首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted during the growing season of 1993 at a mixed deciduous forest in southern Ontario, Canada to investigate the atmospheric abundance of hydrocarbons from phytogenic origins, and to measure emission rates from foliage of deciduous trees. The most abundant phytogenic chemical species found in the ambient air were isoprene and the monoterpenes -pinene and -pinene. Prior to leaf-bud break during spring, ambient hydrocarbon mixing ratios above the forest remained barely above instrument detection limit (20 parts per trillion), but they became abundant during the latter part of the growing season. Peak isoprene mixing ratios reached nearly 10 parts per billion (ppbv) during mid-growing season while maximum monoterpene mixing ratios were close to 2 ppbv. Both isoprene and monoterpene mixing ratios exhibited marked diurnal variations. Typical isoprene mixing ratios were highest during mid-afternoon and were lowest during nighttime. Peak isoprene mixing ratios coincided with maximum canopy temperature. The diurnal pattern of ambient isoprene mixing ratio was closely linked to the local emissions from foliage. Isoprene emission rates from foliage were measured by enclosing branches of trees inside environment-controlled cuvette systems and measuring the gas mixing ratio difference between cuvette inlet and outlet airstream. Isoprene emissions depended on tree species, foliage ontogeny, and environmental factors such as foliage temperature and intercepted photosynthetically active radiation (PAR). For instance, young (<1 month old) aspen leaves released approximately 80 times less isoprene than mature (>3 months old) leaves. During the latter part of the growing season the amount of carbon released back to the atmosphere as isoprene by big-tooth and trembling aspen leaves accounted for approximately 2% of the photosynthetically fixed carbon. Significant isoprene mixing ratio gradients existed between the forest crown and at twice canopy height above the ground. The gradient diffusion approach coupled with similarity theory was used to estimate canopy isoprene flux densities. These canopy fluxes compared favorably with values obtained from a multilayered canopy model that utilized locally measured plant microclimate, biomass distribution and leaf isoprene emission rate data. Modeled isoprene fluxes were approximately 30% higher compared to measured fluxes. Further comparisons between measured and modeled canopy biogenic hydrocarbon flux densities are required to assess uncertainties in modeling systems that provide inventories of biogenic hydrocarbons.  相似文献   

2.
Diurnal and vertical ambient air measurements of the monoterpenes have been made in and above a Scots pine (Pinus sylvestris) forest of central Sweden, within the boreal northern coniferous biome. Sampling was done with Tenax TA, and analysis by GC and ion trap detection. Daytime mixing ratios were on the order of tenths of a ppbv from the forest floor to the top of the forest, and a factor of 2 or 3 lower above the forest. Mixing ratios at night were at the ppbv level, highest near the forest floor and the crown, and decreased with height above the forest. The highest total concentration observed was 8 ppbv inside the forest at 3 am (GMT). The average terpene composition was 3-carene 32%, -pinene 29%, limonene 18%, -pinene 10%, -phellandrene 7%, camphene 5%, and sabinene at less than 2%. The 3-carene/-pinene ratio varied with wind direction and speed, relative humidity, and wet/dry vegetation, but not with ozone or NO2 concentration, solar radiation, or temperature. Variations in the observed terpene composition at the sampling site are mainly caused by the influence of other vegetation in the vicinity of the site. It would seem that wet Scots pine emits more 3-carene relative to -pinene than does dry pine.  相似文献   

3.
Measurements of biogenic gases including enantiomeric monoterpenes and isoprene, and anthropogenic gases such as benzene, toluene, ethylbenzene, ortho-, meta- and para- xylene (BTEX) compounds were made by GC-MS in November and December 2008 within a stone pine (Pinus pinea L) forest located on the Southwest coast of Spain (37.10°N, 6.70°W). Mixing ratios of the biogenic species were found to be low (mean circa 10 pptv) consistent with previously observed low wintertime regional forest emission rates. In contrast, anthropogenic species were significantly higher (mean 10–156 pptv), the dominant emissions originating from the city of Huelva and associated petrochemical activities, located 25 km north west of the measurement site. In wintertime the monoterpene (?)-α-pinene was found to be in slight enantiomeric excess over (+)-α-pinene at night but by day the measured ratio was closer to one i.e. racemic. Samples taken the following summer in the same location showed much higher monoterpene mixing ratios and revealed a strong enantiomeric excess of (?)-α-pinene. This indicates a strong seasonal variance in the enantiomeric emission ratio which is not manifested in the day/night temperature cycles in wintertime. Mixing ratios of the xylene isomers (meta- and para-) and ethylbenzene, which are all well resolved on the beta-cyclodextrin column, were exploited to estimate average OH radical exposures to VOCs from the Huelva industrial area. These were compared to empirical estimates of OH based on JNO2 measured at the site. The deficiencies of each estimation method are discussed.  相似文献   

4.
Atmospheric oxidation of monoterpenes contributes to formation of tropospheric ozone and secondary organic aerosol, but their products are poorly characterized. In this work, we report a series of outdoor smog chamber experiments to investigate both gaseous and particulate products in the ozone oxidation of four monoterpenes: -pinene, -pinene, 3-carene, and sabinene. More than ten oxygenated products are detected and identified in each monoterpene/O3 reaction by coupling derivatization techniques and GC/MS detection. A denuder/filter pack sampling system is used to separate and simultaneously collect gas and aerosol samples. The identified products, consisting of compounds containing carbonyl, hydroxyl, and carboxyl functional groups, are estimated to account for about 34–50%, 57%, 29–67%, and 24% of the reacted carbon mass for -pinene, sabinene, -pinene, and 3-carene, respectively. The identified individual products account for >83%, 100%, >90%, and 61% of the aerosol mass produced in the ozone reaction of -pinene, sabinene, -pinene, and 3-carene. The uncertainty in the yield data is estimated to be ±50%. Many of the products partition between gas and aerosol phases, and their gas-aerosol partitioning coefficients are determined and reported here. Reaction schemes are suggested to account for the products observed.  相似文献   

5.
The design and performance of a smog chamber for the study of photochemical reactions under simulated environmental conditions is described. The chamber is thermostated for aerosol experiments, and it comprises a gas chromatographic sample enrichment system suitable for monitoring hydrocarbons at the ppbv level. By irradiating NO x /alkane-mixtures rate constants for the reaction of OH radicals with n-alkanes are determined from n-pentane to n-hexadecane to be (k±2)/10–12 cm3 s–1=4.29±0.16, 6.2±0.6, 7.52 (reference value), 8.8±0.3, 10.2±0.3, 11.7±0.4, 13.7±0.3, 15.1±0.5, 17.5±0.6, 19.3±0.7, 22.3±1.0, and 25.0±1.3, respectively at 312 K. Rate constants, (k±2)/10–17 cm3 s–1, for the reaction of ozone with trans-2-butene (21.2±1.0), cis-3-methylpentene-(2) (47.2±1.7), cyclopentene (62.4±3.5), cyclohexene (7.8±0.5), cycloheptene (28.3±1.5), -pinene (8.6±1.3), and -pinene (1.4±0.2) are determined in the dark at 297 K using cis-2-butene (13.0) as reference standard.  相似文献   

6.
Summary A single layer (Penman-Monteith) and a two layer (modified Shuttleworth-Wallace) evapotranspiration (ET) model are used alternatively to derive conductances related to the dominant fluxes of water vapor from a semi-closed Scots pine plantation. The derivations are based on micrometeorological measurements of above canopy energy flux densities and a simple resistance network. For a period of consecutive fine weather days, below canopy net radiation and below canopy ET were about 20 percent of the corresponding above canopy values. Resulting conductances for latent heat flux agreed well with porometric measurements of pines and understory scaled to canopy level. The shift from single to two layer modelling reduced the canopy conductance to pine conductance by the fraction of understory ET.However, characteristics of porometer results and micrometeorologically derived conductances were quite different: The porometer estimates of conductance were highly variable due to stomatal response to local environmental conditions or natural variability within the tree canopy and vegetation patches which characterized the forest understory. Micrometeorologically derived conductances integrate spatially resulting in relatively smooth and repetitive daily patterns that lack the information of small scale variability. This is seen as a favorable feature of micrometeorological derived conductances when used for the parameterization of atmospheric models for climate research as long as small scale bio-diversity is irrelevant.With 5 Figures  相似文献   

7.
In the last decade, numerous studies of monoterpene hydrocarbons in the presence of ozone and oxides of nitrogen have been completed. Although insights about the reactivity of terpenes have been gained, and several products have been identified in the gas and aerosol phases, carbon balances have been generally poor. This paper describes a radiotracer technique which accounts for carbon-containing compounds in a smog chamber at the conclusion of a photooxidation or ozonolysis reaction. Instead of attempting to identify individual products, gas-phase compounds were separated from aerosols, and each phase was analyzed by a liquid scintillation counter. A carbon balance of 79 to 97% was obtained with 14C--pinene and ozone using this technique. The significance of the results are discussed in terms of the 14C--pinene concentrations used in this study, which were lower than concentrations used previously by one to four orders of magnitude. In spite of the lower concentrations, the gaseous and aerosol fractions observed in the present investigation are comparable to those observed by others. Possible reaction products are discussed with respect to likely mechanisms for -pinene oxidation.  相似文献   

8.
Emissions of volatile organic compounds (VOCs) from sunflower (Helianthus annuus L. cv. giganteus) were measured in a continuously stirred tank reactor. The compounds predominantly emitted from sunflower were: isoprene, the monoterpenes -pinene, -pinene, sabinene, 3-carene and limonene, an oxygenated terpene, not positively identified so far and the sesquiterpene -caryophyllene. Emission rates ranged from 0.8 x 10–16 to 4.3 x 10 –15 mol cm–2 s–1 at a temperature of 25°C and at a light intensity of 820 µEm–2 s–1. A dependence of the emission rates on temperature as well as on light intensity was observed. The emission rates of -pinene, sabinene and thujene from beech (Fagus sylvatica L.) were also affected by temperature as well as by light intensity. Our results suggest that an emission algorithm for all compounds emitted from sunflower and beech has to consider temperature and light intensity simultaneously. The observations strongly indicate that the emissions of VOCs from sunflower and beech are in part closely coupled to the rate of biosynthesis and in part originate from diffusion out of pools. The emission rates can be described by an algorithm that combines the model given by Tingey and coworkers with the algorithm given by Guenther and coworkers after slight modification.  相似文献   

9.
Current inventories of terpenes released from vegetation consider only the short-term influences of light and temperature on emissions to simulate temporal variation during the year. We studied whole canopy emissions from young Pinus pinea during a 15-month enclosure in greenhouse chambers and examined data for other long-term influences. Mean daytime emission rates strongly increased during spring, reached an annual maximum of 200 pmol m–2 total needle area s–1 (1.1 g g–1 leaf dry weight h–1) between mid June and mid August, strongly declined in fall and reached an annual minimum of 1 pmol m–2 s–1 (0.006 g g–1 h–1) between January and February. Normalization to standard temperature and light conditions did not change the annual time course of emissions, but reduced summer to winter ratio from a factor of 200 to about 45. Seasonal variation was characterized also by changes in terpene composition: among the six main compounds, three (t--ocimene, linalool, 1.8-cineol) were exclusively emitted during sunlit hours in the main vegetation period, whereas the other (limonene, -pinene, myrcene) were emitted day and night and throughout the seasons. The results suggest that different terpene sources in P. pinea foliage exist and that a great part of the annual emission course observed here results from seasonal influences on these sources. A global model to simulate plant emissions is proposed, which accounts for seasonal influences on emissions in addition to the short-term effects of temperature and light. The model is tested on field data and discussed for its general application.  相似文献   

10.
The formation and occurrence of hydroperoxides in the troposphere have been studied by laboratory experiments and by preliminary field measurements. Nine alkenes were reacted individually with ozone in a reaction chamber in the presence of excess water, and the amounts of hydrogen peroxide and of nine organic hydroperoxides produced in the gas and aerosol phases and deposited on the chamber walls determined by HPLC. The reactions of ethene, propene, 1-butene and isoprene gave hydroxymethyl hydroperoxide as the major product with no hydrogen peroxide observed. In the case of - and -pinene, 2-carene and limonene the major product was hydrogen peroxide. Cis-2-butene produced hydrogen peroxide and methyl hydroperoxide. Preliminary measurements of hydrogen peroxide and five organic hydroperoxides in ambient air were made at Niwot Ridge, Colorado from 24 July–4 August 1989. The gas-phase species were preconcentrated by cryotrapping with subsequent HPLC separation. The gas-phase concentrations of H2O2 ranged from 0.5–2 ppbv with the lowest concentrations being measured at night and the highest under conditions of strong photochemical activity. The maximum concentrations of hydroxymethyl hydroperoxide approximated those of H2O2. Methyl hydroperoxide concentrations ranged from <50 to 800 pptv and three other organic hydroperoxides were detected at concentrations below 200 pptv. High volume aerosol samples yielded H2O2 and methyl hydroperoxide concentrations <10 ng m-3 while H2O2 and six organic species were detected in rainwater at concentrations in the range <0.01–50 M.  相似文献   

11.
A technique was developed that allows the determination of the stable carbon isotope ratio of isoprene in air. The method was used for a limited number of ambient measurements as well as laboratory studies of isoprene emitted from Velvet Bean (Mucana pruriens L. var. utilis), including the light and temperature dependence. The mean stable carbon isotope ratio ( 13C) of isoprene emitted from Velvet Bean (Mucana pruriens L. var. utilis) for all our measurements is –27.7 ± 2.0 (standard deviation for 23 data points). Our results indicate a small dependence of the stable carbon isotope ratios on leaf temperature and photosynthetic photon flux density (PPFD). The light dependence is 0.0026 ± 0.0012/( mol of photons m–2 s–1) for the studied range from 400 to 1700 mol of photons m–2 s–1. The temperature dependence is 0.16 ± 0.09/K. On average, the emitted isoprene is 2.6 ± 0.9 lighter than the leaf carbon. An uncertainty analysis of the possibility to use stable carbon isotope ratio measurements of isoprene for estimates of its mean photochemical age suggests that meaningful results can be obtained. This is supported by the results of a small number of measurements of the stable carbon isotope composition of ambient isoprene at different locations. The results range from approximately –29 to –16. They are consistent with vegetation emissions of isoprene that is slightly depleted in 13C relative to the plant material and enrichment of 13C in the atmosphere due to isotope fractionation associated with the reaction with OH-radicals. The stable carbon isotope ratio of ambient isoprene at locations directly influenced by isoprene emissions is very close to the values we found in our emission studies, whereas at sites located remote from isoprene emitting vegetation we find substantial enrichment of 13C. This suggests that stable carbon isotope ratio measurements will be a valuable, quantitative method to determine the extent of photochemical processing of isoprene in ambient air.  相似文献   

12.
Flux measurements of ozone and water vapour employing the eddy correlation technique were used to determine the surface conductance and canopy conductance to ozone. In the surface conductance to ozone, all surfaces at which ozone is destroyed and the transport process to these surfaces are included. The canopy conductance to ozone represents the ozone uptake of transpiring plant parts. The surface conductance to ozone of the maize crop and the underlying soil was generally larger than the canopy conductance to ozone. This means that beside the uptake by stomata, there was another important ozone sink. Under wet soil surface conditions, the surface conductance and the canopy conductance to ozone coincided. This indicates that the resistance of wet soil and the remaining plant parts (cuticle) to ozone was much larger than the stomatal or soil resistance. On the other hand, under dry soil conditions the conductances differ, largely caused by a variation in the transport process to the soil. The transport of ozone to soil increased with increasing friction velocity (u *) and decreased with increasing atmospheric stability, leaf area index (LAI) or crop height (h). These effects for midday (unstable) conditions were parameterized with an in-crop aerodynamic resistance,r inc in a very straightforward way;r inc=13.9 LAIh/u *+67 (cc.=0.77). If the ozone flux in air pollution models is described with a simple resistance model (Big Leaf model), the extra destruction at the soil should be modelled using an in-crop aerodynamic resistance. For these measurements the ozone flux to the soil was 0–65% of the total ozone flux measured above the crop. Under wet soil conditions, this was less than 20%; under dry soil conditions, this was 30–65%.  相似文献   

13.
The present study estimates the net emission of carbon from the forest sector in India. For the reference year (1986), the gross emission from deforestation in that year, plus committed emissions from deforestation in the preceding years, is estimated to be 64 × 106 t of C. The carbon sequestration (or net woody biomass accumulation in trees for long-term storage) from the area brought under tree plantations and the existing forest area under forest succession is estimated to offset the gross carbon emission in India, leading to no net emissions of carbon from the forest sector. Medium-term projections for India (for the year 2011) show that under a business as usual scenario at current rates of afforestation, projected carbon emissions would continue to be balanced by sequestration.  相似文献   

14.
The gas and particle phase reaction products of a mixture of the atmospherically important terpenes -pinene and -pinene with the atmospheric oxidants O3 and OH/NOx were investigated using both gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC) for identification and quantification of reaction products. The nighttime oxidation of a mixture of -pinene and -pinene in the presence of O3/air, and the daytime oxidation of a mixture of -pinene + -pinene with NOx air in the presence of natural sunlight were carried out in the University of North Carolina's large outdoor smog chamber (190 m3) located in Chatham County, North Carolina. Mass balances for gaseous and aerosol reaction products are reported over the course of the reaction. More than twenty-nine products were identified and/or quantified in this study. On average, measured gas and particle phase products accounted for 74 to 80% of the reacted -pinen/-pinene mixture carbon. Measurements show that a number of reaction products were found in both O3 and NOx system [pinonaldehyde, pinic acid, pinonic acid, pinalic-3-acid, 4-hydroxypinalic-3-acid, 4-oxonopinone, 1-hydroxy-nopinone, 3-hydroxy-nopinone, and nopinone]. Pinonic acid, pinic acid, pinalic-3-acid, 4-hydroxypinalic-3-acid, and 10-hydroxypinonic acid were observed in the early stage in the aerosol phase and may play an important role in the early formation of secondary aerosols.  相似文献   

15.
Simulating the causal elements of urban heat islands   总被引:8,自引:0,他引:8  
A comparison was made between the resultant surface temperatures and sensible heat fluxes of building interfaces calculated by steady-state and transient (implicit) methods. Both procedures used identical environmental (summer and winter) input. For exterior conditions, the results indicated that the correlation between the two methods is sufficiently large, enabling them to be used interchangeably for the spatial analysis of urban canopy layers of entire cities. Using a steady-state approach as a surrogate for unsteady conditions, computer resources can be saved up to a factor of ten. An urban energy budget model (URBAN 3) has been used to demonstrate that the distribution of sensible heat flux and net longwave radiation — the prime causes of urban heat-island generation — was far from the homogeneity assumed in many macroscopic models or even some street-level studies. The individual emanations of reradiation and sensible heat flux showed different diurnal and spatial patterns. Under the input scenarios used, daytime heat islands assumed a doughnut shape in the inner city. It is believed that many of the lower boundary conditions used in macroscopic numerical models are inadequate in light of this study.  相似文献   

16.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

17.
Atmospheric concentrations of ca. 250 C6–C15 hydrocarb on and C4–C12 oxygenated volatile organic compounds (VOC) including alkanes, benzene and alkyl benzenes, monoterpenes and aldehydes were measured in August 1994 during the POPCORN campaign (POPCORN = Photo-Oxidant formation by Plant emitted Compounds and OH Radicals in North-Eastern Germany). About 80 substances together contributed 90% of the atmospheric carbon in this range of molecular weight. During this field campaign VOC-emissions from several crop and tree species and the ambient concentrations of CO, C2–C7 non-methane hydrocarbons (NMHC), C1 and C2 aldehydes, nitrogen oxides, ozone and hydroxyl-radicals (OH) were also measured. These data were used to interpret the VOC measurements presented here. The on-line GC–MS used for the VOC measurements combines adsorptive sampling with thermal desorption and GC–MS analysis in an automated system. Internal standards were used to quantify the measurements. Ozone was destroyed prior to the sample preconcentration through the gas phase reaction with NO. Aromatic compounds like benzene, toluene and xylenes were the most abundant compound class among the measured substances, -pinene and 3-carene, most probably originating from pineforests ca. 1 km away from the measuring site, were the most abundant monoterpenes. The highest mixing ratios of most compounds were measured in nights with strong inversion situations. The toluene mixing ratios then reached 630 pptv; -pinene mixing ratios went up to 430 pptv. The median of all toluene and -pinene measurements during the campaign was 125 pptv or 22 pptv, respectively. These values are on the lower end of ambient measurements reported for continental sites. In most samples also n-pentanal, n-hexananl, n-nonanal and n-undecanal were present. Median mixing ratios were 9, 16, 14 and 8 pptv, respectively. Emission studies indicate that these highly reactive compounds are most probably emitted from maize. It is shown by a simple first order approach that the potential for ozone formation during the POPCORN campaign was roughly equal for anthropogenic and biogenic VOC. From measured concentrations of ozone, OH-radicals, methane, CO, C2–C15 nonmethane hydrocarbons (NMHC) and C5–C11 aldehydes a photochemical production of ozone in the order of 3.5 ppb/h can be estimated. Apart from formaldehyde and acetaldehyde, which are at least partly products of VOC oxidation, the substance group with the largest contribution to the VOC turnover are the monoterpenes. They contribute ca. 30%. However, the mechanism of terpene oxidation is very complex and presently only partly understood. Thus the actual contribution of monoterpenes to ozone formation is very uncertain. Other measured compound classes such as light alkenes, alkanes, aromatics, and C5–C11 aldehydes contribute each between 10% and 15% to ozone formation. The measuring site was not influenced directly from strong biogenic or anthropogenic sources, and the results obtained during the POPCORN campaign can be regarded as a typical picture of a remote rural central European environment.  相似文献   

18.
Emissions of hexanal, heptanal, octanal, nonanal, and decanal from 6 different plant species were measured in continuously stirred tank reactors when the plants were exposed to ozone. Pathogen- and insect attack on plants also led to these emissions. The emission rates of individual aldehydes were related to each other implying a common mechanism for the emissions of these aldehydes. Furthermore, the emission pattern was similar in all cases indicating a similar emission mechanism for different plant species and different elicitors. Measurements with ozone exposed Scots pine plants (Pinus sylvestris L.) showed that the emission rates were dependent on temperature as well as on the ozone flux into the plants. The diurnal variation of aldehyde emissions from ozone exposed Scots pine were described quite well using a formalism including temperature and ozone flux as variables. Assuming the aldehyde emissions to be general for plants exposed to ozone, the global emissions were estimated to be in the range between 7 and 22 Tg/a. Because these emissions can be induced by other factors than ozone uptake alone this estimate may be a lower limit.Now atNow at  相似文献   

19.
The stable carbon isotope ratios of nonmethane hydrocarbons (NMHC) and methyl chloride emitted from biomass burning were determined by analyzing seven whole air samples collected during different phases of the burning process as part of a laboratory study of wood burning. The average of the stable carbon isotope ratios of emitted alkanes, alkenes and aromatic compounds is identical to that of the burnt fuel; more than 50% of the values are within a range of ±1.5 of thecomposition of the burnt fuel wood. Thus for the majority of NMHC emitted from biomass burning stable carbon isotope ratio of the burnt fuel a good first order approximation for the isotopic composition of the emissions. Of the more than twenty compounds we studied, only methyl chloride and ethyne differed in stable carbon isotope ratios by more than a few per mil from the composition of the fuel. Ethyne is enriched in 13C by approximately 20–30, and most of the variability can beexplained by a dependence on flame temperature. The 13C values decreaseby 0.019 /K (±0.0053/K) with increasing temperature. Methyl chloride is highly depleted in 13C, on average by25. However the results cover a wide range of nearly 30. Specifically, in two measurements with wood from Eucalyptus (Eucalyptus delegatensis) as fuel we observed the emission of extremely light methyl chloride (–68.5and–65.5). This coincides with higher than average emission ratiosfor methyl chloride (15.5 × 10–5 and 18 ×10–5 mol CH3Cl/mol CO2). These high emission ratios are consistent with the highchlorine content of the burnt fuel, although, due to the limited number of measurements, it would be premature to generalize these findings. The limited number of observations also prevents any conclusion on a systematic dependence between chlorine content of the fuel, emission ratios and stable carbon isotope ratio of methyl chloride emissions. However, our results show that a detailed understanding of the emissions of methyl chloride from chloride rich fuels is important for understanding its global budget. It is also evident that the usefulness of stable carbon isotope ratios to constrain the global budget of methyl chloride will be complicated by the very large variability of the stable carbon isotope ratio of biomass burning emissions. Nevertheless, ultimately the large fractionation may provide additional constraints for the contribution of biomass burning emissions to the atmospheric budget of methyl chloride.  相似文献   

20.
Field and laboratory investigations of the exchange of the short-chain organic acids – formic acid and acetic acid – as well as their homologous aldehydes are discussed. Both acids are substantially released from several plant species. Emission measurements under field conditions are compiled to give an overview of three years of measurements. Emission rates from several tree species were found in the range between zero and 60 nmoles m–2 min–1 for acetic acid and between zero and 90 nmoles m–2 min–1 for formic acid though also a deposition has been observed to orange trees. Investigations under laboratory conditions showed an order of magnitude lower emission rates with significant differences under light and dark conditions, and a deposition was observed under certain conditions. Hence, low emission rates or even a bi-directional exchange, emission as well as deposition have to be taken into account. Further differences between field and laboratory studies are discussed considering age of trees, stress effects and a potential production of acids by photochemical conversion of precursors inside enclosures during sampling. Field data on the exchange of form- and acetaldehyde show a complex behavior. We found emission as well as uptake. The bi-directional exchange is significantly triggered by the ambient mixing ratios of both aldehyde species and exhibits a compensation point. Further studies are needed for generalization of the exchange of these and potentially also for other compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号