首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
A simple, rapid and precise method is described for determining trace elements by laser ablation (LA)-ICP-MS analysis in bulk geological materials that have been prepared as lithium borate glasses following standard procedures for XRF analysis. This approach reliably achieves complete sample digestion and provides for complementary XRF and LA-ICP-MS analysis of a full suite of major and trace elements from a single sample preparation. Highly precise analysis is enabled by rastering an ArF excimer laser (λ= 193nm) across fused samples to deliver a constant sample yield to the mass spectrometer without inter-element fractionation effects during each analysis. Capabilities of the method are demonstrated by determination of twenty five trace elements (Sc, Ti, V, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf, Ta, Pb, Th and U) in a diverse range of geological reference materials that includes peridotites, basalts, granites, metamorphic rocks and sediments. More than 90% of determinations are indistinguishable from published reference values at the 95% confidence level. Systematic bias greater than 5% is observed for only a handful of elements (Zr, Nb and U) and may be attributed in part to inaccurate calibration values used for the NIST SRM 612 glass in the case of Zr and Nb. Detection limits for several elements, most notably La, are compromised at ultra-trace levels by impurities in the lithium borate flux but can be corrected for by subtracting appropriate procedural blanks. Reliable Pb analysis has proved problematic due to variable degrees of contamination introduced during sample polishing prior to analysis and from Pt-crucibles previously used to fuse Pb-rich samples. Scope exists for extending the method to include internal standard element/isotope spiking, particularly where integrated XRF analysis is not available to characterise major and trace elements in the fused lithium borate glasses prior to LA-ICP-MS analysis.  相似文献   

2.
A fusion procedure commonly used for major element analysis of silicate rocks (1:5 sample to flux ratio, using 0.7 g of sample) was used to determine a small group of trace elements (Cu, Zn, Rb, Sr, Y, Zr, Nb) by X-ray fluorescence. Compton scatter peak ratioing was successfully used for matrix corrections, despite the thickness of the glass discs being only 1.7 mm. Precision and detection limits were compared with pressed pellet values. For most elements, routine analytical precision is better with powder pellets and detection limits are worse in glass discs, by an average factor of 2, considering all elements analyzed. Accuracy was evaluated with international reference materials and for most of the determinations, good or excellent agreement with recommended values was obtained. The main advantages of using glass discs for the trace element determination are the possibility of analyzing small amounts of sample and the suppression of any mineralogical effects in the glass discs, which can also be used to determine major elements.  相似文献   

3.
探索了利用高温炉合成玄武岩玻璃制作原位微区主微量元素含量分析的标准物质的实验条件.选取玄武岩标准物质GBW07105(GSR-3)进行高温熔融、淬火实验研究,获得玄武岩玻璃,为合成其他地质样品微区分析标准参考物质的研制提供了参考方法.用激光剥蚀-四极杆等离子体质谱(LA-Q-ICPMS)对样品微区46个主元素和微量元素...  相似文献   

4.
X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素   总被引:6,自引:5,他引:1  
李迎春  周伟  王健  屈文俊 《岩矿测试》2013,32(2):249-253
用百分总和检查硅酸盐岩石全分析数据的质量是分析工作者的传统做法,但对于微量元素含量较高的样品,采用X射线荧光光谱法(XRF)进行测定,如果不考虑微量元素的含量及其对主量元素基体效应的影响,往往会使主量元素含量更加偏离真实值。本文针对Sr、Ba含量较高的硅酸盐样品,通过人工配制标准样品,扩大了Sr、Ba校准曲线的定量范围,主量元素校准中加入Sr、Ba的基体校正系数,达到了主量元素定量更加准确可靠的实际效果。采用此方法分析国家标准物质,各主量元素的精密度(RSD)均小于2%;分析不参加回归的标准物质和人工配制的标准样品,主量元素的测量值与标准值(或参考值)基本一致。该方法可以满足硅酸盐的测定要求,主量元素各项结果的加和能够达到《地质矿产实验室测试质量管理规范》的一级标准(99.3%~100.7%)。  相似文献   

5.
To test whether the silicate reference glasses BAM‐S005‐A and BAM‐S005‐B from BAM (The Federal Institute for Materials Research and Testing, Germany) are suitable materials for microanalysis, we investigated the homogeneity of these reference glasses using the microanalytical techniques EPMA, LA‐ICP‐MS and SIMS. Our study indicated that all major and most trace elements are homogeneously distributed at micrometre sampling scale in both types of glass. However, some trace elements (e.g., Cs, Cl, Cr, Mo and Ni) seem to be inhomogeneously distributed. We also determined the composition of BAM‐S005‐A and BAM‐S005‐B. The EPMA data of major elements confirmed the information values specified by the certificate. With the exception of Sr, Ba, Ce and Pb, our trace element data by LA‐ICP‐MS were also in agreement with the certified values within the stated uncertainty limits. The reasons for the discrepancy in these four elements are still unclear. In addition, we report new data for twenty‐two further trace elements, for which the concentrations were not certified. Based on our investigation, we suggest that both of these materials are suitable for many microanalytical applications.  相似文献   

6.
通过描述一种利用LA-ICP-MS准确测定含水硅酸盐矿物主量元素和微量元素含量的多外标、无内标分析方法.总结出该方法基于矿物化学计量式计算含水硅酸盐矿物中挥发分的相对含量,再将全部分析元素归一化到总金属氧化物含量(100%减含水量)的原理,利用多种天然成分的岩石标准玻璃(如MPI-DING玻璃和USGS玻璃)作为外标进行校正计算.利用该方法对角闪石、绿帘石、电气石和透闪石等含水硅酸盐矿物进行了分析,并与利用电子探针和微钻(直径300 μm)取样溶液-ICP-MS分析的结果进行了对比研究.研究结果表明:对于组成均一的主量元素的分析结果与电子探针分析数据一致,相对偏差集中在5%以内.除了那些分布异常不均一的元素(在300 μm尺度上),对微量元素的分析结果与溶液-ICP-MS分析结果具有很好的一致性,二者之间的相对偏差大部分集中在10%以内.研究结论为采用归一化校正策略,选择MPI-DING和USGS玻璃作为外标,利用LA-ICP-MS微区分析方法可以准确测定含水硅酸盐矿物中的主、微量元素含量.   相似文献   

7.
Twenty five elements in twenty six geochemical reference standards analyzed by X-ray fluorescence spectrometry yield major and trace element concentrations close to consensus values. Ninety percent of our analyses agree with consensus values for standards to within pm 0.5 to 1.5 relative percent for major elements and pm 3 to 5 relative percent or pm 1-3 ppm, whichever is higher, for trace elements. Consistent divergences from consensus values of trace elements are noted.  相似文献   

8.
主编絮语     
罗立强 《岩矿测试》2011,30(2):I-II
自2011年第2期起,我刊推出"主编絮语"这个栏目,目的在于及时表达我刊的办刊思想和办刊动态,推介重点文章,加强与读者、作者和各位编委的信息沟通和交流。正如在本卷卷首语中指出的,文章质量是刊物的生命线。因此,如何提高发表在我刊文章的质量,是本届编委会的第一要务和工作重点。编委会将通过多种途径,从  相似文献   

9.
Sphalerite (ZnS) is an abundant ore mineral and an important carrier of elements such as Ge, Ga and In used in high‐technology applications. In situ measurements of trace elements in natural sphalerite samples using LA‐ICP‐MS are hampered by a lack of homogenous matrix‐matched sulfide reference materials available for calibration. The preparation of the MUL‐ZnS1 calibration material containing the trace elements V, Cr, Mn, Co, Ni, Cu, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Tl and Pb besides Zn, Fe and S is reported. Commercially available ZnS, FeS, CdS products were used as the major components, whereas the trace elements were added by doping with single‐element ICP‐MS standard solutions and natural mineral powders. The resulting powder mixture was pressed to pellets and sintered at 400 °C for 100 h using argon as an inert gas. To confirm the homogeneity of major and trace element distributions within the MUL‐ZnS1 calibration material, measurements were performed using EPMA, solution ICP‐MS, ICP‐OES and LA‐ICP‐MS. The results show that MUL‐ZnS‐1 is an appropriate material for calibrating trace element determination in sphalerite using LA‐ICP‐MS.  相似文献   

10.
A new geochemical reference material, coral Porites sp. JCp-1 has been prepared by the Geological Survey of Japan (GSJ). Provisional values for twenty one major, minor and trace elements are presented. The homogeneity tests showed that all elements studied are considered to be homogeneously distributed.  相似文献   

11.
A simple flux‐free fusion technique was developed to analyse major and trace element compositions of silicate rocks. The sample powders were melted in a molybdenum capsule sealed in a graphite tube to make a homogenous glass in a temperature‐controlled one‐atmosphere furnace. The glass was then measured for both major and trace element concentrations by LA‐ICP‐MS using a calibration strategy of total metal‐oxide normalisation. The optimum conditions (i.e., temperature and duration) to make homogeneous glasses were obtained by performing melting experiments using a series of USGS reference materials including BCR‐2, BIR‐1, BHVO‐2, AGV‐1, AGV‐2, RGM‐1, W‐2 and GSP‐2 with SiO2 contents from 47 to 73% m/m. Analytical results of the USGS reference materials using our method were generally consistent with the recommended values within a discrepancy of 5–10% for most elements. The routine precision of our method was generally better than 5–10% RSD. Compared with previous methods of LA‐ICP‐MS whole‐rock analyses, our flux‐free fusion method is convenient and efficient in making silicate powder into homogeneous glass. Furthermore, it limits contamination and loss of volatile elements during heating. Therefore, our new method has great potential to provide reliable and rapid determinations of major and trace element compositions for silicate rocks.  相似文献   

12.
The attractive physical and chemical properties of corundum lend to this material’s importance in both its natural and synthetic forms. However, much of the quantitative work performed on this material is plagued by unknown inaccuracy as non‐matrix‐matched reference materials are used. To conduct accurate quantitative analysis using SIMS, matrix‐specific relative sensitivity factors (RSFs) were determined for eighteen trace elements in corundum using dose‐verified ion implants. The RSF values ranged from 2.56 × 1022 to 3.29 × 1024 cm‐1 with total combined uncertainty values ranging from 7 to 10%. The RSF values, which are related to ionisation potentials, showed trends consistent with expectations for an insulating oxide. The developed values were applied to calibrate reference materials for LA‐ICP‐MS and to study other natural and synthetic corundum samples. A measurement reference material calibrated for Mg, Si, Ti, V, Fe and Ga produced consistent results over ten sessions in 4 years with relative standard deviations per trace element of 5% or less, confirming the repeatability of our process. A key finding was that calibrating LA‐ICP‐MS with NIST SRM 610 and 612 glasses to analyse corundum resulted in under‐reporting trace elements Be, Ti, V, Fe, Co, Ni and Ga compared with using matrix‐matched reference materials.  相似文献   

13.
Abundances of twenty four trace elements, including Y and fourteen rare earth elements (REE), are reported for eighty six geological reference materials and four proficiency testing samples. Analytical data were obtained by ICP-MS using solution nebulisation after mixed acid digestion (HF-HClO4) under pressure. Analysed samples cover a wide range of element concentrations and mineralogical compositions, including samples for which there are few previously published data. Precision for elemental determinations in nearly 90% of the samples analysed is better than 5%. Accuracy, estimated by comparison with data from compilations is better than 6% for well characterized reference materials. Results obtained for samples that are low in trace elements are often significantly lower than compiled reference values. A critical discussion of the compiled data sets, especially for Y and the REEs, indicates that some reference values seem to be erroneous.  相似文献   

14.
15.
A procedure for the digestion and analysis of quartz samples was developed to measure trace element concentrations in natural quartz. The certified glass sand reference material UNS-SpS was chosen to assess the precision, accuracy and detection limit of the analytical method. Quartz was digested with HF/HNO3 in a closed glassy carbon vessel and analysed by means of quadrupole ICP-MS with external calibration. Analyte concentrations of the sand UNS-SpS were compared with certified and other values from the literature. The abundances of a number of elements (Pr, Gd, Ho and Er) in the reference material are reported here for the first time. The procedure was then applied to three quartz samples from different geological settings to show that trace element data by ICP-MS can distinguish the origin of the sample.  相似文献   

16.
随着我国对生态文明建设的重视,自然资源综合调查势在必行,对生物标准物质亦提出了新的需求。当前相关调研工作已经大面积开展,自然资源综合调查、农产品与食品安全评价都需要对生物样品元素组成进行准确测试,需要以生物标准物质作为生物成分测试量值比对和溯源的基础,因此对生物基体标准物质的需求量大幅增加。大米作为主要粮食之一,其食品安全日益受到重视,对大米中的化学成分进行准确的分析测试具有重要的现实意义,因而对大米标准物质的需求量尤为突出,但目前大米成分分析标准物质已供不应求。本文严格按照《标准物质定值的通用原则及统计学原理》(JJF 1343—2012)和《地质分析标准物质的研制》(JJF 1646—2017)等相关规范要求,开展了GBW10010a大米成分分析标准物质的复(研)制工作,包括样品采集、加工制备、均匀性检验、稳定性检验、多家实验室协作定值测试及不确定度评定等关键环节。结果表明:本次复(研)制的大米标准物质定值成分多样、量值准确可靠,符合国家一级标准物质的要求。GBW10010a共定值54项主微量元素,包括Ag、Al、As、B、Ba、Be、Bi、Ca、Cd、Ce、Co、Cr、Cs、Cu、Dy、Er、Eu、Fe、Gd、Ge、Hg、Ho、K、La、Li、Ho、Mg、Mn、Mo、N、Na、Nb、Nd、Ni、P、Pb、Pr、Rb、S、Sb、Sc、Se、Si、Sm、Sr、Tb、Th、Tl、Tm、U、V、Y、Yb、Zn,其中的39项元素给出了标准值及不确定度,包括Ag、Al、As、B、Ba、Ca、Cd、Ce、Co、Cs、Cu、Dy、Er、Fe、Hg、K、Li、Mg、Mn、Mo、N、Na、Nd、Ni、P、Pb、Pr、Rb、S、Sb、Se、Si、Sm、Sr、Tb、Tl、Y、Yb、Zn;15项元素提供参考值,包括Be、Bi、Cr、Eu、Gd、Ge、Ho、Ho、La、Nb、Sc、Th、Tm、U、V。与原有GBW10010大米标准物质相比较,GBW10010a中As、Cd、Co、Cr、Cu、Hg、Mn、Mo、Ni、Zn等重金属元素含量显著下降,其中Cd、Cu、Zn降幅较大,分别下降约39%、43%、38.7%,一定程度上反映了农田生态环境的改善。本批标准物质定值元素总数量增加了6项,新增定值元素Ag、Nb(Nb给出参考值),并且各项元素不确定度范围整体上有所缩小,如Al、Cd、Cu、Fe、K、Mg、Mo、Na、P、Pb、Se、Zn等对生物易有影响的重要元素,表明了地质分析测试方法技术的进步及定值水平的提高。本批标准物质定值元素涵盖了具有生物效应的大部分主微量元素,适用于农业生态环境地球化学调查与评价、生物样品测试、农产品质量与食品安全评价样品测试时的分析仪器校正、分析方法评价和分析质量监控等多个领域。  相似文献   

17.
The influence of non‐spectral matrix effects on the determination of twenty‐two trace elements (Rb, Sr, Y, Cs, Ba, lanthanides, Pb, Th and U) in rock samples using ICP‐MS was investigated. Three types of multi‐element solutions were synthesised containing the twenty‐two trace elements, In, Tl and ten major rock‐forming elements with varying mass fractions mimicking the compositions of basalt, peridotite and dolomite. The synthetic solutions were conditioned to have dilution factors (DF) of 1000–10000. The extent of sensitivity suppression relative to the DF = 10000 solution became more significant for smaller DF solutions, which was not constant across different elements in a single solution but displayed general dependence on m/z. This indicates that at least two internal standards (e.g., In and Tl) are required for the correction of sensitivity variation. On the basis of the results, a new isotope dilution‐internal standardisation method for the determination of twenty‐two trace elements with ICP‐MS was developed, in which the sensitivity variation was corrected by monitoring two enriched isotopes, 113In and 203Tl. This method, coupled with the quantitative correction of interference from oxides and hydroxides, achieved precise determination of twenty‐two trace elements in some rock reference materials with reproducibilities of ±2% for basaltic to andesitic samples.  相似文献   

18.
高岭土作为重要的铝硅酸盐,其微量元素的含量决定着高岭土产品的性能指标.高岭土的三种国家标准物质成分GBW03121、GBW03122、GBW03122a中均未含有As、Sb等10种微量元素的标准值,在高岭土的检测中只能采用近似的岩石标准物质作为监控物质,对高岭土组分的准确分析有一定影响.本文通过微波消解技术,对比了硝酸...  相似文献   

19.
在皖北矿区采取了2 2个深层地下水水样,测试Ag、Al、As、Ba等2 0种微量元素,建立了主成分分析模型。根据元素相关性、特征值与累计方差贡献率,进行了地下水的微量元素主成分分析和地下水主成分解释。在此基础上建立了皖北矿区主要突水水源4个主成分的判别表达式,从而得出结论:矿区地下水,特别是四含、太灰与奥灰3个突水含水层微量元素的质量浓度与4个主成分息息相关,可以简单地把第一、二、三、四主成分概括为地下水的溶滤作用、越流作用、河流补给作用、构造裂隙补给作用。   相似文献   

20.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号