastic orthopyroxene (Opx) suggests that the metasomatism occurred before the deformation. Ductile shearing deformation is indicated by the small fold structures and net-style ductile shearing zones within the Songshugou peridotite massif. The process is also result in the alignment of elongated Ol grains from initially coarse-granular via porphyroclastic to fine-granular texture. The relatively low Fo olivine, together with high Al2O3, and CaO contents and the abnormally low total PGE abundance in the fine-grained dunites suggest the ingress of melt/fluid during the mylonitization. The presences of significant amount of amphibole in the peridotites indicate the ingress of hydrous fluids. In general, the Songshugou peridotites have similar compositional characteristics with peridotites of Oman and Troodos ophiolites which are fragments of oceanic lithosphere mantle. One coarse-grained dunite has a TRD age of 875 Ma. Additionally two stages Paleozoic TRD ages are obtained from medium-grained and fine-grained dunites (491 Ma and 550 Ma; 446 Ma and 476 Ma). The broadly coeval nature of mylonitization with progressive metamorphism of surrounding amphibolites suggested that the Songshugou peridotites were generated before the early Paleozoic deformation. Our data, combined with the previous work on the surrounding HP/UHP metamorphic rocks, demonstrate that the Songshugou mylonitized peridotites represent fragments of the Neoproterozoic fossil oceanic lithospheric mantle that experienced extensive deformation during the Early Paleozoic subduction processes.  相似文献   

13.
The paper presents new petrographic, major element and Fourier transform infrared (FTIR) spectroscopy data and PT-estimates of whole-rock samples and minerals of a collection of 19 relatively fresh peridotite xenoliths from the Udachnaya kimberlite pipe, which were recovered from its deeper levels. The xenoliths are non-deformed (granular), medium-deformed and highly deformed (porphyroclastic, mosaic-porphyroclastic, mylonitic) lherzolites, harzburgite and dunite. The lherzolites yielded equilibration temperatures (T) and pressures (P) ranging from 913 to 1324 °C and from 4.6 to 6.3 GPa, respectively. The non-deformed and medium-deformed peridotites match the 35 mW/m2 conductive continental geotherm, whereas the highly deformed varieties match the 45 mW/m2 geotherm. The content of water spans 2 ± 1–95 ± 52 ppm in olivine, 1 ± 0.5–61 ± 9 ppm in orthopyroxene, and 7 ± 2–71 ± 30 ppm in clinopyroxene. The amount of water in garnets is negligible. Based on the modal proportions of mineral phases in the xenoliths, the water contents in peridotites were estimated to vary over a wide range from < 1 to 64 ppm. The amount of water in the mantle xenoliths is well correlated with the deformation degree: highly deformed peridotites show highest water contents (64 ppm) and those medium-deformed and non-deformed contain ca. 1 ppm of H2O. The high water contents in the deformed peridotites could be linked to metasomatism of relatively dry diamondiferous cratonic roots by hydrous and carbonatitic agents (fluids/melts), which may cause hydration and carbonation of peridotite and oxidation and dissolution of diamonds. The heterogeneous distribution of water in the cratonic mantle beneath the Udachnaya pipe is consistent with the models of mantle plume or veined mantle structures proposed based on a trace element study of similar xenolithic suits. Mantle metasomatism beneath the Siberian Craton and its triggered kimberlite magmatism could be induced by mantle enrichment in volatiles (H2O, CO2) supplied by numerous subduction zones which surrounded the Siberian continent in Neoproterozoic-Cambrian time.  相似文献   

14.
High-Ti melanephelinite (3.8–5.9 wt% TiO2), medium-Ti (phono)tephrite (2.7–3.1 wt% TiO2), and low-Ti olivine melanephelinite/basanite (1.9–2.3 wt.% TiO2) are subordinate rock types in the central European Cenozoic Volcanic Province. A contrasting melanephelinite to (phono)tephrite series occurs in the Lou?ná–Oberwiesenthal Volcanic Centre (37–28 Ma) and also as satellite volcanic bodies (26–12 Ma) together with olivine melanephelinite/basanite (17–20 Ma) on the southwestern periphery of the Kru?né hory mountains (Erzgebirge). The volcanic rocks intrude the Variscan basement of the uplifted shoulder of the Oh?e/Eger Rift in the Kru?né hory mountains of the Bohemian Massif. Low Mg# (44–59) and Cr, Ni contents and enrichment of LILE, Zr, Hf, Nb, Ta, U, Th and LREE in the high-Ti melanephelinites contrast with the composition of primitive low-Ti olivine melanephelinites/basanites displaying high Mg# (63–74) and high contents of compatible elements. The high-Ti melanephelinites reveal a wide range in initial 87Sr/86Sr of ca. 0.7034–0.7038 and εNd of 2.4–4.9. The low-Ti melanephelinites show an overlapping range of initial 87Sr/86Sr of ca. 0.7035–0.7036 and εNd of 4.3–5.5. The large variation in initial 87Sr/86Sr ratios at similar εNd values in those rock types is interpreted as evidence for melting of metasomatized lithospheric mantle sources comprising K-bearing phases with radiogenic Sr. Modification of the olivine-free alkali basaltic magmas by differentiation or crustal contamination could give rise to the medium-Ti (phono) tephrites. The initial isotope ratios of all samples are consistent with HIMU-mantle sources and contributions from lithospheric mantle. The olivine-free melanephelinitic rocks often contain alkali pyroxenite–ijolite xenoliths with initial 87Sr/86Sr ratios of ca. 0.7036 and εNd of 3.0. We interpret these xenoliths as samples of an intra-crustal alkali complex derived from similar mantle sources as those for the basaltic volcanic rocks.  相似文献   

15.
Geochemical characteristics of spinel lherzolite xenoliths, enclosed in Miocene alkali basalt from Boeun, Korea, provide important clues for understanding the lithosphere composition, equilibrium temperature and pressure conditions, and depletion and enrichment processes of subcontinental lithospheric mantle beneath Boeun. The spinel lherzolite xenoliths with protogranular to porpyroclastic textures were accidentally trapped by the ascending alkali basalt magma. The spinel lherzolite xenoliths originated at depths between 50 and 63 km with equilibrium temperatures ranging from 847 to 1030 °C. These xenoliths may have undergone small degrees (1–2%) of partial melting and cryptic metasomatism by an alkali basaltic melt. Based on Sr and Nd isotope compositions, the subcontinental lithospheric mantle beneath Boeun was heterogeneous and similar to that beneath East China and Central Mongolia rather than the Japanese Island Arc.  相似文献   

16.
The northern Vourinos massif, located in the Dinarides-Hellenides mountain belt in the Balkan Peninsula, forms a section of the so-called Neotethyan ophiolitic belt in the Alpine-Himalayan orogenic system. It is comprised mainly of a well-preserved mantle sequence, dominated by voluminous massive harzburgite with variable clinopyroxene and olivine modal abundances, accompanied by subordinate coarse- and fine-grained dunite. The harzburgite rock varieties are characterized by high Cr# [Cr/(Cr + Al)] values in Cr-spinel (0.47–0.74), elevated Mg# [Mg/(Mg + Fe2+)] in olivine (0.90–0.93), low Al2O3 content in clinopyroxene (≤1.82 wt.%) and low average bulk-rock concentrations of CaO (0.52 wt.%) and Al2O3 (0.40 wt.%), which are indicative of their refractory nature. In addition, dunite-type rocks display even more depleted compositions, containing Cr-spinel and olivine with higher Cr# (0.76–0.84) and Mg# (0.91–0.94), respectively. They also display extremely low average abundances of CaO (0.13 wt.%) and Al2O3 (0.15 wt.%). The vast majority of the studied peridotites are also strongly depleted in REE. Simple batch and fractional melting models are not sufficient to explain their ultra-depleted composition. Whole-rock trace element abundances of the northern Vourinos mantle rocks can be modeled by up to 22–31% closed-system non-modal dynamic melting of an assumed primitive mantle (PM) source having spinel lherzolite composition. The highly depleted compositional signatures of the investigated peridotites indicate that they have experienced hydrous melting in the fore-arc mantle region above a SSZ. This intense melting event was responsible for the release of arc-related melts from the mantle. These melts reacted with the studied peridotites causing incongruent melting of pyroxenes followed by considerable olivine and Cr-spinel addition in terms of cryptic metasomatism. This later metasomatic episode has obscured any geochemical fingerprints indicative of an early mantle melting event in a MOR setting. The lack of any MOR-type peridotites in the northern Vourinos depleted mantle suite is quite uncommon for SSZ-type Neotethyan ophiolites.  相似文献   

17.
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   

18.
The Yangtze craton (YC), in eastern China, is one of the oldest cratons in the world and is characterized by a complex tectonic and geodynamic evolution. This evolution regards most of the eastern China craton, which since Mesozoic time has undergone significant thinning (> 200 km) of Archean lithosphere. This thinning favored the refertilization of the old refractory subcontinental lithospheric mantle (SCLM) by the upwelling of younger fertile asthenosphere. Whether this feature is localized only beneath certain areas of eastern China or is a more widespread characteristic of the mantle, including the YC, is a matter of debate.In order to constrain the history of the YC SCLM, we have measured the He- and Ar-isotopic compositions of fluid inclusions hosted in mantle xenoliths in the Lianshan area, which is part of the poorly investigated YC in south-east China. We also report new mineral chemistry and trace element compositions of clinopyroxenes from the same suite of samples, for comparison with noble gases. Two distinct types of xenoliths can be identified: Type 1, characterized by mantle-like He-isotopic (3He/4He) ratios (up to 9.1 Ra), represents fragments of a fertile lithospheric mantle; Type 2, showing 3He/4He values in the SCLM range (3He/4He < 7 Ra), represents shallow relicts of a refractory mantle. The patterns of rare-earth elements as well as the Y and Yb concentrations in the clinopyroxenes normalized to primitive mantle (YN and YbN, respectively) indicate that fractional partial melting might have affected the local mantle by < 3% in Type 1 and up to 20% in Type 2 xenoliths from Lianshan, respectively. The range of 4He/40Ar* (40Ar* is corrected for atmospheric contamination) ranges from 4.9 × 10 4 to 3.6 × 10 1, which is below the typical production ratio of the mantle (4He/40Ar* = 1–5); this range is however compatible with this fractional partial melting. The variable 3He/4He and 4He/40Ar* values in Lianshan xenoliths suggest that the local mantle source was also influenced by kinetic fractionation, possibly triggered by metasomatic melts. Metasomatism associated with carbonatitic melts, together with fluxing by CO2-rich fluids, have permeated the mantle beneath Lianshan, generating the observed decoupling between noble gases and trace elements. The interpretative framework is also applicable for other mantle xenoliths from eastern China, indicating that the refertilization of the SCLM by ascending mantle-like melts is common also to YC, which can be identified using noble gases.  相似文献   

19.
The Quaternary Tasse basalts are exposed near the north shore of Quesnel Lake in southeastern British Columbia. They host a variety of mantle xenoliths consisting predominantly of spinel lherzolite with minor dunite and pyroxenite. Mineralogically, the xenoliths are composed of olivine, orthopyroxene, clinopyroxene and spinel characterized by forsterite (Fo87–93), enstatite (En90–92), diopside (En45–50–Wo40–45–Fs5), and Cr-spinel (6  11 wt.% Cr), respectively. All of the mantle xenoliths are coarse-grained and show granoblastic textures. Clinopyroxene and spinel display textural evidence for chemical reactions with percolating melts.The mantle xenoliths are characterized by restricted Mg-numbers (89  92) and low abundances of incompatible elements (Ba = 2  11 ppm; Sr = 3  31 ppm) and Yttrium (1  3 ppm). On the basis of REE patterns, the xenoliths are divided into three groups reflecting the various degrees of mantle metasomatism: (1) Group 1 consists of concave-up LREE patterns (La/Smcn = 0.48  1.16; Gd/Ybcn = 0.71  0.92); (2) Group 2 possesses flat to moderately LREE-enriched patterns (La/Smcn = 1.14  1.92; Gd/Ybcn = 0.87  1.09); and (3) Group 3 is characterized by strongly LREE-enriched patterns (La/Smcn = 1.53  2.45; Gd/Ybcn = 1.00  1.32). On MORB-normalized trace element diagrams, the majority of the xenolith samples share the enrichment of LILE (Rb, Ba, K), U, Th, Pb, Sr and the depletion of HFSE (Nb, Ta, Ti, Y) relative to REE. These geochemical characteristics are consistent with a compositionally heterogeneous subcontinental lithospheric mantle source that originated as subarc mantle wedge peridotite at a convergent plate margin.The Tasse basalts have alkaline compositions characterized by low SiO2 (44  46 wt.%) and high alkali (Na2O + K2O = 5.1  6.6 wt.%) contents. They are strongly enriched in incompatible elements (TiO2 = 2.4  3.1 wt.%; Ba = 580  797 ppm; Sr = 872  993 ppm) and, display OIB-like trace element patterns (La/Smn = 3.15  3.85; Gd/Ybn = 3.42  4.61). They have positive εNd (+ 3.8 to + 5.5) values, with 338  426 Ma depleted mantle model ages, and display uniform OIB-like Sr (87Sr/86Sr = 0.703346  0.703591) and Pb (206Pb/204Pb = 19.40  19.58; 207Pb/204Pb = 15.57  15.60; 208Pb/204Pb = 38.99  39.14) isotopic compositions. The basalts erupted discontinuously along a > 1000 km long SE-NW-trending linear belt with minimal compositional variation indicative of a homogenous mantle source. The Sr  Nd  Pb isotope and trace element systematics of the alkaline basalts suggests that they originated from partial melting of an upwelling asthenospheric mantle source. Melting of the asthenospheric mantle might have stemmed from extension of the overlying lithosphere in response to the early stages of back-arc basin opening in the Omineca and Intermontane belts. Ridge subduction beneath the Canadian Cordillera might have played an important role in the weakening of the lithospheric mantle prior to its extension. Alternatively, melting of the upwelling asthenosphere in response to the delamination of the lithospheric mantle beneath the Rocky Mountain Trench might have generated the alkaline lavas.  相似文献   

20.
Upper-mantle xenoliths in Cenozoic basalts of northwestern Spitsbergen are rocks of peridotite (spinel lherzolites) and pyroxenite (amphibole-containing garnet and garnet-free clinopyroxenites, garnet clinopyroxenites, and garnet and garnet-free websterites) series. The upper-mantle section in the depth range 50–100 km is composed of spinel peridotites; at depths of 80–100 km pyroxenites (probably, dikes or sills) appear. The equilibrium conditions of parageneses are as follows: in the peridotites—730–1180 °C, 13–27 kbar, and oxygen fugacity of − 1.5 to + 0.3 log. un.; in the pyroxenites—1100–1310 °C, 22–33 kbar. The pyroxenite minerals have been found to contain exsolved structures, such as orthopyroxene lamellae in clinopyroxene and, vice versa, clinopyroxene lamella in orthopyroxene. The formation temperatures of unexsolved phases in orthopyroxene and clinopyroxene are nearly 100–150 °C higher than the temperatures of the lamellae–matrix equilibrium and the equilibrium of minerals in the rock. The normal distribution of cations in the spinel structure and the equilibrium distribution of Fe2 + between the M1 and M2 sublattices in the orthopyroxenes point to the high rate of xenolith ascent from the rock crystallization zone to the surface. All studied Spitsbergen rock-forming minerals from mantle xenoliths contain volatiles in their structure: OH, crystal hydrate water H2Ocryst, and molecules with characteristic CH and CO groups. The first two components are predominant, and the total content of water (OH– + H2Ocryst) increases in the series olivine → garnet → orthopyroxene → clinopyroxene. The presence of these volatiles in the nominally anhydrous minerals (NAM) crystallized at high temperatures and pressures in the peridotites and pyroxenites testifies to the high strength of the volatile–mineral bond. The possibility of preservation of volatiles is confirmed by the results of comprehensive thermal and mass-spectral analyses of olivines and clinopyroxene, whose structures retain these components up to 1300 °C. The composition of hypothetic C–O–H fluid in equilibrium (in the presence of free carbon) with the underlying mantle rocks varies from aqueous (> 80% H2O) to aqueous–carbonic (~ 60% H2O). The fluid becomes essentially aqueous when the oxygen activity in the system decreases. However, there is no strict dependence of the redox conditions on the depth of formation of xenoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号