首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the evolution of wave shape over a low-crested structure (LCS) using a 2-D RANS-VOF model. The model predictions of surface elevation and wave skewness and asymmetry are in good agreement with the recent measurements collected in a small scale wave channel at the University of Cantabria (UCA). The empirical formulae relating wave skewness and asymmetry to local Ursell number by Peng et al. (2009) have been extended to include the effect of wave reflection and the ramp in front of LCS and a wider range of Ursell number in the present study. In the presence of LCS, wave skewness decreases slightly above the seaward slope, then increases rapidly up to a maximum value above the structure crest, and decreases drastically above the leeward slope. Wave asymmetry decreases sharply above the seaward slope to a negative minimum value at the structure crest, and then increases rapidly to a positive value above the leeward slope. Our bispectral analysis indicates that sum interactions increase skewness and decrease asymmetry while difference interactions have opposite effects and that the former dominate above the seaward slope and on the structure crest but the latter dominate above the leeward slope of LCS. The observed wave shape evolution over a LCS can be attributed to the changes in the interplay of sum and difference interactions. We found that incident wave height and wave period, relative structure freeboard, structure crest width and structure porosity are the controlling factors for wave shape evolution over LCS. This study provides new insights on the role of wave skewness and asymmetry in the breakwaters stability and sediment transport around the structure and on the beaches behind it.  相似文献   

2.
The numerical model COBRAS-UC [Losada, I.J., Lara, J.L., Guanche,R., Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol 55 (1), 47–62.] is used to carry out a two-dimensional analysis of wave induced loads on coastal structures. The model calculates pressure, forces and moments for two different cross-sections corresponding to a low-mound and a conventional rubble-mound breakwater with a crown-wall under regular and irregular incident wave conditions. Predicted results are compared with experimental information provided in Losada et al. [Losada, I.J., Lara, J.L., Guanche,R., Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol 55 (1), 47–62.] and Lara et al. [Lara, J.L., Losada, I.J., Guanche, R. (2008). “Wave interaction with low mound breakwaters using a RANS model”. Ocean engineering (35), pp 1388–1400; doi:10.1016/j.oceaneng.2008.05.006.] on a 1:20 scale. Good agreement is found, and the differences between both typologies are explained in detail. Additionally, numerical results are also compared with several semi-empirical formulae recommended for design at both the 1:20 model scale and two prototype cross-sections. Results suggest that COBRAS-UC is able to provide realistic stability information that can be used to complete the approach based on currently existing methods and tools.  相似文献   

3.
Significant effort has been made to generate a homogeneous database on wave overtopping consisting of more than 10,000 irregular wave overtopping tests from more than 160 independent projects or test series, each described by means of 31 parameters. Many coastal structures, including dikes, rubble mound breakwaters, berm breakwaters, caisson structures and combinations have been considered and have been schematised for inclusion in the database. All these overtopping tests are represented by over 300,000 numbers in the database.  相似文献   

4.
Stability formulae for armour layers of rubble mound breakwaters are usually being applied assuming perpendicular wave attack. Often the effects of oblique waves are neglected. This is however a conservative assumption since the stability of armour slopes generally increases for oblique waves. New wave basin tests have been performed to assess the effects of oblique waves on the stability of rock slopes and the stability of cube armoured rubble mound breakwaters. The physical model tests were focussed on wave directions between perpendicular (0°) and parallel (90°). The test programme included tests with long-crested waves and tests with short-crested waves. The results show that for rock slopes the influence of oblique waves is larger for long-crested waves. Based on the test results a design guideline is provided to account for effects of oblique waves on the stability of rock slopes, armour layers with a double layer of cubes, and armour layers with a single layer of cubes.  相似文献   

5.
Many breakwaters are, due to functional requirements, designed for small wave overtopping discharges. From the EC-research projects OPTICREST and CLASH it is known that overtopping discharges determined from conventional Froude scale models of rubble mound breakwaters are smaller than measured in corresponding prototypes. The present study examines this scale effect by comparing overtopping discharges in small scale and large scale tests. The length scale ratio between the models was 5.7.  相似文献   

6.
To study the influence of wave obliquity and directional spreading on wave overtopping of rubble mound breakwaters a total of 736 three-dimensional model tests were carried out at Aalborg University. The results of these tests are presented and analysed in this paper yielding a new empirical reduction factor to describe the influence of wave obliquity and directional spreading on the average wave overtopping discharges. The study shows that perpendicularly incident, long-crested waves result in conservative values of the overtopping discharge for the tested cross-section.  相似文献   

7.
Rubble mound breakwaters usually consist of armour, filter and core layers. The units used in the armour layer are natural rock or concrete. Although natural rock is usually preferred, it is not always possible to apply it. There are some advantages to using concrete units: they have a high stability coefficient under wave attack, and they are easily produced at work sites. Tetrapod and cube blocks are widely used in breakwaters as armour units.Rubble mound breakwaters are subjected not only to wave activity but also other types of environmental loading, such as earthquakes. Although rubble-mound breakwaters are most likely the most common type of breakwaters, they have received little attention regarding their response to seismic activity. The objective of this study is to present the dynamic response of a breakwater armoured by tetrapods placed by two different placement methods and armoured by cubes during seismic loadings experimentally and numerically. A shaking tank was developed for the experimental study. The breakwater models sit on a rigid bed, and the model scale is 1/50. A one-dimensional shaking tank was used to understand simple responses of the rubble mound breakwaters under seismic loads. The tank allows only one degree of freedom. A raining crane system was developed to achieve the same packing density and porosity for the core material. The shape of the model breakwater before and after the tests was measured using a profiler and was recorded by computer. However, crest lowering and the level of damage on slopes were determined from profiler records. The dynamic responses of the model breakwaters were also investigated using an image processing technique. For numerical simulation, software using finite element method was used.The results obtained from the experiment and numerical model may help designers build breakwaters armoured by artificial units.  相似文献   

8.
Most previous investigations related to composite breakwaters have focused on the wave forces acting on the structure itself from a hydrodynamic aspect. The foundational aspects of a composite breakwater under wave-induced cyclic loading are also important in studying the stability of a composite breakwater. In this study, numerical simulations were performed to investigate the wave-induced pore water pressure and flow changes inside the rubble mound of the composite breakwater and seabed foundation. The validity and applicability of the numerical model were demonstrated by comparing numerical results with existing experimental data. Moreover, the present model clearly has shown that the instantaneous directions of pore water flow motion inside the seabed induced by surface waves are in good agreement with the general wave-induced pore water flow inside the seabed. The model is further used to discuss the stability of a composite breakwater, i.e., the interaction among nonlinear waves, composite breakwater and seabed. Numerical results suggest that the stability of a composite breakwater is affected by not only downward shear flow generating on the seaward slope face of the rubble mound but, also, a high and dense pore water pressure gradient inside the rubble mound and seabed foundation.  相似文献   

9.
结合物理模型试验,分析斜坡坡度、波陡、相对水深、护面类型和破波参数等因素对堆石防波堤不规则波浪反射系数的影响规律。将常用的Van der Meer公式,Seelig公式,Postma公式和Davison公式计算值和实测值进行比较,并结合试验数据,基于有效波高和平均周期定义的Iribarren数,得出堆石防波堤不规则波浪反射系数经验公式。结果表明,该公式能较好地计算不规则波作用下块石和扭王块体护面堆石防波堤波浪反射系数。  相似文献   

10.
-The construction of breakwaters in China in more than 40 years since the founding of the People's Republic of China is reviewed. The construction of two main types of breakwater, upright breakwaters and rubble mound breakwaters, and the way in which they are built are expounded. Recommendations to improve the technology for future breakwater construction are presented.  相似文献   

11.
《Coastal Engineering》2005,52(10-11):915-929
A part of the DELOS research focused on wave transformation at low-crested structures, called LCS. This paper gives a summary of all results. Wave transmission on rubble mound structures has been subject for more flume tests in the DELOS programme and simultaneously an existing database has been increased extensively by receiving data from other researchers in the world. This new database consists of more than 2300 tests and has been used to come up with the best 2D wave transmission formula for rubble mound LCS, although not necessarily new as existing ones have been evaluated. Oblique wave attack on LCS was a second objective within DELOS. Results were analysed leading to new empirical transmission formulae for smooth LCS and to conclusions on 3D effects for both rubble mound and smooth LCS. The spectral shape changes due to wave transmission and this change has been subject of analysis for all new test data described above. Although analysis has not been finished completely, former assumptions on spectral change were more or less confirmed. Finally, some analysis was performed on reflection at LCS and a first formula was derived to take into account the effect that wave overtopping or transmission reduces reflection and must be dependent on the crest height of the structure.  相似文献   

12.
Numerical analysis of wave overtopping of rubble mound breakwaters   总被引:1,自引:0,他引:1  
The paper describes the results of a two-dimensional (2-D) numerical modelling investigation of the functionality of rubble mound breakwaters with special attention focused on wave overtopping processes. The model, COBRAS-UC, is a new version of the COBRAS (Cornell Breaking Waves and Structures) based on the Volume Averaged Reynolds Average Navier–Stokes (VARANS) equations and uses a Volume of Fluid Technique (VOF) method to capture the free surface. The nature of the model equations and solving technique provides a means to simulate wave reflection, run-up, wave breaking on the slope, transmission through rubble mounds, overtopping and agitation at the protected side due to the combined effect of wave transmission and overtopping. Also, two-dimensional experimental studies are carried out to investigate the performance of the model. The computations of the free surface and pressure time series and spectra under regular and irregular waves, are compared with the experimental data reaching a very good agreement. The model is also used to reproduce instantaneous and average wave overtopping discharge. Comparisons with existing semi-empirical formulae and experimental data show a very good performance. The present model is expected to become in the near future an excellent tool for practical applications.  相似文献   

13.
为推广应用新型弧面胸墙沉箱堤,结合模型试验和数值模拟对比分析了深水工况下弧面胸墙沉箱堤和削角胸墙沉箱堤的反射形态。波面和波压的数值结果与试验数据吻合良好,验证了数值方法的有效性。反射系数表明,入射波浪在与弧面胸墙沉箱堤相互作用过程中的能量损耗最小,其反射强于削角胸墙沉箱堤。波面和流速包络图显示,两种堤型均在堤前形成了部分立波系统,腹点和节点以四分之一波长的距离增量交替出现,胸墙和直立部分产生的反射波存在相位差,导致初始腹点的位置向海侧偏移。弧面胸墙沉箱堤前叠合波的相位差影响最小,腹点包络高度最大,节点包络高度最小,反射效应最明显。两种堤型前中下层水流的周期平均速度均较小且对称,表明底床泥沙不会产生趋势性输移,但迎浪基床上方的环流系统可能引起局部冲刷。相对而言,弧面胸墙沉箱堤前的环流强度最弱,更有利于冲刷防护。  相似文献   

14.
1 .IntroductionWavereflectionfromstructuresisanimportantfactorforthedesignofthestructures .Therehavebeenmanyresearchesonwavereflectionwithregularwavesandmonochromaticirregularwaves .Miche( 1 951 )proposedanon dimensionalMichenumberMfornormallyincidentirregularwavesconsideringwavebreakingbecauseofthedeepeningofwavesteepnessontheslopeofbreakwaters .ThereflectioncoefficientisproportionaltoM ,i.e .,Kr ∝M =4g( 2π) 5/ 2tan5/ 2 α(Hsf2p) ( 1 )wheregisthegravitationalacceleration ,Hsthesignifican…  相似文献   

15.
A numerical assessment study of tsunami attack on the rubble mound breakwater of Haydarpasa Port, located at the southern entrance of the Istanbul Bosphorus Strait in the Sea of Marmara, Turkey, is carried out in this study using a Volume-Averaged Reynolds-Averaged Navier-Stokes solver, IHFOAM, developed in OpenFOAM® environment. The numerical model is calibrated with and validated against the data from solitary wave and tsunami overflow experiments representing tsunami attack. Furthermore, attack of a potential tsunami near Haydarpasa Port is simulated to investigate effects of a more realistic tsunami that cannot be generated in a wave flume with the present state of the art technology. Discussions on practical engineering applications of this type of numerical modeling studies are given focusing on pressure distributions around the crown-wall of the rubble mound breakwater, and the forces acting on the single stone located behind the crown-wall at the rear side of the breakwater. Numerical modeling of stability/failure mechanism of the overall cross-section is studied throughout the paper.The present study shows that hydrodynamics along the wave flume and over the breakwater can be simulated properly for both solitary wave and tsunami overflow experiments. Stability of the overall cross-section can only be simulated qualitatively for solitary wave cases; on the other hand, the effect of the time elapsed during tsunami overflow cannot be reflected in the simulations using the present numerical tool. However, the stability of the overall cross-section under tsunami overflow is assessed by evaluating forces acting on the rear side armor unit supporting the crown-wall of the rubble mound breakwater as a practical engineering application in the present paper. Furthermore, two non-dimensional parameters are derived to discuss the stability of this armor unit; and thus, the stability condition of the overall cross-section. Approximate threshold values for these non-dimensional parameters are presented comparing experimental and numerical results as a starting point for engineers in practice. Finally, investigations on the solitary wave and tsunami overflow experiments/simulations are extended to the potential tsunami simulation in the scope of both representation of a realistic tsunami in a wave flume and stability of the rubble mound breakwater.  相似文献   

16.
Through hydraulic model experiment and site investigation, this paper has derived a calculation formula of dry-laid stone armour layer thickness of rubble mound breakwaters for fishery harbours. The influences of the friction force between stone blocks and the variations of wave length or period and water depth are considered in the formula. The calculated results of several existing structures are in good agreement with field data. This formula is more practical than those ever published both at home and abroad, and has been adoptted by the technical standards of aquatic projects published by the Ministry of Agriculture of China. It is applicable for the calculation of dry-laid stone armour layer of breakwater for small- or medium-size harbours.  相似文献   

17.
抛石防波堤人工护面块体强度模拟研究   总被引:1,自引:0,他引:1  
本文主要研究了混凝土人工护面块体在模型试验中的强度模拟问题,根据不同比尺要求的强度指标,确定新型材料组成成份及其配比,并针对已有防波堤护面块体的破坏情况,进行了水槽模型验证试验。  相似文献   

18.
The semi-empirical formulae by Pedersen (1996) for wave loads on vertical front faces of stiff crown walls are based on model tests with deep and intermediate water wave conditions. A new series of model tests performed at the same test facility as used by Pedersen has revealed that the formulae by Pedersen overpredict the loads in shallow water wave conditions. This paper presents a modification/expansion of the formulae to cover loads in both deep and shallow water wave conditions. The modification is based on a series of 162 physical model tests on typical rubble mound breakwaters with crown wall superstructures. The implementation of shallow water wave conditions in the formulae is done by modifying the term for wave run-up to be dependent on the incident wave height distribution. Moreover, the adjusted formulae provide more accurate estimates of the wave loads on free walls without front armour protection. Pressure transducers with very high eigen-frequencies were used in the present model tests as opposed to the transducers applied by Pedersen which in some cases seem to have been affected by dynamic amplifications.  相似文献   

19.
The application of directional waves in design processes has clearly received much interest during recent years. Thus, in model testing with moored ships and offshore structures, significant deviations have been revealed between results obtained in traditional uni-directional wave trains and those obtained in directional wave fields. Whether the same tendency is valid in connection with the design of rubble mound breakwaters is studied in the present project. A breakwater with a front slope of 1:2 is tested at the scale 1:40. The weight and diameter of the stones in the core, filter and armour layers were carefully selected, and the sources of scatter in repeated tests were minimized. Furthermore, the incident wave energy was accurately adjusted to keep the same level in both uni-directional and directional waves. For the actual rubble-mound breakwater unambiguous results were obtained. When uni-directional waves were applied, the damage increased by 30–50% relative to the directional wave situation.  相似文献   

20.
Based on the open source code OpenFOAM,a three-dimensional model is presented for simulation of the interaction between waves and rubble mound breakwater with armor units.The armor units with their real geometries are depicted through computational grids.The volume-averaged RANS equation and the seepage equation containing nonlinear term are used to describe the percolation in the core and underlayer of the breakwater.Grids independence analysis are carried out,the horizontal and vertical grid size are recommended to take as one-fifteenth of the mean nominal diameter D50 of the armor units and one-fifteenth of the wave height respectively.Random wave overtopping of rubble mound breakwater with armor units is simulated through the proposed model.The results show good agreement between the simulated and measured overtopping discharge rates for different types of armor units.The developed numerical model can be used to evaluate the random wave overtopping in design of rubble mound breakwater with artificial armor blocs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号