首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formic and acetic acid measured as daily averages in 1993–1994show equal and highly correlated concentrations up to 3 ppb in the summer(May–August). In the winter (October–March) the formicacid/acetic acid ratio was 0.6 and the formic acid concentrations wereusually below 1 ppb. In winter the carboxylic acids correlate withOx, NOy, SO2 and particulatesulphur. The main sources are suggested to be ozonolysis of anthropogenicalkenes and reactions between peroxyacetyl radicals and RO2radicals. In spring–summer the carboxylic acids correlate withO3, Ox, HNO3, PAN,NOy, SO2, particulate sulphur and temperature.In addition to the sources of the winter a contribution from ozonolysis ofbiogenic alkenes is likely. Quite similar formic acid/acetic acid ratios forall wind directions suggest that the source(s) are atmospheric oxidationprocesses distributed over large areas. The highest concentrations occurringfor winds from east to south and the correlation with e.g., particulatesulphur indicate chemical production in polluted air masses during longrange transport.  相似文献   

2.
Henry's law constantsK H (mol kg–1 atm–1) have been determined at 298.15 K for the following organic acids: formic acid (5.53±0.27×103); acetic acid (5.50±0.29×103); propionic acid (5.71±0.34×103);n-butyric acid (4.73±0.18×103); isobutyric acid (1.13±0.12×103); isovaleric acid (1.20±0.11×103) and neovaleric acid (0.353±0.04×103). They have also been determined fromT=278.15 K toT=308.15 K forn-valeric acid (ln(K H)=–14.3371+6582.96/T);n-caproic acid (ln(K H)=–13.9424+6303.73/T) and pyruvic acid (ln(K H)=–4.41706+5087.92/T). The influence of 9 salts on the solubility of pyruvic acid at 298.15 K has been measured. Pyruvic acid is soluble enough to partition strongly into aqueous atmospheric aerosols. Other acids require around 1 g of liquid water m–3 (typical of clouds) to partition significantly into the aqueous phase. The degree of partitioning is sensitive to temperature. Considering solubility and dissociation (to formate) alone, the ratio of formic acid to acetic acid in liquid water in the atmosphere (at equilibrium with the gas phase acids) is expected to increase with rising pH, but show little variation with temperature.  相似文献   

3.
As part of the LBA-CLAIRE-98 experiment, ground level atmosphericconcentrations of O3, CO, hydroperoxides and organic acids weremeasured in the rainforest region in Surinam. Measurements of CO andO3 were also made at a coastal site.The results suggest that a significant consumption of `boundary layer' ozoneoccurs over the forested region of Surinam, with an estimated net ozoneconsumption of about 5% hr–1 during daytime. Thiswould be mainly explained by a low photochemical production and high drydeposition to the forest vegetation. Compared to other tropical sites, lowerlevels of H2O2 were observed at the rainforest site,with an average boundary layer concentration of 0.55± 0.2 nmolmol–1. Also acetic and formic acids showed relatively lowaverage boundary layer mixing ratios; 1.1± 0.4 nmolmol–1 and 1.4± 0.5 nmol mol–1,respectively. Significant correlations were found between both acids andbetween the acids and hydrogen peroxide, suggesting an atmospheric source forthe acids.From the available observations we discuss possible implications of ourmeasurements for the O3, HO2, and NOx budgetsand concentrations in the boundary layer. We conclude that, despite the highsolar irradiation, relatively low levels of O3,H2O2, HCOOH and CH3COOH are observed in theboundary layer of the rainforest of Surinam, probably due to low levels ofNOx and high levels of VOCs, which leads to loss of OH andHO2 radicals. Additionally, high deposition rates of these gasesoccur to the forest vegetation.  相似文献   

4.
Experimental data from two field experiments on ground based clouds were used to study the distribution of formic acid, acetic acid, ammonia and S(IV) species between liquid and gas phase. The ratio of the concentrations of these compounds between the phases during concurrent measurements was compared to ratios expected according to Henry's law (considering the pH influence). Large discrepancies of several orders of magnitude were seen. Three hypotheses have been investigated to explain the observed discrepancies: The existence of a microscale equilibrium which does not persist in a bulk sample, a thermodynamic shift of the equilibrium due to competing reactions, and nonequilibrium conditions due to mass transfer limitations. Approximate quantitative calculations show that none of these hypotheses is sufficient to explain all of the discrepancies, so a combination of different effects seems to be responsible for this observation. The same theoretical considerations also suggest that mass transfer limitation may be an important factor for highly soluble compounds. The data presented here indicates that it is not possible to simply extrapolate interstitial gas phase composition from measured bulk liquid phase concentrations of a fog or cloud.Notation [r max] liquid phase molar uptake rate (mol l–1 s–1) - [A g ] concentration ofA in gas phase (atm) - [A l ] concentration ofA in liquid phase (mol l–1) - [A g , 0] concentration ofA in gas phase (atm) at time 0 - LWC liquid water content (g m–3) - R universal gas constant (0.082 l atm mol–1 K–1 - D g diffusivity (for all gases 0.1 cm2 s–1 was used) - K H * effective Henry's law coefficient (mol l–1 atm–1) - t f lifetime of fog droplet (s) - a droplet radius (cm) - accommodation coefficient - R factor of discrepancy - T temperature (K) - v mean molecular speed (cm s–1) formic acid: 35 000 acetic acid: 31 000 ammonia: 58 000  相似文献   

5.
6.
The Henry's law constants, K H, of dilute aqueous formic and acetic acids were determined experimentally as a function of concentration and temperature using a new counterflow packed-column technique. K H was found to be (8.9±1.3)×103 and (4.1±0.4)×103 M atm-1 at 25°C for HCOOH and CH3COOH, respectively. The reaction enthalpies, H, were found to be –51±2 kJ mol-1 and –52±1 kJ mol-1 for formic and acetic acid, respectively. These are in good agreement with calculated thermochemical values.Whereas the K H values are in reasonably good agreement with certain other experimentally determined values, K H (HCOOH) is two to three times higher than calculated thermochemical values while K H (CH3COOH) is lower than the two calculated values.The best experimental values appear to be (11±2)×103 M atm-1 and (7±3)×103 M atm-1 for HCOOH and CH3COOH, respectively.  相似文献   

7.
Summary Vertical profiles of H2O, CO2, O3, NO and NO2 were measured during the Hartheim Experiment (HartX) to develop and calibrate a multi-layer resistance model to estimate deposition and emission of the cited gaseous species. The meteorological and gas concentration data were obtained with a 30 m high telescopic mast with 7 gas inlets located at 5 m intervals and meteorological sensors at 5, 15 and 30 m above ground; a complete gas profile was obtained every 9 min 20 s. Measured profiles were influenced by several exchange processes, namely evapotranspiration, dewfall, assimilation of CO2 in the tree crowns, soil respiration, deposition of NO2 and O3 to the soil and advection of NOx from the nearby highway. Surprisingly, no decrease in O3 concentration was observed in the crown layer during daytime, probably due to the relatively low density of foliage elements and strong turbulent mixing.The advantage of measuring in-canopy profiles is that turbulent exchange coefficients need not be estimated as a prerequisite to obtaining vertical flux estimates. In recent years, flux-gradient relationships in canopies have been subject to many criticisms. If fluxes are calculated at several heights considering only the transfers between the turbulent air and the interacting surfaces at a certain height, and those fluxes are then integrated vertically in a subsequent step, then exchange estimates (deposition or emission) can be obtained independent of turbulent exchange conditions.Typical estimated deposition velocities calculated for a 3-day period are between 4 and 10 mm/s for NO2 and about 4–9 mm/s for O3 (day and night values respectively). This leads to deposition rates of about 20–40 ng N/m2s for NO2 and about 30–40 mg O3/m2 deposited daily under the conditions encountered during HartX. Sensitivity tests done with the best available and most realistic values for model parametrization have shown that sensitivity is large with respect to the soil and cuticula resistances as well as for gas-phase ozone destruction and that more research is required to describe the effectiveness of cuticula and soil in modifying sink characteristics for NO2 and O3.With 12 Figures  相似文献   

8.
降水中甲酸和乙酸研究综述   总被引:1,自引:0,他引:1  
何晓欢  徐晓斌 《气象科技》2009,37(6):646-650
对大气降水中甲酸和乙酸的相关研究进行了综述。介绍了过去曾采用的研究降水样品中两种有机酸的处理和分析方法,以及目前最常用的实验室分析方法。对降水中两种有机酸的浓度范围、全球时空分布以及受影响因素等相关研究工作进行了系统归纳,并且结合理论计算说明了有机酸对降水酸度的影响是不可忽视的。介绍了历史研究工作中得出的降水中两种有机酸的来源,包括天然源、人为源和有机物的二次化学转化等,以及有机酸源研究对于开展其它降水有机酸工作的研究意义。  相似文献   

9.
Ambient concentrations of isoprene and several of its atmospheric oxidation productsmethacrolein, methylvinyl ketone, formaldehyde, formic acid, acetic acid, and pyruvic acid-were measured in a central Pennsylvania deciduous forest during the summer of 1988. Isoprene concentrations ranged from near zero at night to levels in excess of 30 ppbv during daylight hours. During fair weather periods, midday isoprene levels normally fell in the 5–10 ppbv range. Methacrolein and methylvinyl ketone levels ranged from less than 0.5 ppbv to greater than 3 ppbv with average midday concentrations in the 1 to 2 ppbv range. The diurnal behavior of formaldehyde paralleled that of isoprene with ambient concentrations lowest (1 ppbv) in the predawn hours and highest (>9.0 ppbv) during the afternoon. The organic acids peaked during the midday period with average ambient concentration of 2.5, 2.0, and 0.05 ppbv for formic, acetic, and pyruvic acid, respectively. These data indicate that oxygenated organics comprise a large fraction of the total volatile organic carbon containing species present in rural, forested regions of the eastern United States. Consequently, these compounds need to be included in photochemical models that attempt to simulate oxidant behavior and/or atmospheric acidity in these forested regions.  相似文献   

10.
The partitioning of formic and acetic acid between the atmospheric liquid and gaseous phase is modelled for a range of liquid water contents. At low liquid water content, formic acid is dissolved preferentially over acetic acid. Applying these results to the analysis of processes taking place in clouds, one can explain the frequently found enrichment of formic over acetic acid in rainwater, which results from selective transport by washout. We assess the ability of dew to act as a temporary sink and source for organic acids, and propose that the diel variation of mixing ratios often found during surface measurements, may in part be due to the dissolution in dew and subsequent evaporation on the following day.  相似文献   

11.
Emissions of volatile organic compounds (VOCs) from sunflower (Helianthus annuus L. cv. giganteus) were measured in a continuously stirred tank reactor. The compounds predominantly emitted from sunflower were: isoprene, the monoterpenes -pinene, -pinene, sabinene, 3-carene and limonene, an oxygenated terpene, not positively identified so far and the sesquiterpene -caryophyllene. Emission rates ranged from 0.8 x 10–16 to 4.3 x 10 –15 mol cm–2 s–1 at a temperature of 25°C and at a light intensity of 820 µEm–2 s–1. A dependence of the emission rates on temperature as well as on light intensity was observed. The emission rates of -pinene, sabinene and thujene from beech (Fagus sylvatica L.) were also affected by temperature as well as by light intensity. Our results suggest that an emission algorithm for all compounds emitted from sunflower and beech has to consider temperature and light intensity simultaneously. The observations strongly indicate that the emissions of VOCs from sunflower and beech are in part closely coupled to the rate of biosynthesis and in part originate from diffusion out of pools. The emission rates can be described by an algorithm that combines the model given by Tingey and coworkers with the algorithm given by Guenther and coworkers after slight modification.  相似文献   

12.
Relatively large quantities (1 mg) of formic acid have been collected from the atmosphere and subjected to carbon-isotopic analysis, as a means of source discrimination. Ambient formic acid was captured on Ca(OH)2-treated filters using a high-volume sampler. The collection method was not only efficient (>96%), but also appears to have low artifact production.Most of the samples (36 out of 52) were collected over a two-year period at the summit of Mount Lemmon, Arizona, where a strong seasonality in HCOOH mixing ratio was observed (0.2 ppb during winter months to 1.5 ppb in the summer). Other collection sites included the Oregon coast, Colorado Rockies, urban Tucson, and the North Dakota prairie. The carbon-13 content of atmospheric HCOOH was found to be have little variation (–18 to –25), regardless of location or season. This is consistent with a single dominant source of formic acid. The carbon-14 measurements of 6 Mount Lemmon samples showed high levels of modern carbon (93–113% modern).The emissions from formicine ants and automobile combustion were selected as two other potential sources for isotopic analysis. The HCOOH collected from auto exhaust was much more depleted in13C than the atmospheric samples, with a 13C of –28.0 and –48.6 from a leaded and unleaded automobile, respectively. Formicine ants, on the other hand, ranged from –17.2 to –20.6.  相似文献   

13.
Gaseous formic and acetic acids in the atmosphere of Yokohama,Japan   总被引:1,自引:1,他引:0  
Gaseous formic acid (HCOOHg) and acetic acid (CH3COOHg) were measured every 30 minutes during a 10 hour daylight period in August, and a 24 hour period in October, 1990 in the urban atmosphere of Yokohama, Japan. An aqueous nebulizer sampler and ion-chromatography exclusion (ICE) were used for the measurements. In the August experiment (0800–1800 local time) the mean HCOOHg concentration was found to be 7.3±2.5 ppbv. The mean CH3COOHg concentration was 3.8±1.2 ppbv. In the 24 hour experiment in October, concentrations of both acids were lower between 0800–1800 than during the same time-period in August (mean HCOOHg=4.4±2.7 ppbv, mean CH3COOHg=1.4±0.5 ppbv). In October, concentrations of both acids were higher in daylight hours than at night; sporadic high HCOOHg concentrations were observed. In both experiments the ratio HCOOHg/CH3COOHg of individual samples was usually 2.0 (mean ratio of 2.0 in August, 3.1 in October).  相似文献   

14.
Laboratory experiments under controlled environmental conditions are a useful tool to investigate the influence of different environmental parameters on VOC emissions from plants individually. Before using the obtained results to interpret measurements under ambient conditions, it has to be ensured that the laboratory system is suitable for performing emission rate measurements under ambient-like conditions to derive algorithms describing the emissions of volatile organic compounds as a function of physical variables like temperature and light intensity. Here we compare results from monoterpene emission rate measurements with Scots pines (Pinus sylvestris L.) under both ambient environmental conditions using a mobile plant enclosure chamber, and under controlled laboratory conditions in a continuously stirred tank reactor. The different analytical instruments to quantify monoterpene emissions were compared in an intercalibration experiment. Measurements of the mixing ratios of -pinene, -pinene, 3-carene, camphene, and limonene on the order of some hundred parts per trillion differed by less than 20%. The laboratory system has proven capable of providing ambient-like conditions and results of monoterpene emission rate measurements under laboratory conditions could be extrapolated to the natural environment. Monoterpene emission rate measurements with identical specimens of Scots pines conducted within small temporal differences under similar laboratory and outdoor conditions agreed well. Both laboratory and outdoor experiments clearly showed that distinct and constant values neither exist for the standard emission rates nor for the emission pattern of monoterpenes from Scots pine. Temporal variations in the standard emission rates from identical specimens and plant-to-plant variations were on the order of one magnitude.  相似文献   

15.
A simple and inexpensive procedure is presented for the measurement of gaseous accommodation coefficients upon liquid or solid surfaces. The gas of interest is passed in laminar flow through an annular reactor and the profile of deposition is subsequently determined. The Cooney-Kim-Davies theoretical treatment of deposition in cylindrical systems is adapted to describe uptake on the walls of the annular reactor as a function of accommodation coefficient and diffusion coefficient. The accommodation coefficient () of ammonia on oxalic acid is determined in both cylindrical and annular systems and good agreement is found. Uptake of nitrogen dioxide on wet alkaline surfaces yields a value for of 2.5×10–4, and on solely wet surfaces a value of 8.7×10–5. Nitric and nitrous acids deposit to aqueous sodium carbonate/glycerol surfaces with values of of 1.5 × 10–2 and 4.3×10–3, respectively.  相似文献   

16.
Although it is believed that organic aerosols play a key role in cloud nucleation and make an important contribution to the cloud condensation nuclei (CCN) population, their specific species remain poorly characterized. This paper reviews the current knowledge of organic acids (mainly formic, acetic, pyruvic and oxalic acids). Without specification, organic acids in this paper refer to these four organic acids in the gas and aerosol phases. This paper analyzes the extent to which organic acids act as CCN and compares the physical and chemical properties of organic acids with those of CCN. The results show that aerosol formate and acetate concentrations range from 0.02 to 5.3 nmol m−3 and from 0.03 to 12.4 nmol m−3, respectively, and that between 34 to 77% of formate and between 21 to 66% of acetate are present in the fine fraction of aerosols. It was found that although most (98–99%) of these volatile organic acids are present in the gas phase, their concentrations in the aerosol particles are sufficient to make them a good candidate for CCN. The results also show that organic acids may make an important contribution to the formation of CCN in some special sources such as vegetation emissions and biomass-burning. Organic acids are expected to contribute significantly to the estimates of indirect (cloud-mediated) forcing due to aerosols.  相似文献   

17.
Emission rates of biogenic volatile organic compounds emitted by the forests were estimated for five geographical regions as well as for all Switzerland. Monoterpene and isoprene emissions rates were calculated for each main tree species separately using the relevant parameters such as temperature, light intensity and leaf biomass density. Biogenic emissions from the forests were found to be about 23% of the total annual VOC emissions (anthropogenic and biogenic) in Switzerland. The highest emissions are in July and lowest in January. Calculations showed that the coniferous trees are the main sources of the biogenic emissions. The major contribution comes from the Norway spruce (picea abies) forests due to their abundance and high leaf biomass density. Although broad-leaved forests cover 27% of all the forests in Switzerland, their contribution to the biogenic emissions is only 3%. Monoterpenes are the main species emitted, whereas only 3% is released as isoprene. The highest emission rates of biogenic VOC are estimated to be in the region of the Alps which has the largest forest coverage in Switzerland and the major part of these forests consists of Norway spruce. The total annual biogenic VOC emission rate of 87 ktonnes y–1 coming from the forests is significantly higher than those from other studies where calculations were carried out by classifying the forests as deciduous and coniferous. The difference is attributed to the high leaf biomass densities of Norway spruce and fir (abies alba) trees which have a strong effect on the results when speciation of trees is taken into account. Besides the annual rate, emission rates were calculated for a specific period during July 4–6, 1991 when a photochemical smog episode was investigated in the Swiss field experiment POLLUMET. Emission rates estimated for that period agree well with those calculated for July using the average temperatures over the last 10 years.  相似文献   

18.
Formic and acetic acids occurred in atmospheric condensate with concentrations similar to rainwater collected in Wilmington, North Carolina, during the sampling period from June to October of 1990. Atmospheric concentrations of these acids (calculated from the condensate concentrations) were higher in continental versus maritime air masses. Concentrations of formic and acetic acids were correlated with each other in both condensate and air. Traffic was a source of acetic acid and of bisulfite to atmospheric condensate in this study.  相似文献   

19.
The formation and occurrence of hydroperoxides in the troposphere have been studied by laboratory experiments and by preliminary field measurements. Nine alkenes were reacted individually with ozone in a reaction chamber in the presence of excess water, and the amounts of hydrogen peroxide and of nine organic hydroperoxides produced in the gas and aerosol phases and deposited on the chamber walls determined by HPLC. The reactions of ethene, propene, 1-butene and isoprene gave hydroxymethyl hydroperoxide as the major product with no hydrogen peroxide observed. In the case of - and -pinene, 2-carene and limonene the major product was hydrogen peroxide. Cis-2-butene produced hydrogen peroxide and methyl hydroperoxide. Preliminary measurements of hydrogen peroxide and five organic hydroperoxides in ambient air were made at Niwot Ridge, Colorado from 24 July–4 August 1989. The gas-phase species were preconcentrated by cryotrapping with subsequent HPLC separation. The gas-phase concentrations of H2O2 ranged from 0.5–2 ppbv with the lowest concentrations being measured at night and the highest under conditions of strong photochemical activity. The maximum concentrations of hydroxymethyl hydroperoxide approximated those of H2O2. Methyl hydroperoxide concentrations ranged from <50 to 800 pptv and three other organic hydroperoxides were detected at concentrations below 200 pptv. High volume aerosol samples yielded H2O2 and methyl hydroperoxide concentrations <10 ng m-3 while H2O2 and six organic species were detected in rainwater at concentrations in the range <0.01–50 M.  相似文献   

20.
Throughfall (TF) and wet only (WO) deposition along with SO2 and sulfate (SO42−) concentration in air at 4 urban and rural sites in southwestern China were monitored in order to understand the role of different forms of sulfur (S) emission to the S deposition and its effect in China. The sites were located in Chongqing, Hunan, and Guizhou provinces. S deposition at the most polluted site reached 15 g S m− 2 yr− 1. At three of the sites, located in the vicinity of several emission sources, dry S deposition is 2.1–4.2 times that of wet deposition, which is significantly higher than what is found in most other parts of the world.Main components in airborne particles (PM10) are (NH4)2SO4 and CaSO4 at the highly polluted Tie Shan Ping (TSP) site. Dust particles of gypsum (CaSO4) in the air are partly due to direct emission and partly from the reaction of calcium oxides and carbonates with sulfuric acid in the air. To illustrate the importance of sulfate emission to total S deposition we analyzed the source of S deposition based on both measurements and models. Results indicated that direct emission of SO42− particles could account for high proportion in total S deposition at the three most polluted sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号