首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen, micro-charcoal and total carbon analyses on sediments from the Turbuta palaeolake, in the Transylvanian Basin of NW Romania, reveal Younger Dryas to mid-Holocene environmental changes. The chronostratigraphy relies on AMS 14C measurements on organic matter and U/Th TIMS datings of snail shells. Results indicate the presence of Pinus and Betula open woodlands with small populations of Picea, Ulmus, Alnus and Salix before 12,000 cal yr BP. A fairly abrupt replacement of Pinus and Betula by Ulmus-dominated woodlands at ca. 11,900 cal. yr BP likely represents competition effects of vegetation driven by climate warming at the onset of the Holocene. By 11,000 cal yr BP, the woodlands were increasingly diverse and dense with the expansion of Quercus, Fraxinus and Tilia, the establishment of Corylus and the decline of upland herbaceous and shrubs taxa. The marked expansion of Quercus accompanied by Tilia between 10,500 and 8000 cal yr BP could be the result of low effective moisture associated with both low elevation of the site and with regional change towards a drier climate. At 10,000 cal yr BP, Corylus spread across the region, and by 8000 cal yr BP it replaced Quercus as a dominant forest constituent, with only little representation of Picea abies. Carpinus became established around 5500 cal yr BP, but it was only a minor constituent in local woodlands until ca. 5000 cal yr BP. Results from this study also indicate that the woodlands in the lowlands of Turbuta were never closed.  相似文献   

2.
Pollen analysis from a peat core 7.0 m in length, taken from a bog near Bisoca, in a mid-altitude area of the Buzăului Subcarpathian mountains, is used to reconstruct the postglacial vegetation history of the region. The vegetation record, which is supported by twelve 14C dates, starts at the end of the Late Glacial period. At the Late Glacial/Holocene transition, open vegetation was replaced by forest, suggesting a fast response to climatic warming. The Holocene began with the expansion of Betula, Pinus and Ulmus, followed, after 11,000 cal yr BP, by Fraxinus, Quercus, Tilia and Picea. The rapid expansion of these taxa may be due to their existence in the area during the Late Glacial period. At ca. 9200 cal yr BP, Corylus expanded, reaching a maximum after 7600 cal yr BP. The establishment of Carpinus occurred at ca. 7200 cal yr BP, with a maximum at ca. 5700 cal yr BP. Fagus pollen is regularly recorded after 7800 cal yr BP and became dominant at ca. 2000 cal yr BP. The first indications of human activities appear around 3800 cal yr BP.  相似文献   

3.
Records of past vegetation and fire history can be complicated by changes in the depositional environment of a sampling location. However, these changes can alternatively be used as a measure of climate variability. Our study site, ca. 18.0 cal. ka BP record from Little Brooklyn Lake, Wyoming, located near the crest of the Snowy Range, records three moisture states. Initially, the lake was likely a glacier‐fed pond indicated by the presence of Pediastrum algae colonies. Around 13.0 cal. ka BP this pond transitioned to a meadow environment, suggested by the loss of Pediastrum algae colonies and slow sedimentation rates. Meadow conditions were maintained until ca. 5.0 cal. ka BP when Pediastrum algae colony abundance increased,indicating the formation of a shallow lake. From 18.0 to ca. 5.0 cal. ka BP, the pollen record is suggestive of alpine vegetation conditions with relatively high spruce and herbaceous taxa. Low charcoal influx also characterizes the period between 18.0 and 5.0 cal. ka BP. After 5.0 cal. ka BP, the coincidence of the formation of shallow lake and pollen data, indicating a shift to a spruce and fir forest, suggests an increase in effective moisture. Fire remained rare in this basin over the entire record, however, once the lake established sedimentation rates and charcoal influx increased. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The glacial history in the topographically confined paleo-ice stream drainage route of Vestfjorden, North Norway, was analysed based on bathymetric data, high-resolution seismology and 14C AMS-dated gravity cores. The inner part of the fjord is characterised by axial-parallel mega-scale lineations whereas the outer part is dominated by two marginal morainal bank systems. The Værøy (inner) and Røst (outer) marginal moraine systems comprise several transverse, zigzag-shaped ridges. Seismic records show thrusted and folded sediment blocks within the ridges. The landforms are inferred to reflect basal processes and the transition from warm-based (inner fjord) to cold-based (outer fjord) conditions, i.e. fast flow followed by basal freeze-on, sediment deformation and morainal bank formation. The moraines formed during the final part of two paleo-ice sheet re-advances. 14C AMS dating indicates a maximum age of 13.7 14C ka BP (16.2 cal ka BP) for the Røst system whereas the Værøy system is inferred to be slightly older than 12.5 14C ka BP (14.5 cal ka BP). This demonstrates that the northern part of the Fennoscandian Ice Sheet behaved in a much more dynamic way during the early deglaciation than previously assumed.  相似文献   

5.
A 10 m long peat core from the Kanaka Crater (20° 25′ S, 57° 31′ E), located at 560 m elevation in Mauritius, was analyzed for microfossils. Eight radiocarbon ages show the pollen record reflects environmental and climatic change of the last ca. 38 cal ka BP. The record shows that the island was continuously covered by forest with Erica heath (Philippia) in the uplands. Cyperaceous reedswamp with Pandanus trees was abundant in the coastal lowlands as well as locally in the waterlogged crater. The record shows changes in climatic humidity (wet from 38.0 to 22.7 cal ka BP, drier from 22.7 to 10.6 cal ka BP, and wetter again from 10.6 cal ka BP to recent) as the main response to climate change. A high turnover in montane forest species is evidenced at 22.7 cal ka BP and at the start of the Holocene. The limited altitudinal ranges in the mountains of Mauritius (maximum altitude 828 m), and changing humidity being more important than changing temperature, suggests that in response to climate change a reassortment in taxonomic composition of montane forests might be equally important as displacement of forest types to new altitudinal intervals. We found weak impact of the latitudinal migration of the Intertropical Convergence Zone and data suggest that the Indian Ocean Dipole is a more important driver for climatic change in the southwest Indian Ocean. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6"S, 79°06'41.5"W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates.  相似文献   

7.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

8.
This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae ~16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared ~15.9 cal. ka BP, and became dominant after ~15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after ~13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum ~11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant ~11.8–11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between ~10.6 and 7 cal. ka BP. Vegetation became similar to the modern after ~7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.  相似文献   

9.
Late Quaternary glacier fluctuations in the Macha Khola valley (Gorkha Himal, Nepal) were reconstructed using relative and absolute dating techniques. Our results indicate that younger moraine complexes were left by Late Holocene (<1.7 cal. ka BP), mid-Holocene (ca 3 cal. ka BP), and Lateglacial (ca 13 cal. ka BP) ice advances. Older Late Quaternary glacier advances occurred during Marine Oxygen Isotope Stages (MIS) 2 and 3–4. No relics of Middle or Early Pleistocene glaciations could be found. During MIS 3–4, glaciers advanced down to an altitude of at least 2150 m a.s.l., corresponding to an ELA depression of approximately 1300 m. At about 3500 m a.s.l., the MIS 2 Macha Khola glacier reached almost the thickness of the former MIS 3–4 glacier and retreated some time before 17.9 cal. ka BP. The Lateglacial glacier advanced again several times to altitudes between 2450 and 3400 m a.s.l. The mid-Holocene glaciers extended much farther down-valley than the Late Holocene ones. Dendrochronological data of Abies spectabilis suggested several periods of unfavourable growth conditions especially at the beginning of the 19th (1820) and 20th (1905) centuries.  相似文献   

10.
We present here the results of pollen analysis of two sequences of about 8.06 m and 11.90 m length, originating from two adjacent peat bogs in the southern part of Transylvania province, Romania (155 and 122 pollen spectra). The vegetation record, which is supported by 17 14C dates, begins in the Late Glacial interstadial when forest recolonisation began with the development of Pinus, without a pioneer Betula phase. Picea began to expand from regional refuges. After a well‐defined Younger Dryas, the Holocene opens with the expansion of Betula, Ulmus and Picea, followed, at about 10 400 cal. yr BP, by Fraxinus, Quercus and Tilia. The Corylus optimum is correlated with the Atlantic chronozone (after 8600 cal. yr BP). The local establishment of Carpinus occurred at about 6500 cal. yr BP, with a maximum at about 5700 cal. yr BP. Fagus pollen is regularly recorded after 8200 cal. yr BP. This taxon became dominant at about 3700 cal. yr BP. The first indications of human activities appear at around 7200 cal. yr BP. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A pollen record from Huguangyan Maar Lake documents regional palaeovegetation and palaeoclimate changes in southern China over the last 30 000 years. Huguangyan Maar Lake is located close to the South China Sea (SCS) coastline and is influenced by the East Asian Monsoon (EAM). The pollen assemblages show a succession of vegetation and climate changes. During the Last Glaciation, 30–15.8 cal. ka BP, the Huguangyan area was dominated by subtropical evergreen‐deciduous forest with grassland surrounding the lake, indicating a colder and drier climate than today. During 15.8–11 cal. ka BP, the study area experienced several climatic fluctuations. From 11 to 2 cal. ka BP, the climate shifted to warmer and wetter conditions. After the Holocene Optimum in the early Holocene, the temperature and precipitation decreased. The sediment record of the last 2000 years cannot be used to interpret natural palaeoclimate changes due to the intense anthropogenic influences. Overall, however, the Huguangyan pollen archive highlights the rapid responses of subtropical vegetation to insolation changes in southern China.  相似文献   

12.
This paper presents high-resolution results of palynological and sedimentological analyses undertaken on two sediment cores from the Megali Limni (ML) basin, an area characterised by serpentine soils, in the southeastern part of Lesvos Island, Greece. Six tephra horizons and multiple radiocarbon dates provide independent controls towards the development of a chronological framework. The composite pollen record spans the period from 22 to 62 thousand years ago (ka) BP and shows a number of oscillations between steppe, forest-steppe and forest, in concert with North Atlantic millennial-scale variability. Vegetation during the late Marine Isotope Stage (MIS) 4 was grassland/steppe, indicating cold and arid conditions, while sediment composition suggests increased erosion rates. Arboreal populations (dominated by Pinus and to a lesser extent deciduous Quercus) expanded during MIS 3 interstadials, suggesting increases in precipitation and temperature. Within the course of the longer interstadials, changes in vegetation composition point to a trend towards increased aridity and sometimes decreasing winter temperatures. During intervening stadials, vegetation was composed mainly of Artemisia, Chenopodiaceae and Gramineae, indicating reversals to arid and cold conditions, with most extreme conditions recorded during stadials corresponding to Heinrich Events. During the course of MIS 3, the basin was progressively infilled with sediments. Only a small portion of MIS 2 is represented in the sequence, showing a short-lived expansion of arboreal populations. Comparisons with other pollen sequences from southern Europe underscore the important role of Pinus throughout the last glacial period, a reflection of the serpentine soils of the Megali Limni area, where Pinus brutia dominates today.  相似文献   

13.
头社盆地位于中国台湾省中部,东亚季风区的最前沿,对东亚季风的响应十分敏感,研究其中晚全新世以来古植被、重建古气候序列,探讨其气候与东亚夏季风的关系具有重要的科学意义。文章对头社盆地泥炭—湖泊沉积的AMS14C测年、体积磁化率测试的基础上,基于孢粉记录,重建晚全新世来植被变化,恢复古气候。结果表明全新世中晚期以来分六个阶段:6.2~6.0 cal ka BP,气候凉干,植被类型是亚热带常绿阔叶林;6.0~4.0 cal ka BP,气候转暖湿,植被类型为含较多热带成分的亚热带常绿阔叶林;4.0~2.2 cal ka BP,气候相对凉干,植被类型转为亚热带常绿阔叶林;2.2~1.9 cal ka BP,气候又变暖湿;1.9~1.7 cal ka BP,气候快速冷干事件,森林退化;1.7~1.3 cal ka BP,气候重转温暖湿润,植被类型为接近现代的沼泽草原。整体上6.2~2.2 cal ka BP的气候变化是由温暖湿润向温凉干燥转变的趋势,这是全新世中晚期以来的太阳辐射量减少所导致的,太阳辐射量的减少导致热带辐合南移,进而导致东亚夏季风减弱,而2.2 cal ka BP之后气候波动较大,可能是在东亚夏季风减弱的背景下,ENSO活动加强与人类活动的干扰下耦合的结果。  相似文献   

14.
Climatically driven Late Pleistocene and Holocene vegetation changes were reconstructed based on pollen records from the sediments of Lake Kotokel and Cheremushka Bog, located on the eastern shore of Lake Baikal. The described paleoenvironmental record has higher resolution than records collected from Lake Baikal and unites individual events identified in prior studies of bottom and onshore cores. Remarkable shifts in landscapes and expansions of index plants are as follows. Forest tundra and/or forest steppe landscape with birch, spruce, Artemisia, and Poaceae prevailed at ca. 50–25 14C kyr BP. Tundra and/or steppe vegetation dominated by Artemisia and Poaceae was typical for the Last Glacial Maximum. The expansion of shrub birch and willow occurred at ca. 15.5 14C kyr BP. Two peaks of spruce expansion at ca. 47.5–42.4 14C kyr BP (Karginian time) and at ca. 14.5–13 ka (Bølling-Allerød warm intervals) suggest that the condition were more humid than today. A slight increase in Artemisia at ca. 11–10.5 14C kyr BP (13–12 ka) was indicative of the Younger Dryas event. An expansion of birch forests with fir at ca. 12–6.4 ka suggests higher humidity. The currently dominant Scots and Siberian pine forests with birch expanded since 6.4 ka.  相似文献   

15.
Late Quaternary (MIS 3 to Recent) oceanographic evolution of the Basque shelf has been analysed for the first time based on the sedimentological analysis of three cores obtained from the middle and outer shelves. The cores are located in two interfluves separated by the San Sebastian canyon. The variability of the percentage of the planktonic foraminifera species Neogloboquadrina pachyderma sin. and of δ18Obull allowed us to identify the influence of colder and warmer waters in the Basque shelf during the late Quaternary. From 56 cal. ka BP to the end of the Last Glacial Maximum (19 cal. ka BP) the sedimentary record shows a decreasing trend in the mean grain size that correlates with the eustatic sea‐level fall. The last Deglaciation (19–11.5 cal. ka BP) is characterized by a sea‐level rise that produced an important hiatus in the western outer shelf. During the Holocene, the middle and outer shelves present different behaviours. From 11.5 to 6.7 cal. ka BP, in the outer shelf the sea‐level rise that started during the Deglaciation produced a hiatus, whereas in the middle shelf the sedimentary succession records the presence of warm to temperate waters. Between 6.7–4.9 cal. ka BP, the entrance of cold surface water‐masses that only affected the middle shelf has been identified, and temperate to warm waters occurred in the outer shelf. The cold surface water‐masses retreated during 4.9–4.3 cal. ka BP in the middle shelf. Finally, from 4.3 cal. ka BP to Recent, the middle shelf registers a hiatus due to sea‐level stabilization after a generalized transgression, synchronous to a decrease in the energy of the water‐masses in the outer shelf. In conclusion, the environmental changes detected in the Basque shelf are attributed to both regional and eustatic sea‐level changes.  相似文献   

16.
A sediment core 7.2 m long from Lake Mirabad, Iran, was examined for loss-on-ignition, mineralogy, oxygen-isotopic composition of authigenic calcite, and trace-element composition of ostracodes to complement earlier pollen and ostracode-assemblage studies. Pollen, ostracode-inferred lake level, and high Sr/Ca ratios indicate that the early Holocene (10000 to 6500 cal yr BP) was drier than the late Holocene. Low δ18O values during this interval are interpreted as resulting from winter-dominated precipitation, characteristic of a Mediterranean climate. Increasing δ18O values after 6500 cal yr BP signal a gradual increase in spring rains, which are present today. A severe 600-yr drought occurred at ca. 5500 cal yr BP, shortly after the transition from pistachio-almond to oak forest. During the late Holocene, two milder droughts occurred at about 1500 and 500 cal yr BP. Within the resolution of the record, no drought is evident during the collapse of the Akkadian empire (4200–3900 cal yr BP). Rather, a decrease in δ18O values to early-Holocene levels may indicate the return to a Mediterranean precipitation regime.  相似文献   

17.
We report pollen and charcoal records from Vega Ñandú ( 51°0′S, 72°45′W), a small mire located near the modern forest-steppe ecotone in Torres del Paine National Park, southern Chile. The record shows an open landscape dominated by low shrubs and herbs between 12,600 and 10,800 cal yr BP, under cold and relatively humid conditions. Nothofagus experienced frequent, large-amplitude oscillations between 10,800 and 6800 cal yr BP, indicating recurrent transitions between shrubland/parkland environments, under warm and highly variable moisture conditions. A sustained increase in Nothofagus started at 6800 cal yr BP, punctuated by step-wise increases at 5100 and 2400 cal yr BP, implying further increases in precipitation. We interpret these results as indicative of variations in the amount of precipitation of westerly origin, with prominent increases at 6800, 5100, and 2400 cal yr BP. These pulses led to peak precipitation regimes during the last two millennia in this part of SW Patagonia. Our data suggest variations in the position and/or strength of the southern margin of the westerlies, most likely linked to variations in the extent and/or persistence of sea ice and sea-surface temperature anomalies in the Southern Ocean. Over the last two centuries the record shows a forest decline and expansion of Rumex acetosella, an exotic species indicative of European disturbance.  相似文献   

18.
Plant macrofossils from 33 rodent middens sampled at three sites between 2910 and 3150 m elevation in the main canyon of the Río Salado, northern Chile, yield a unique record of vegetation and climate over the past 22,000 cal yr BP. Presence of low-elevation Prepuna taxa throughout the record suggests that mean annual temperature never cooled by more than 5°C and may have been near-modern at 16,270 cal yr BP. Displacements in the lower limits of Andean steppe and Puna taxa indicate that mean annual rainfall was twice modern at 17,520–16,270 cal yr BP. This pluvial event coincides with infilling of paleolake Tauca on the Bolivian Altiplano, increased ENSO activity inferred from a marine core near Lima, abrupt deglaciation in southern Chile, and Heinrich Event 1. Moderate to large increases in precipitation also occurred at 11,770–9550 (Central Atacama Pluvial Event), 7330–6720, 3490–2320 and at 800 cal yr BP. Desiccation occurred at 14,180, 8910–8640, and 4865 cal yr BP. Compared to other midden sites in the region, early Holocene desiccation seems to have happened progressively earlier farther south. Emerging trends from the cumulative midden record in the central Atacama agree at millennial timescales with improved paleolake chronologies for the Bolivian Altiplano, implying common forcing through changes in equatorial Pacific sea-surface temperature gradients.  相似文献   

19.
Analysis of pollen, spores, macrofossils, and lithology of an AMS 14C-dated core from a subarctic fen on the Kenai Peninsula, Alaska reveals changes in vegetation and climate beginning 14,200 cal yr BP. Betula expansion and contraction of herb tundra vegetation characterize the Younger Dryas on the Kenai, suggesting increased winter snowfall concurrent with cool, sunny summers. Remarkable Polypodiaceae (fern) abundance between 11,500 and 8500 cal yr BP implies a significant change in climate. Enhanced peat preservation and the occurrence of wet meadow species suggest high moisture from 11,500 to 10,700 cal yr BP, in contrast to drier conditions in southeastern Alaska; this pattern may indicate an intensification and repositioning of the Aleutian Low (AL). Drier conditions on the Kenai Peninsula from 10,700 to 8500 cal yr BP may signify a weaker AL, but elevated fern abundance may have been sustained by high seasonality with substantial snowfall and enhanced glacial melt. Decreased insolation-induced seasonality resulted in climatic cooling after 8500 cal yr BP, with increased humidity from 8000 to 5000 cal yr BP. A dry interval punctuated by volcanic activity occurred between 5000 and 3500 cal yr BP, followed by cool, moist climate, coincident with Neoglaciation. Tsuga mertensiana expanded after ~ 1500 cal yr BP in response to the shift to cooler conditions.  相似文献   

20.
伍婧  刘强 《地球科学》2012,37(5):947-954
地处季风/非季风影响过渡地带的月亮湖是大兴安岭中段阿尔山-柴河火山区中的一个火山口湖.其长8.86 m的沉积岩心孢粉记录, 揭示了末次冰期晚期以来的古植被演化和古气候变化历史: 20.9~18.0 cal. ka B.P.期间研究区的植被为典型草原, 气候寒冷干旱; 18.0~15.3 cal. ka B.P.期间研究区的植被为草甸草原, 气候寒冷湿润; 15.3~14.0 cal. ka B.P.期间乔木开始在当地发育, 植被开始由草甸草原向森林草原转变, 气候向较为温暖湿润的方向转变; 14.0~12.8 cal. ka B.P.期间森林草原在温暖湿润的气候影响下, 森林扩张, 草原退缩, 与B?lling-Aller?d暖期相对应; 12.8~11.8 cal. ka B.P.期间草原在寒冷气候下扩张, 可与新仙女木期相对应; 11.8~0.8 cal. ka B.P. 期间在较为温暖的气候条件下, 草原在气候快速变冷事件的影响下发生了多次扩张, 其中, 较为明显的6次气温突降事件分别发生在9.0~8.9, 8.2~7.8, 7.0~6.8, 6.1~5.6, 5.4~5.2, 2.3~1.8 cal. ka B.P..这些快速气候变化事件与全球和区域中其他高分辨率古气候记录具有可比性, 揭示出月亮湖敏感地记录了全球和区域气候的变化, 同时也表明研究区的高分辨率孢粉分析是研究东亚季风强度变化的良好指标.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号