首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Dramala massif, located in the Dinarides–Hellenides orogenic belt, forms the mantle section of the Neotethyan Pindos ophiolite complex in NW continental Greece. Its southern domain is comprised mainly of voluminous harzburgite masses with variable clinopyroxene and olivine modal abundances, ranging from clinopyroxene‐bearing to typical and olivine‐rich harzburgites. The harzburgite varieties are characterized by elevated Cr# [Cr/(Cr + Al)] in Cr‐spinel (0.43–0.79), high forsterite (Fo) content in olivine (0.90–0.93), low Al2O3 content in clinopyroxene (≤1.77 wt.%) and poor whole‐rock abundances of Al2O3 (≤0.68 wt.%), CaO (≤0.68 wt.%), Sc (≤11 ppm) and REE, which are indicative of their refractory nature. In terms of fO2 values, the southern Pindos harzburgites plot between the FMQ‐2 (Fayalite–Magnetite–Quartz) and FMQ + 2 buffers. Simple batch and fractional melting models are not sufficient to explain their depleted composition. Their Ni/Yb ratios vs. Yb bulk‐rock abundances can be reproduced by up to 22–31% closed‐system non‐modal dynamic melting of an assumed spinel‐bearing lherzolite source. Cr‐spinel chemistry data suggest that the southern Dramala harzburgites were formed in an oceanic centre and then were reworked in the mantle wedge above a subducted slab. Combined petrographic and compositional data indicate that the studied harzburgites interacted with arc‐derived tholeiitic melts. This interaction resulted in substantial olivine and minor Cr‐spinel addition to the studied harzburgites, thus enhancing their refractoriness. Cryptic metasomatism was plausibly responsible for the demolition of any strong geochemical signatures suggestive of a previous melting event in a spreading centre. Comparable observations from the neighbouring Vourinos suite imply that the southern Dramala harzburgites probably represent an arc/fore‐arc mantle region within the mutual Pindos–Vourinos, Mesohellenic lithospheric mantle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The Manipur Ophiolite Complex (MOC) located in the Indo-Myanmar Orogenic Belt (IMOB) of Northeast India forms a section of the Tethyan Ophiolite Belt of the Alpine–Himalayan orogenic system. Whole rock compositions and mineral chemistry of mantle peridotites from the MOC show an affinity to the abyssal peridotites, characterized by high contents of Al2O3 (1.28–3.30 anhydrous wt.%); low Cr# of Cr-spinel (0.11–0.27); low Mg# of olivine (∼Fo90) and high Al2O3 in pyroxenes (3.71–6.35 wt.%). They have very low REE concentrations (∑REE = 0.48–2.14 ppb). Lherzolites display LREE-depleted patterns (LaN/SmN = 0.14–0.45) with a flat to slightly fractionated HREE segments (SmN/YbN = 0.30–0.65) whereas Cpx-harburgites have flat to upward-inflected LREE patterns (LaN/SmN = 0.13–1.23) with more fractionated HREE patterns (SmN/YbN = 0.13–0.65) than the lherzolite samples. Their platinum group elements (PGE) contents (<50 ppb) and distinct mantle-normalised PGE patterns with the Pd/Ir values (1.8–11.9) and Pt/Pt* values (0.2–1.1) show an affinity to the characteristic of the residual mantle material. Evaluation of mineralogical and petrological characteristics of these peridotites suggests that they represent the residues remaining after low degree of partial melting (∼2–12%) in the spinel stability field of a mid-oceanic ridge environment. The well-preserved mid-oceanic ridge characteristics of these peridotites further suggest that the mantle section was subsequently trapped in the forearc region of the subduction zone without undergoing significant modification in their chemistry by later subduction-related tectonic and petrological processes before its emplacement to the present crustal level.  相似文献   

3.
The Abdasht complex is a major ultramafic complex in south-east Iran (Esfandagheh area). It is composed mainly of dunite, harzburgite, podiform chromitites, and subordinate lherzolite and wehrlite. The podiform chromitites display massive, disseminated, banded and nodular textures. Chromian spinels in massive chromitites exhibit a uniform and restricted composition and are characterized by Cr# [= Cr / (Cr + Al)] ranging from 0.76 to 0.77, Mg# [= Mg/(Mg + Fe2 +)] from 0.63 to 0.65 and TiO2 < 0.2 wt.%. These values may reflect crystallization of the chromian spinels from boninitic magmas. Chromian spinels in peridotites exhibit a wide range of Cr# from 0.48 to 0.86, Mg# from 0.26 to 0.56 and very low TiO2 contents (averaging 0.07 wt.%). The Fe3 +# is very low, (< 0.08 wt.%) in the chromian spinel of chromitites and peridotites of the Abdasht complex which reflects crystallization under low oxygen fugacities.The distribution of platinum group elements (PGE) in Abdasht chromitites displays a high (Os + Ir + Ru)/(Rh + Pt + Pd) ratio with strongly fractionated chondrite-normalized PGE patterns typical of ophiolitic chromitites. Moreover, the Pd/Ir value, which is an indicator of PGE fractionation, is very low (< 0.1) in the chromitites.The harzburgite, dunite and lherzolite samples are highly depleted in PGE contents relative to chondrites. The PdN/IrN ratios in dunites are unfractionated, averaging 0.72, whereas the harzburgites and lherzolites show slightly positive slopes PGE spidergrams, together with a small positive Ru anomaly, and their PdN/IrN ratio averages 2.4 and 2.3 respectively. Moreover, the PGE chondrite and primitive mantle normalized patterns of harzburgite, dunite and lherzolite are relatively flat which are comparable to the highly depleted mantle peridotites.The mineral chemistry data and PGE geochemistry indicate that the Abdasht chromitites and peridotites were generated from a melt with boninitic affinity under low oxygen fugacity in a supra-subduction zone setting. The composition of calculated parental melts of the Abdasht chromitites is consistent with the differentiation of arc-related magmas.  相似文献   

4.
The ultramafic massif of Bulqiza, which belongs to the eastern ophiolitic belt of Albania, is a major source of metallurgical chromitite ore. The massif consists of a thick (> 4 km) sequence, composed from the base upward of tectonized harzburgite with minor dunite, a transitional zone of dunite, and a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse, refractory chromitites occur within the basal clinopyroxene-bearing harzburgites, whereas the upper and middle parts of the peridotite sequence contain abundant metallurgical chromitites. The transition zone dunites contain a few thin layers of metallurgical chromitite and sparse bodies are also present in the cumulate section. The Bulqiza Ophiolite shows major changes in thickness, like the 41–50 wt.% MgO composition similar with forearc peridotite as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The peridotites show abundant evidence of mantle melt extraction at various scales as the orthopyroxene composition change from core to rim, and mineral compositions suggest formation in a forearc, as Fo values of olivine are in 91.1–93.0 harzburgite and 91.5–91.9 in dunite and 94.6–95.9 in massive chromitite. The composition of the melts passing through the peridotites changed gradually from tholeiite to boninite due to melt–rock reaction, leading to more High Cr# chromitites in the upper part of the body. Most of the massive and disseminated chromitites have high Cr# numbers (70–80), although there are systematic changes in olivine and magnesiochromite compositions from harzburgites, to dunite envelopes to massive chromitites, reflecting melt–rock reaction. Compositional zoning of orthopyroxene porphyroblasts in the harzburgite, incongruent melting of orthopyroxene and the presence of small, interstitial grains of spinel, olivine and pyroxene likewise attest to modification by migrating melts. All of the available evidence suggests that the Bulqiza Ophiolite formed in a suprasubduction zone mantle wedge.  相似文献   

5.
We present new, whole-rock major and trace element chemistry, including rare earth elements (REE), platinum-group elements (PGE), and Re–Os isotope data from the upper mantle peridotites of a Cretaceous Neo-Tethyan ophiolite in the Mu?la area in SW Turkey. We also report extensive mineral chemistry data for these peridotites in order to better constrain their petrogenesis and tectonic environment of formation. The Mu?la peridotites consist mainly of cpx-harzburgite, depleted harzburgite, and dunite. Cpx-harzburgites are characterized by their higher average CaO (2.27 wt.%), Al2O3 (2.07 wt.%), REE (53 ppb), and 187Os/188Os(i) ratios varying between 0.12497 and 0.12858. They contain Al-rich pyroxene with lower Cr content of coexisting spinel (Cr# = 13–22). In contrast, the depleted harzburgites and dunites are characterized by their lower average CaO (0.58 wt.%), Al2O3 (0.42 wt.%), and REE (1.24 ppb) values. Their clinopyroxenes are Al-poor and coexist with high-Cr spinel (Cr# = 33–83). The 187Os/188Os(i) ratios are in the range of 0.12078–0.12588 and are more unradiogenic compared to those of the cpx-harzburgites.Mineral chemistry and whole rock trace and PGE data indicate that formation of the Mu?la peridotites cannot be explained by a single stage melting event; at least two-stages of melting and refertilization processes are needed to explain their geochemical characteristics. Trace element compositions of the cpx-harzburgites can be modeled by up to ~ 10–16% closed-system dynamic melting of a primitive mantle source, whereas those of the depleted harzburgites and dunites can be reproduced by ~ 10–16% open-system melting of an already depleted (~ 16%) mantle. These models indicate that the cpx-harzburgites are the products of first-stage melting and low-degrees of melt–rock interaction that occurred in a mid-ocean ridge (MOR) environment. However, the depleted harzburgites and dunites are the product of second-stage melting and related refertilization which took place in a supra subduction zone (SSZ) environment. The Re–Os isotope systematics of the Mu?la peridotites gives model age clusters of ~ 250 Ma, ~ 400 Ma and ~ 750 Ma that may record major tectonic events associated with the geodynamic evolution of the Neo-Tethyan, Rheic, and Proto-Tethyan oceans, respectively. Furthermore, > 1000 Ma model ages can be interpreted as a result of an ancient melting event before the Proto-Tethys evolution.  相似文献   

6.
The ultramafic member of the Variscan Ślęża Ophiolite (SW Poland) consists of heavily serpentinised, refractory harzburgites. Those located down to 1.5 km below paleo-Moho contain scarce grains or aggregates of olivine, clinopyroxene and spinel. Non-serpentine phases occur in various assemblages: M1—olivine (Fo 90.2–91.0%, NiO 0.38–0.47 wt.%) and rounded or amaeboidal aluminous chromite, rimmed by Al poor chromite and magnetite; M2—olivine (Fo 90.5–91.5, NiO 0.32–0.44 wt.%), olivine with magnetite inclusions (Fo 87.1–92.5, NiO 0.01–0.68 wt.%), rounded, cleavaged clinopyroxene I (Mg# 91.1–93.2, Al2O3 3.00–4.00 wt.%, Cr2O3 1.00–1.40 wt.%) and elongated clinopyroxene II and clinopyroxene from symplectites with magnetite (Mg# = 92.2–94.1, Al2O3 2.20–3.20 wt.% and Cr2O3 0.80–1.20 wt.%). Clinopyroxene is depleted in REEs relative to chondrite. The M3 assemblage consists of intergrown olivine (Fo 90.8–92.7, NiO 0.20–0.38 wt.%) and clinopyroxene (Mg# = 96.0–98.1, Al2O3 0.00–1.00 wt.% and Cr2O3 0.20–0.60 wt.%).The M1 assemblage contains chromite which records greenschist-facies metamorphism. Textural relationships and chemical composition of clinopyroxene occurring in the M2 assemblage are similar to those formed in oceanic spreading centres by LREE depleted basaltic melt percolation. Olivine occurring in M1 assemblage and part of that from M2 have composition typical of residual olivine from the abyssal harzburgites and of olivine formed in those rocks by melt percolation. The olivine with magnetite inclusions (M2 assemblage) and that from M3 record later deserpentinization event, which supposedly produced also M3 clinopyroxene. The non-serpentine phases from the Ślęża ophiolite mantle member, albeit very poorly preserved, document depleted basaltic melt percolation in the Variscan oceanic spreading centre.  相似文献   

7.
KUBO  K. 《Journal of Petrology》2002,43(3):423-448
Dunite formation processes in highly depleted peridotites arediscussed based upon a detailed study of the Iwanaidake peridotite,Hokkaido, Japan, which consists mainly of harzburgite with asmall amount of dunite. In the harzburgites, the Mg# [= 100x Mg/(Mg + Fe2+)] of olivine ranges from 91·5 to 92·5,and the Cr# [= 100 x Cr/(Cr + Al)] of spinel from 30 to 70;in the dunites, the Mg# of olivine ranges from 92·5 to94 and the Cr# of spinel from 60 to 85, respectively. The NiOwt % of olivine in harzburgites ranges from 0·38 to 0·44,and in dunites from 0·35 to 0·37. The Mg# andCr# are higher and NiO wt % is lower in the dunites than inthe harzburgites surrounding the dunites. The Mg# and Cr# exhibitnormal depletion trends expected from simple partial melting,whereas the NiO wt % shows an abnormal trend. On the basis ofmass balance calculations, dunites are considered to be derivedfrom the harzburgites by a process involving incongruent meltingof orthopyroxene (orthopyroxene olivine + Si-rich melt). Hydrousconditions were necessary to lower the solidus, and thus meltingof harzburgite was probably triggered by the introduction ofhydrous silicate melt. The dunite in this massif may have formedin the mantle wedge above a subduction zone. KEY WORDS: depleted peridotite; hydrous melt; incongruent melting; residual dunite; Iwanaidake peridotite  相似文献   

8.
Mesozoic ophiolites crop out discontinuously in the Indo‐Myanmar Ranges in NE India and Myanmar, and represent the remnants of the Neotethyan oceanic lithosphere. These ophiolites in the Indo‐Myanmar Ranges are the southern continuation of the Neotethyan ophiolites occurring along the Yarlung Zangbo Suture Zone in southern Tibet farther northwes, as indicated by their coeval crystallization ages and geochemical compositions. The Kalaymyo ophiolite is located in the central part of the Indo‐Myanmar Ranges (Myanmar). The Kalaymyo ophiolite are composed of olivine (Fo = 89.8–90.5), orthopyroxene (En86‐91Wo1‐4Fs8‐10; Mg#=89.6–91.9), clinopyroxene (En46‐49Wo47‐50Fs3‐5; Mg# = 90.9–93.6) and spinel (Mg# = 67.1–78.9; Cr# = 13.5–31.5), and have relatively homogeneous whole‐rock compositions with Mg# of 90.1–90.8 and SiO2 (41.5–43.65 wt.%), Al2O3 (1.66–2.66 wt.%) and CaO (1.45–2.67 wt.%) contents. They display Light Rare Earth Element (LREE)‐depleted chondrite‐normalized REE patterns and show a slight enrichment from Pr to La. The Kalaymyo peridotites are characterized by Pd‐enriched chondrite‐normalized PGE patterns with superchondritic (Pd/Ir)CN ratios (1.15–2.36). Their calculated oxygen fugacities range between QFM–0.57 and QFM+0.90. These features collectively suggest that the Kalaymyo peridotites represent residual upper mantle rocks after low to moderate degrees (5–15%) of partial melting at a mid‐ocean‐ridge environment. The observed enrichment in LREE and Pd was a result of their reactions with enriched MORB‐like melts, percolating through these already depleted, residual peridotites. The Kalaymyo and other ophiolites in the Indo‐Myanmar Ranges hence represent mid‐ocean ridge–type Tethyan oceanic lithosphere derived from a downgoing plate and accreted into a westward migrating subduction–accretion system along the eastern margin of India.  相似文献   

9.
Lithospheric thinning beneath the North China Craton is widely recognized, but whether the Yangtze block has undergone the same process is a controversial issue. Based on a detailed petrographic study, a suite of xenoliths from the Lianshan Cenozoic basalts have been analyzed for the compositions of minerals and whole rocks, and their Sr–Nd isotopes to probe the nature and evolution of the subcontinental lithospheric mantle beneath the lower Yangtze block. The Lianshan xenoliths can be subdivided into two Types: the main Type 1 xenoliths (9–15% clinopyroxene and olivine-Mg# < 90) and minor Type 2 peridotites (1.8–6.2% clinopyroxene and olivine-Mg# > 90). Type 1 peridotites are characterized by low MgO, high levels of basaltic components (i.e., Al2O3, CaO and TiO2), LREE-depleted patterns in clinopyroxenes and whole rocks, and relatively high 143Nd/144Nd (0.513219–0.513331) and low 86Sr/87Sr (0.702279–0.702789). These features suggest that Type 1 peridotites represent fragments of the newly accreted fertile lithospheric mantle that have undergone ~ 1% of fractional partial melting and later weak silicate–melt metasomatism, similar to Phanerozoic lithospheric mantle beneath the eastern North China Craton. Type 2 peridotites may be shallow relics of the older lithospheric mantle depleted in basaltic components, with LREE-enriched and HREE-depleted patterns, relatively low 143Nd/144Nd (0.512499–0.512956) and high 86Sr/87Sr (0.703275–0.703997), which can be produced by 9–14% partial melting and subsequent carbonatite–melt metasomatism. Neither type shows a correlation between equilibration temperatures and Mg# in olivine, indicating that the lithospheric mantle is not compositionally stratified, but both types coexist at similar depths. This coexistence suggests that the residual refractory lithospheric mantle (i.e., Type 2 peridotites) may be irregularly eroded by upwelling asthenosphere materials along weak zones and eventually replaced to create a new and fertile lithosphere mantle (i.e., Type 1 xenoliths) as the asthenosphere cooled. Therefore, the subcontinental lithospheric mantle beneath the lower Yangtze block shared a common evolutional dynamic environment with that beneath the eastern North China Craton during late Mesozoic–Cenozoic time.  相似文献   

10.
《Gondwana Research》2014,25(3):1242-1262
Basal peridotites above the metamorphic sole outcropped around Wadi Sarami in the central Oman ophiolite give us an excellent opportunity to understand the spatial extent of the mantle heterogeneity and to examine peridotites−slab interactions. We recognized two types of basal lherzolites (Types I and II) that change upward to harzburgites. Their pyroxene and spinel compositions display severely variations at small scales over < 0.5 km, and encompass the entire abyssal peridotite trend; clinopyroxenes (Cpxs) show wide ranges of Al2O3, Na2O, Cr2O3 and TiO2 contents. Primary spinels show a large variation of Cr# [= Cr/(Cr + Al)] from 0.04 to 0.53, indicating various degrees of partial melting. Trace-element compositions of peridotites and their pyroxenes also show a large chemical heterogeneity in the base of the Oman mantle section. This heterogeneity mainly resulted from variations of partial-melting degrees due to the change of a mantle thermal regime and a distance from the spreading ridge or the mantle diapir. It was overlapped with subsolidus modification during cooling and fluid metasomatism prior and/or during emplacement. The studied peridotites are enriched in Rb, Cs, Ba, Sr and LREE due to fluid influx during detachment and emplacement stages. Chondrite (CI)-normalized REE patterns for pyroxenes are convex upward with strong LREE depletion due to their residual origin, similar to abyssal peridotites from a normal ridge segment. The Cpxs are enriched in fluid mobile elements (e.g., B, Li, Cs, Pb, Rb) and depleted in HFSE (Ta, Nb, Th, Zr) + LREE, suggesting no effect of melt refertilization. Their HREE contents, combined with spinel compositions, suggest two melting series with 1–5% melting for type II lherzolites, 3– < 10% melting for type I lherzolites and ~ 15% for harzburgites. Hornblendes are enriched in fluid-mobile elements relative to HFSE + U inherited from their precursor Cpx. The clinopyroxenite lens crosscuts the basal lherzolites, forming small-scale (< 5 cm) mineralogical and chemical heterogeneities. It was possibly formed from fractional crystallization of interstitial incremental melt that formed during decompression melting of a normal MORB mantle source. The studied peridotites possibly represent a chemical heterogeneity common to the mantle at an oceanic spreading center.  相似文献   

11.
The Neoproterozoic peridotite-chromitite complexes in the Central Eastern Desert of Egypt, being a part of the Arabian-Nubian Shield, are outcropped along the E–W trend from Wadi Sayfayn, Wadi Bardah, and Jabal Al-Faliq to Wadi Al-Barramiyah, from east to west. Their peridotites are completely serpentinized, and the abundance of bastite after orthopyroxene suggests harzburgite protoliths with subordinate dunites, confirmed by low contents of Al2O3, CaO and clinopyroxene (< 3 vol%) in bulk peridotites. The primary olivine is Fo89.3–Fo92.6, and the residual clinopyroxene (Cpx) in serpentinites contains, on average, 1.1 wt% Al2O3, 0.7 wt% Cr2O3, and 0.2 wt% Na2O, similar in chemistry to that in Izu-Bonin-Marian forearc peridotites. The wide range of spinel Cr-number [Cr/(Cr + Al)], 0.41–0.80, with low TiO2 (0.03 wt%), MnO (0. 3 wt%) and YFe [(Fe3 +/(Cr + Al + Fe3 +) = 0.03 on average)] for the investigated harzburgites-dunites is similar to spinel compositions for arc-related peridotites. The partial melting degrees of Bardah and Sayfayn harzburgites range mainly from 20 to 25% and 25 to 30% melting, respectively; this is confirmed by whole-rock chemistry and Cpx HREE modelling (~ 20% melting). The Barramiyah peridotite protoliths are refractory residues after a wide range of partial melting, 25–40%, where more hydrous fluids are available from the subducting slab. The Neoproterozoic mantle heterogeneity is possibly ascribed mainly to the wide variations of partial melting degrees in small-scale areas, slab-derived inputs and primordial mantle compositions. The Sayfayn chromitites were possibly crystallized from island-arc basaltic melts, followed by crystallization of Barramiyah chromitites from boninitic melt in the late stage of subduction. The residual Cpx with a spoon-shape REE pattern is rich in both LREE and fluid-mobile elements (e.g., Pb, B, Li, Ba, Sr), but poor in HFSE (e.g., Ta, Nb, Zr, Th), similar to Cpx in supra-subduction zone (SSZ) settings, where slab-fluid metasomatism is a prevalent agent. The studied chromitites and their host peridotites represent a fragment of sub-arc mantle, and originated in an arc-related setting. The systematic increase in the volume of chromitite pods with the increasing of their host-peridotite thickness from Northern to Southern Eastern Desert suggests that the thickness of wall rocks is one factor controlling the chromitite size. The factors controlling the size of Neoproterozoic chromitite pods are the thickness, beside the composition, of the host refractory peridotites, compositions and volumes of the supplied magmas, the amount of slab-derived fluids, and possibly the partial melting degree of the host peridotites.  相似文献   

12.
《Gondwana Research》2015,28(4):1560-1573
We used Os isotopic systematics to assess the geochemical relationship between the lithospheric mantle beneath the Balkans (Mediterranean), ophiolitic peridotites and lavas derived from the lithospheric mantle. In our holistic approach we studied samples of Tertiary post-collisional ultrapotassic lavas sourced within the lithospheric mantle, placer Pt alloys from Vardar ophiolites, peridotites from nearby Othris ophiolites, as well as four mantle xenoliths representative for the composition of the local mantle lithosphere. Our ultimate aim was to monitor lithospheric mantle evolution under the Balkan part of the Alpine-Himalayan belt. The observations made on Os isotope and highly siderophile element (HSE) distributions were complemented with major and trace element data from whole rocks as well as minerals of representative samples. Our starting hypothesis was that the parts of the lithospheric mantle under the Balkans originated by accretion and transformation of oceanic lithosphere similar to ophiolites that crop out at the surface.Both ophiolitic peridotites and lithospheric mantle of the Balkan sector of Alpine-Himalayan belt indicate a presence of a highly depleted mantle component. In the ophiolites and the mantle xenoliths, this component is fingerprinted by the low clinopyroxene (Cpx) contents, low Al2O3 in major mantle minerals, together with a high Cr content in cogenetic Cr-spinel. Lithospheric mantle-derived ultrapotassic melts have high-Fo olivine and Cr-rich spinel that also indicate an ultra-depleted component in their mantle source. Further resemblance is seen in the Os isotopic variation observed in ophiolites and in the Serbian lithospheric mantle. In both mantle types we observed an unusual increase of Os abundances with increase in radiogenic Os that we interpreted as fluid-induced enrichment of a depleted Proterozoic/Archaean precursor. The enriched component had suprachondritic Os isotopic composition and its ultimate source is attributed to the subducting oceanic slab. On the other hand, a source–melt kinship is established between heterogeneously metasomatised lithospheric mantle and lamproitic lavas through a complex vein + wall rock melting relationship, in which the phlogopite-bearing pyroxenitic metasomes with high 187Re/188Os and extremely radiogenic 187Os/188Os > 0.3 are produced by recycling of a component ultimately derived from the continental crust.We tentatively propose a two-stage process connecting lithospheric mantle with ophiolites and lamproites in a geologically reasonable scenario: i) ancient depleted mantle “rafts” representing fragments of lithospheric mantle “recycled” within the convecting mantle during the early stages of the opening of the Tethys ocean and further refertilized, were enriched by a component with suprachondritic Os isotopic compositions in a supra-subduction oceanic environment, probably during subduction initiation that induced ophiolite emplacement in Jurassic times. Fluid-induced partial melts or fluids derived from oceanic crust enriched these peridotites in radiogenic Os; ii) the second stage represents recycling of the melange material that hosts above mantle blocks, but also a continental crust-derived terrigenous component accreted to the mantle wedge, that will later react with each other, producing heterogeneously distributed metasomes; final activation of these metasomes in Tertiary connects the veined lithospheric mantle and lamproites by vein + wall rock partial melting to generate lamproitic melts. Our data are permissive of the view that the part of the lithospheric mantle under the Balkans was formed in an oceanic environment.  相似文献   

13.
The Shergol ophiolitic peridotites along ISZ, Ladakh Himalaya are serpentinized to various degrees and are harzburgite in composition. Electron microprobe analyses of spinels from Shergol Serpentinized Peridotites (SSPs) were carried out in order to evaluate their compositional variation with alteration. Chemical discontinuity was observed from core to rim in analyzed spinel grains with Cr-rich cores rimmed by Cr-poor compositions. From unaltered cores to rims it was observed that Cr3+# and Fe3+# increases while Mg2+# decreases due to Mg2+ − Fe2+ and Al3+ (Cr3+) − Fe3+ exchange with surrounding silicates during alteration. These peridotites contain Al-rich spinels forming subhedral to anhedral grains with lobate and corroded grain boundaries; altered to ferritchromite or magnetite along cracks and boundaries by later metamorphism episode. The unaltered Cr-spinel cores are identified as Al-rich and are characterized by lower values of Cr3+# (0.34–0.40), high Al3+# (0.58–0.68) and Mg2+# (0.52–0.70). Mineral chemistry of these Al-rich Cr-spinels suggest that host peridotites have an affinity to abyssal and alpine-type peridotites. High TiO2 concentration of magmatic Cr-spinel cores are in agreement with MORB melt-residual peridotite interaction. Presence of unaltered magmatic Cr-spinel cores suggest that they do not have re-equilibrated completely with metamorphic spinel rims and surrounding silicates. Cr-spinel core compositions of SSPs suggest an ophiolitic origin derivation by low degrees of melting of a less-moderate depleted peridotite in a mid-ocean ridge tectonic setting. Based on textural and chemical observations the alteration conditions of studied spinel-group minerals match those of transitional greenschist-amphibolite facies metamorphism consistent with estimated metamorphic equilibration temperature of  500–600 °C.  相似文献   

14.
Relative to the North China Craton, the subcontinental lithospheric mantle (SCLM) beneath the Central Asian Orogenic Belt is little known. Mantle-derived peridotite xenoliths from the Cenozoic basalts in the Xilinhot region, Inner Mongolia, provide samples of the lithospheric mantle beneath the eastern part of the belt. The xenoliths are predominantly lherzolites with minor harzburgites, and can be subdivided into three groups, based on the REE patterns of clinopyroxenes. Group 1 peridotites (LREE-enriched), with low modal Cpx (3–7%), high Mg# in olivine (> 90.6) and Cr# in spinel (> 43.8), low whole-rock CaO + Al2O3 contents (1.62–3.22 wt.%) and estimated temperatures of 1043–1126 °C, represent moderately refractory SCLM that has experienced carbonatite-related metasomatism. Group 2 peridotites (LREE-depleted), with high modal Cpx (9–13%), low Mg# in olivine (< 90.6) and Cr# in spinel (< 20.0), high whole-rock CaO + Al2O3 contents (4.93–6.37 wt.%) and estimated temperatures of 814–970 °C, show affinity with Phanerozoic fertile SCLM that has undergone silicate-related metasomatism. Group 3 peridotites (convex-upward REE patterns), show wide ranges of olivine-Mg# (88.4–90.6), spinel-Cr# (11.5–47.6), and modal Cpx (3–14%) that overlap Groups 1 and 2. Their spinels have high TiO2 contents (> 0.41 wt.%), implying involvement of reactions between melt and peridotites. The estimated temperatures of Group 3 (1033–1156 °C) are similar to those of Group 1. We suggest that the pre-existing moderately refractory lithospheric mantle (i.e., Group 1) beneath the eastern part of the Central Asian Orogenic Belt was strongly penetrated by upwelling asthenospheric material, and the cooling of this material produced fertile lithospheric mantle (i.e., Group 2). The present lithospheric mantle of this area consists of interspersed volumes of younger fertile and older more refractory lithosphere, with the fertile type dominating the shallower levels of the mantle.  相似文献   

15.
The Cenozoic Haoti kamafugite field (23 Ma) is situated at the western Qinling Orogen, Gansu Province in China, which is a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau. Fresh peridotitic xenoliths entrained in these volcanic rocks provide an opportunity to study the nature and processes of the lithospheric mantle beneath the western Qinling. These xenoliths can be divided into two groups based on the petrological features and mineral compositions, type 1 and type 2. Type 1 xenoliths with strongly deformed texture have higher Fo (90–92.5) contents in olivines, Mg# (91–94) and Cr# (15–35) of clinopyroxenes, and Cr# (36–67) of spinels than the weakly deformed type 2 xenoliths, which have the corresponding values of 89–90, 89–91.5, 10–15 and 5–15 in minerals, respectively. CaO contents in fine-grained olivines are slightly higher than 0.10 wt% compared with coarse-grained ones (less than 0.10 wt%). Fine-grained clinopyroxenes have low Al2O3 + CaO contents (generally <23 wt%) relative to coarse-grained ones (>23 wt%). Fo contents in fine-grained olivines mainly in the melt pocket of the type 1 xenoliths are higher than those in coarse-grained ones, which is somewhat contrary to the type 2 xenoliths without melt pocket. Clinopyroxenes of the type 2 display higher Na2O contents (1.7–1.9 wt%) than those of the type 1 (<1.4 wt%). P–T estimations reveal that the type 1 xenoliths give temperature in range of 1106–1187 °C and pressure of 21–26 kbar and that relatively low temperature (907 and 1022 °C) and pressure (19.0 and 18.5 kbar) for the type 2 xenoliths. The type 1 xenoliths are characterized by depletion due to high degree of partial melting (>10%), modal metasomatic and deformed characteristics, and may represent the old refractory lithospheric mantle. In contrast, the type 2 peridotites show fertile features with low degree of partial melting (<5%) and may represent the newly-accreted lithospheric mantle. The lithospheric mantle beneath the western Qinling underwent partial melting, recrystallization, deformation and metasomatism due to asthenospheric upwelling and the latest decompression responding to the Cenozoic extensive tectonic environment. These processes perhaps are closely related to the evolution of Tibetan Plateau caused by the India-Asian collision.  相似文献   

16.
Neyriz ophiolite in Abadeh Tashk area appears as four major separated massifs in an area with 125 km2, south of Iran. Peridotites including harzburgite, dunite, and lesser low-Cpx lherzolite are the major constituents of the ophiolite with very minor mafic rocks. Usual gabbros of ophiolite complexes are virtually absent from the study area. Mineral modality associated with bulk rock and mineral chemistry of the peridotites show a progression from fertile to ultra-refractory character, reflected by a progressive decrease in modal pyroxenes and in Al2O3, CaO, SiO2, Sc, Ta, V, and Ga values of the studied rocks by approaching chromite deposits. The Neyriz peridotites vary from low-Cpx lherzolite (MgO, 41.97–43.1 wt.%; Al2O3, 0.8–1.3 wt.%) with low content of Cr# spinel (36.7–37.6) and Fo olivine (90.79–91.5) to harzburgite (MgO, 44.31–45.25 wt.%;Al2O3, 0.29–0.45 wt.%; Cr# spinel, 58.2–73.45; Fo olivine, 91.23–91.56), and then to dunite (MgO, 45.9–49.2 wt.%; Al2O3, 0.18–0.48 wt.%) with higher content of Cr# spinel (74.34–79.36) and Fo olivine (91.75–94.68). Compared to modern oceanic settings, mineral and rock composition of low-Cpx lherzolite plot within the field of mid-ocean-ridge environment, whereas those of harzburgite and dunite fall in the field of fore-arc peridotites. As a result of the studies on minerals and whole rock chemistry along with rock interrelationships, we contend that the peridotites were subsequently affected by percolating hydrous boninitic melt from which the high-Cr–Mg, low-Ti chromitites were formed within mantle wedge above the supra-subduction zone in a fore-arc setting.  相似文献   

17.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

18.
This paper reports detailed studies on harzburgite and serpentinite in the Hegenshan ophiolitic mélange. Harzburgite consists mainly of olivine and orthopyroxene with trace amounts of clinopyroxene and chromian spinel. Clinopyroxene occurs as isolated crystals or in the intergrowth of chromian spinel–clinopyroxene–orthopyroxene. Harzburgite is moderately to highly depleted, displaying high Fo contents in olivine (90.8–92.2), moderate Al2O3 contents in orthopyroxene (1.59–2.79 wt%), low heavy REE abundances in clinopyroxene, and moderate Cr# values of spinel (0.50–0.62). The modal proportions of olivine and orthopyroxene pseudomorph grains imply that the parent of the Hegenshan serpentinite should be harzburgite. Whole-rock compositions of the harzburgite and serpentinite samples are characterized by depletions in Al2O3 and CaO and enrichments in light REE, Sr, and U. Geochemical modeling suggests that the Hegenshan harzburgite represents residues after 17–18% partial melting of the primitive mantle. The melt in equilibrium with clinopyroxene is more depleted than typical forearc basalt and boninite. Various pyroxene thermobarometers yield equilibrated temperatures of 945–1067 °C and pressures of 4.8–8.0 kbar for the Hegenshan harzburgite. The oxygen barometer yields results of +0.4 to +1.7 log units above the fayalite–magnetite–quartz buffer for the Hegenshan harzburgite. These petrological and geochemical characteristics, as well as the estimated P–T–fO2 conditions support a back-arc setting for the Hegenshan ophiolitic mélange.  相似文献   

19.
Despite the occurrence of highly variable lithium (Li) elemental distribution and isotopic fractionation in mantle mineral, the mechanism of Li heterogeneity and fractionation remains a controversial issue. We measured Li contents and isotopic compositions of olivine and clinopyroxene xenocrysts and phenocrysts from kamafugite host lavas, as well as minerals in melt pockets occurring as metasomatic products in peridotite xenoliths from the Western Qinling, central China. The olivine xenocrysts in the kamafugites show compositional zonation. The cores have high Mg# (100 × Mg/(Mg+Fe); 91.0–92.2) and Li abundances (5.63–21.7 ppm), low CaO contents (≤0.12 wt%) and low δ7Li values (−39.6 to −6.76‰), which overlap with the compositional ranges of the olivines in the melt pockets as well as those in peridotite xenoliths. The rims of the olivine xenocrysts display relatively low Mg# (85.9–88.2), high CaO contents (0.19–0.38 wt%) and high δ7Li values (18.3–26.9‰), which are comparable to the olivine phenocrysts (Mg#: 86.4–87.1; CaO: 0.20–0.28 wt%; Li: 12.4–36.8 ppm; δ7Li: 18.1–26.0‰) and the silicate-melt metasomatized olivines. The clinopyroxene phenocrysts and clinopyroxenes in the melt pockets have no distinct characteristics with respect to the Li abundances and δ7Li values, but show higher and lower CaO contents, respectively, than the clinopyroxenes from silicate and carbonatite metasomatized samples. These features indicate that Li concentration and isotopic signatures of the cores of the xenocrysts recorded carbonatite melt-peridotite reaction (carbonatite metasomatism) at mantle depth, and the variations in the rims probably resulted from xenocryst–host magma interaction during ascent. Our results reveal that the interaction with carbonatite and silicate melts gave rise to an increase in Li abundance in minerals of peridotite xenoliths at mantle depth or during transportation. In terms of δ7Li, the carbonatite and silicate melts produced remarkably contrasting δ7Li variations in olivine. Based on the systematic variations of Li abundances and Li isotopes in olivines, we suggest that the δ7Li value of olivine is a more important indicator than that of clinopyroxene in discriminating carbonatite and silicate melt interaction agents with peridotites.  相似文献   

20.
Dunitic xenoliths from late Palaeogene, alkaline basalt flows on Ubekendt Ejland, West Greenland contain olivine with 100 × Mg/(Mg + Fe), or Mg#, between 92.0 and 93.7. Orthopyroxene has very low Al2O3 and CaO contents (0.024–1.639 and 0.062–0.275 wt%, respectively). Spinel has 100 × Cr/(Cr + Al), or Cr#, between 46.98 and 95.67. Clinopyroxene is absent. The osmium isotopic composition of olivine and spinel mineral separates shows a considerable span of 187Os/188Os values. The most unradiogenic 187Os/188Os value of 0.1046 corresponds to a Re-depletion age of ca. 3.3 Gy, while the most radiogenic value of 0.1336 is higher than present-day chondrite. The Os isotopic composition of the xenoliths is consistent with their origin as restites from a melt extraction event in the Archaean, followed by one or more subsequent metasomatic event(s). The high Cr# in spinel and low modal pyroxene of the Ubekendt Ejland xenoliths are similar to values of some highly depleted mantle peridotites from arc settings. However, highly depleted, arc-related peridotites have higher Cr# in spinel for a given proportion of modal olivine, compared to cratonic xenolith suites from Greenland, which instead form coherent trends with abyssal peridotites, dredged from modern mid-ocean ridges. This suggests that depleted cratonic harzburgites and dunites from shallow lithospheric mantle represent the residue from dry melting in the Archaean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号