首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We examine sediment distribution patterns in seven Florida lakes and discuss implications for paleolimnological studies of shallow, subtropical lakes. The study lakes are highly productive and should exhibit thick organic sediment deposits, but organic sediments are often grossly lacking because basins are shallow, and frequent mixing, lack of stratification, and warm temperatures lead to breakdown of organic material.Organic sediment distribution patterns are highly variable. We observe three types of distribution patterns. When organic sediments are abundant, there may be (1) uniform sediment distribution. In lakes lacking organic sediments, there are (2) distribution to deeper areas if present, or (3) distribution to peripheral areas and embayments when deep waters are absent. We advocate the use of systematic mapping surveys to locate optimal coring sites for paleolimnological studies of shallow, wind-stressed lakes. Because numerous factors affect diagenesis and sediment redistribution, sediment abundance and location are not predictable. Sediment chronologies may be discontinuous and disturbed even in accumulation zones. The extent to which sedimentary records are discontinuous or disturbed is not quantifiable in any practical manner. 210Pb and 137Cs radioisotopic profiles provide qualitative evidence of the degree of stratigraphic disturbance. Total excess 210Pb inventories show that sediments are focused into depositional zones when sediment distribution is uneven. Excess 210Pb inventories are not informative about the completeness of sedimentary profiles unless small inventories suggest discontinuous sedimentation or erosional events. We present examples of disturbed and undisturbed profiles, and discuss how we use radioisotopic and geochemical evidence, and multiple cores to assess stratigraphic continuity.Journal Series No. R-04815 of the Florida Agricultural Experiment Station.  相似文献   

2.
Sediment records from floodplain lakes have a large and commonly untapped potential for inferring wetland response to global change. The Brazilian Pantanal is a vast, seasonally inundated savanna floodplain system controlled by the flood pulse of the Upper Paraguay River. Little is known, however, about how floodplain lakes within the Pantanal act as sedimentary basins, or what influence hydroclimatic variables exert on limnogeological processes. This knowledge gap was addressed through an actualistic analysis of three large, shallow (<5 m) floodplain lakes in the western Pantanal: Lagoa Gaíva, Lagoa Mandioré and Baia Vermelha. The lakes are dilute (CO3 2− > Si4+ > Ca2+), mildly alkaline, freshwater systems, the chemistries and morphometrics of which evolve with seasonal flooding. Lake sills are bathymetric shoals marked by siliciclastic fans and marsh vegetation. Flows at the sills likely undergo seasonal reversals with the changing stage of the Upper Paraguay River. Deposition in deeper waters, typically encountered in proximity to margin-coincident topography, is dominated by reduced silty-clays with abundant siliceous microfossils and organic matter. Stable isotopes of carbon and nitrogen, plus hydrogen index measured on bulk organic matter, suggest that contributions from algae (including cyanobacteria) and other C3-vegetation dominate in these environments. The presence of lotic sponge spicules, together with patterns of terrigenous sand deposition and geochemical indicators of productivity, points to the importance of the flood pulse for sediment and nutrient delivery to the lakes. Flood-pulse plumes, waves and bioturbation likewise affect the continuity of sedimentation. Short-lived radioisotopes indicate rates of 0.11–0.24 cm year−1 at sites of uninterrupted deposition. A conceptual facies model, developed from insights gained from modern seasonal processes, can be used to predict limnogeological change when the lakes become isolated on the floodplain or during intervals associated with a strengthened flood pulse. Amplification of the seasonal cycle over longer time scales suggests carbonate, sandy lowstand fan and terrestrial organic matter deposition during arid periods, whereas deposition of lotic sponges, mixed aquatic organic matter, and highstand deltas characterizes wet intervals. The results hold substantial value for interpreting paleolimnological records from floodplain lakes linked to large tropical rivers with annual flooding cycles.  相似文献   

3.
As part of a broader investigation into recent environmental change on Svalbard, the inorganic geochemical record of six lake-sediment cores was analysed. The major temporal trends in sediment elemental composition are driven by variations in two contrasting sediment components, both derived from catchment soils: (1) mineral matter, and (2) soil organic matter (SOM), enriched in Fe and Mn oxides and heavy metals. Two environmental impacts are recorded in most or all of the lake sediment sequences. An up-core increase in organic matter can be partly attributed to diagenetic effects, but also requires an enhanced supply of SOM relative to mineral matter. In addition, the central and southern sites all show a ca. 1970 event characterised by an enhanced mineral matter accumulation rate. This requires either an enhanced allochthonous supply or an enhanced mobilisation of littoral sediments. In either case a regional-scale driving force, such as a shift in climate, is required. At five of the lakes the sediment heavy metal concentration profiles can be explained entirely by natural factors. However, at Tenndammen (U), situated close to the Svalbard’s largest settlement at Longyearbyen, possible anthropogenic Pb enrichment is found. Comparison of observed and expected heavy metal profiles (based on Greenland ice-core data) shows that the lakes are generally too insensitive to have recorded a long-transported heavy metal pollution signal.  相似文献   

4.
This paper reports a first estimate of the Holocene lake sediment carbon pool in Alberta, Canada. The organic matter content of lake sediment does not appear to depend strongly on lake size or other limnological parameters, allowing a simple first estimate in which we assume all Alberta lake sediment to have the same organic matter content. Alberta lake sediments sequester about 15 g C m-2 yr-1, for a provincial total of 0.23 Tg C yr-1, or 2.3 Pg C over the Holocene. Alberta lakes may represent as much as 1/1700 of total global, annual permanent carbon sequestration.  相似文献   

5.
长江口外海域沉积物中有机物的来源及分布   总被引:10,自引:0,他引:10  
通过分析长江口外海域不同区域有机碳和氮的分布特征及其影响因素,了解了底部沉 积物中有机碳和氮同位素的生物地球化学特征,探讨二者对长江口外海域底部沉积物中有机 物来源的指示意义。运用质量混合模型,计算了长江输入的陆源有机物的贡献及其空间变化。结果表明,长江口外海域沉积物中TOC 和TN 的分布和东海陆架的环流体系有着密切关系, 与环流的分布相对应,如果大致沿31oN 和123oE 作为分界线, 整个研究区的TOC 和TN 的分布可划分为4 个具有不同分布特征的区域。TOC、TN、δ13C 和δ15N 分别与沉积物的平均粒 径呈线性相关关系,因此,粒度效应是控制长江口外海域沉积物中有机物分布和稳定同位素 碳、氮的一个重要因素。研究区内的C/N 比值能够在一定程度上体现有机物的来源信息,但δ15N 表现出了与C/N 和δ13C 不同的区域分布和变化特征。陆源有机物来源比重较高的区域与 长江口外海域赤潮突发频率最高的地区相对应。长江口附近沉积物中的陆源有机物来源最高, 超过了50%,且等值线呈舌状向东北方向凸出,表明了长江冲淡水的影响。陆源颗粒态有机物沉海底后,要不断经历早期成岩作用和生物作用,因此在在相同地点,陆源有机物对沉积物中有机物的贡献,要明显小于对悬浮颗粒态有机物的贡献。  相似文献   

6.
Historical phosphorus (P) dynamics were studied using sediment cores from three oligotrophic, acidic lakes in Maine, USA. Long-term oligotrophy of these lakes is consistent with high sediment aluminum (as Al(OH)3) concentrations, as Al inhibits internal P loading, even under reducing conditions. The role of microbially-mediated reactions in controlling redox conditions was evaluated by estimating microbial biomass and relative abundance of specific functional groups. Sediments were fractionated using a sequential chemical extraction technique and all lakes met criteria for P retention based on threshold sediment concentrations of Al, Fe, and P fractions as determined by (Kopáček et al. (2005) Limnol Oceanogr 52: 1147–1155). Sediment NaOH-extractable molybdate-reactive P (rP) and non-reactive P (nrP) represent P associated with non-reducible phases, and organic matter-related P, respectively. Total P (TP) does not decrease with sediment depth, as is typical of eutrophic lake sediments; however, nrP/TP decreases and rP/TP increases for all three lakes, indicating nrP mineralization without any significant upward diffusion and release into the hypolimnion; i.e. diagenesis of P is conservative within the sediment. Two diagenetic models were developed based on nrP and rP concentrations as a function of sediment age. The first model assumes a first-order decay of nrP, the rate coefficient being a function of time, and represents irreversible nrP mineralization, where the produced PO4 is permanently sequestered by the sediment. The second model assumes a first-order reversible transformation between nrP and rP, representing biotic mineralization of organic P followed by incorporation of inorganic P into microbial biomass. Both models reflect preservation of TP with no loss to overlying water. The rate coefficients give us insight into qualities of the sediment that have affected mineralization and sequestration of phosphorus throughout the 210Pb-dateable history of each lake. Similar models could be constructed for other lakes to help reconstruct their trophic histories. Paleolimnological reconstruction of the sediment P record in oligotrophic lakes shows mineralization of nrP to rP, but unlike the case in eutrophic lake sediments, sediment TP is preserved in these sediments.  相似文献   

7.
A study of mineral magnetic parameters was carried out on a Late Pleistocene and Holocene sedimentary sequence (of nearly 18 m) from Lake Bledowo (central Poland). Sediments of Lake Bledowo have already been analysed for bulk sediment mineralogy and biogenic materials. The mineral magnetic stratigraphy confirms the major changes in palaeo-environmental conditions that have been deduced from other methods. The most important mineral magnetic change results from the authigenetic formation of ferrimagnetic greigite, Fe3S4, during the beginning of lacustrine conditions (± 12 000 yr BP). Our data also indicate a detrital origin of overlying ferrimagnetic iron oxides. It is suggested that they originate from brown soils developed on the boulder clay constituting the west side of the lake shore. Variations of ferrimagnetic iron oxide size are related to the early diagenetic processes in the sediment. Larger particles are present in periods with early diagenesis of organic matter in anoxic conditions. This indicates the dissolution of fine magnetic particles by iron-oxide-reducing bacteria and results in homogeneous magnetic grain sizes, despite their origin from soils, characterized by a multimodal grain-size distribution.  相似文献   

8.
Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates   总被引:32,自引:0,他引:32  
Identification of the sources of organic matter in sedimentary records provides important paleolimnologic information. As the types and abundances of plant life in and around lakes change, the composition and amount of organic matter delivered to lake sediments changes. Despite the extensive early diagenetic losses of organic matter in general and of some of its important biomarker compounds in particular, bulk identifiers of organic matter sources appear to undergo minimal alteration after sedimentation. Age-related changes in the elemental, isotopic, and petrographic compositions of bulk sedimentary organic matter therefore preserve evidence of past environmental changes.We review different bulk organic matter proxies of climate change in tropical and temperate sedimentary records ranging in age from 10-500 ka. Times of wetter climate result in enhanced algal productivity in lakes as a consequence of greater wash-in of soil nutrients, and these periods are recorded as elevated Rock-Eval hydrogen indices, lowered organic C/N ratios, less negative organic 13C values, and increased organic carbon mass accumulation rates. Lowering of lake water levels, which typically depresses algal productivity, can also cause an apparent increase in organic carbon mass accumulation rates through suspension of sediments from lake margins and redeposition in deeper basins. Alternations between C3 and C4 watershed plants accompany climate changes such as glacial/interglacial transitions and wet/dry cycles, and these changes in land-plant types are evident in 13C values of organic matter in lake sediments. Changes in climate-driven hydrologic balances of lakes are recorded in D values of sedimentary organic matter. Visual microscopic examination of organic matter detritus is particularly useful in identifying changes in bulk organic matter delivery to lake sediments and therefore is important as an indicator of climate changes.  相似文献   

9.
Paleoclimate research based on the stable isotopic composition of lake sediments is often hampered by the lack of preservation of suitable material for isotopic analysis. We examined organic material as a proxy for past water isotopic composition in a series of experiments. First, we cultured aquatic moss under constant illumination, temperature, and water 18O, and show that new cellulose records source water 18O precisely (r2 = 0.9997). Second, we analyzed paired lakewater and vegetation samples collected from sites spanning strong climatic gradients. In field conditions, the relationship between organic 18O and water 18O is more variable, though it is still controlled by environmental water isotopic composition. However, terrestrial mosses in the arctic are often significantly enriched in 18O relative to aquatic mosses in nearby lakes due to their use of different water sources. Third, we measured 18O of cellulose extracted from disseminated sedimentary organic material. In the majority of the middle- to high-arctic lakes in this study, the 18O of disseminated sediment cellulose is greatly enriched relative to the expected values based on lakewater 18O, suggesting a significant component of terrestrial cellulose. This interpretation is supported by radiocarbon dates from a Holocene sediment core in which 14C ages of sediment cellulose are 700-5000 yrs older than the enclosing sediments. We conclude that aquatic cellulose can be used as a reliable tracer of lakewater isotope ratios, but terrestrial cellulose often dominates the sedimentary cellulose pool in places such as Baffin Island where sedimentation rates are low enough to allow the degradation of aquatic cellulose. Care must be taken when interpreting sediment cellulose 18O records where diagenesis has played a role, because terrestrial cellulose is more resistant to degradation, and therefore can predominate in environments with low organic carbon burial.  相似文献   

10.
Knowledge of the sediment flux derived from different sources is critical for interpreting the sedimentary records associated with large river sedimentary systems. For the Changjiang River system, previous studies hardly focused on the sediment load from the adjacent Zhoushan Archipelago (ZA). Based on four prediction models, aiming to improve the understanding of the sediment load from the ZA during the Holocene, we show that the predicted sediment flux of the ZA ranges from ~0.7 to 26.5 Mt·yr-1, with an average value of 10.7 Mt·yr-1, and the islands with a relatively large area or high relief contribute greatly to the total flux. This sediment load is an order of magnitude lower than that of the Changjiang River, but it is similar to those of the local small rivers. Located in the core area of the southward dispersal path of the Changjiang River plume, the ZA also influences the sediment transport into Hangzhou Bay and over the Zhejiang-Fujian coastal seas. On the Holocene temporal scale, e.g., for the period from 6 ka BP to 2 ka BP, the sediments discharged from the ZA had a considerable effect on the shelf sedimentary system. This study provides evidence for an important role an archipelago can play in terms of sediment supply and transport in coastal and inner continental shelf regions.  相似文献   

11.
Sediment diatom and chemical analyses of cores from three poorly buffered extra-glacial lakes on the northeastern margin of the Canadian Shield (Cumberland Peninsula, Baffin Island) record interactions between aquatic and terrestrial spheres that were influenced by late Quaternary climatic conditions. Although differences exist between each of the lakes, notably with regards to the intensity of pre-Holocene catchment erosion and the timing of the onset of organic sedimentation, an underlying pattern of lake ontogeny, common to all three lakes, is identified. Although intensified watershed erosion characterized the Late Wisconsinan and Neoglacial cold periods, the lakes nonetheless remained viable ecosystems at these times. Sudden catchment stabilization during the late-glacial to earliest Holocene is associated with incipient organic sedimentation. Lake-water pH increased at this time, likely in response both longer base cation residence times as lake flushing rates decreased, and enhanced alkalinity production from sediment biogeochemical reactions. Subsequently, as the catchments remained stable during the productive early Holocene (c.9–7 ka BP), then gradually received a renewed increase of minerogenic sedimentation, the breakdown of sources of lake alkalinity resulted in natural acidification. Burial of cation-rich mineral sediments and the loss of permanent sedimentary sinks for the products of microbial reduction likely impeded within-lake alkalinity production, and catchment-derived base cations appeared ineffective in curtailing pH declines. The general nature of the Holocene development of these lakes is similar to that observed elsewhere on crystalline terrains, following deglaciation. Our data therefore suggest that catchment glaciation is not a necessary precursor for models of lake development characterized by initial base cation enrichment and subsequent gradual acidification.  相似文献   

12.
The quality and interpretability of the paleobiological record depends on the preservation of morphological and geochemical fossils. Siliceous microfossils and sedimentary pigments are often cornerstones in paleoecology, although the microbial and geochemical processes conducive to their preservation remain poorly constrained. We examined sediments from an alpine lake in Banff National Park (Alberta, Canada) where diatom frustules are completely dissolved within 50 years of deposition. Diatom dissolution, silica recycling, and diagenetic alteration of algal pigments were investigated, in conjunction with porewater geochemistry and microelectrode profiling of the sediment–water interface. Analysis of sediment trap material showed ~90% of biogenic silica (BSi) production is lost prior to burial. Silica flux calculations, based on dissolved silica (as H4SiO4) in pore-waters, show a further ~6% of total BSi is returned to the water column from the upper 4 cm of sediments, implying that only ~4% of total BSi is permanently archived in sediments. In situ sediment pH and O2 profiles reveal that aerobic respiration by bacteria fully consumes oxygen by a depth of 4 mm into the sediment, with associated strong pH and redox gradients. During sedimentation and early diagenesis, diatoms undergo loss of extracellular polymeric substances that coat their frustules, promoting silica dissolution and leading to the loss of the microfossil record by a depth of 3.25 cm. Sedimentary pigments similarly undergo rapid degradation, but diatom-related carotenoids persist below the depth of silica dissolution. This work provides new insights on diagenetic processes in lakes, with broad implications for the interpretation of sedimentary proxies for algal production.  相似文献   

13.
Increased eutrophication was recently observed in the 5th (5J) and 6th (6J) Triglav Lakes, two remote Slovenian mountain lakes. Sediment phosphorus (P) pools were analysed and potential external P sources affecting the lakes (atmospheric deposition, terrestrial export and nearby hut) evaluated, to assess the effects of internal and external changes on the lakes. A sequential extraction procedure was used to quantify five P fractions from the sediments: adsorbed (NH4Cl–P), redox-sensitive (BD–P), aluminium- (NaOH–P) and calcium- (HCl–P) bound, and refractory organic (Res–P) P. Total phosphorus (TP) contents in surface sediment of 5J and 6J were 1430 and 641 µg P g?1 dry weight sediment (dw), respectively. TP varied with depth in 5J sediments, but displayed no discernible pattern, whereas it decreased steadily downcore in 6J. Contents of all P forms were distinctly higher in 5J than 6J, but their rank order and relative abundances were similar in the two lakes. Res–P was the most abundant P fraction, followed by HCl–P. Together, the two P forms accounted for nearly 80 and 90% of TP in 5J and 6J sediments, respectively. BD–P and NaOH–P were less abundant, with each fraction accounting for 3 to 9% of TP, whereas NH4Cl–P was least abundant. Atmospheric deposition and terrestrial export were substantial sources of P for the lakes. Delivery of the former was estimated to be at least 7.5 mg P m?2 yr?1 and the latter around 20 mg P m?2 yr?1. We concluded that P was not retained in the catchment effectively, likely because of only slightly acidic soil pH (5.9), relatively low aluminium content and high organic matter content (53%) in soils, resulting in higher vulnerability of the studied lakes to eutrophication. The mountain hut could also be a significant source of P for the lakes. Each year, it could potentially contribute ~12 kg of soluble P to the environment, but the true impact of the hut on lake trophic status remains unclear.  相似文献   

14.
The diagenetic history of the Ediacaran sedimentary rocks in the East European Craton (EEC) over the area extending from Arkhangelsk (Russia) in the north to Podolia (Ukraine) in the south was revealed by means of the XRD characterization and K–Ar dating of clay fractions, mudstone porosity measurements and organic geochemistry investigations. Mudstone porosity measurements produced direct evidence of shallow maximum burial of the Ediacaran sediments on the craton (Russia, Lithuania, Belarus, Volyn), not exceeding 1.5 km, and much deeper burial at the cratonic margin, in Podolia and Poland. In general, illitization of smectite and biomarker indices indicates more advanced diagenesis at the cratonic margin. K–Ar dating of authigenic illite–smectite and aluminoceladonite revealed the Palaeozoic age of mineral diagenesis (ca. 450–300 Ma) both on the craton and its margin, with older ages generally observed in the north. When the maximum palaeotemperatures were evaluated from illite–smectite and biomarkers, based on the calibrations from the conventional burial diagenetic sections, a major mismatch was detected for the cratonic area: 100°C–130°C from illite––smectite and tens of oC lower from the lipid biomarkers. This diagenetic pattern was interpreted as the result of short‐lasting (in ky scale) pulses of potassium‐bearing hot fluids migrating from the Caledonian and Variscan orogens deep in the craton interior, effectively promoting illitization in porous rocks without altering the organic matter. Analogous short pulses of fluids were responsible for numerous diagenetic phenomena, including Mississippi Valley‐Type ore deposits, in the American Midwest, in front of the Appalachians. K–Ar dating indicates that the entire Proterozoic sedimentary cover of the Great Unconformity on the EEC remained untouched by measureable post‐sedimentary changes until the early Palaeozoic, thus for over 1000 My, which is an unprecedented finding.  相似文献   

15.
Sediment accumulation rate (SAR) is an important physical parameter in all lakes and increases have been observed in many over the last c.100 years. This has been ascribed to changes in land-use and land-management causing accelerated catchment soil erosion and an increase in autochthonous organic matter production. The EU Water Framework Directive requires that assessment of biological, hydromorphological and chemical elements of water quality should be based on the degree to which present day conditions deviate from those expected in the absence of significant anthropogenic influence, termed reference conditions. Currently however, the reference condition for sediment accumulation rate for lakes of different types is undefined. To improve our understanding of the controls on SARs we compiled SAR and lake typology data for 207 European lakes derived from 210Pb dated cores to assess how rates have changed through time (in 25 year classes) both overall and for lakes of different types. Seventy-one percent of these sediment cores showed surface SARs higher than “basal” (mainly nineteenth century) rates, 11% showed no change while 18% showed a decline. Lakes were then classified into lake-types using four variables: alkalinity (3 classes), altitude (3 classes), maximum depth (2 classes) and lake area (2 classes). This generated a possible 36 lake classes of which 25 were represented in the dataset. Nine lake-types contained >10 lakes. Little change in SAR occurred prior to 1900 and most increases occurred in more recent periods, in particular 1950–1975 and post-1975. This indicates a general acceleration in SAR in European lakes during the second half of the twentieth century. Reference SARs were estimated for six lake-types with the highest number of sites. European mountain lakes had the lowest reference SAR (0.005 ± 0.003 g cm−2 yr−1) while lowland, high alkalinity sites had the highest (0.03–0.04 g cm−2 yr−1). SARs for other lake-types ranged between 0.012 and 0.024 g cm−2 yr−1. Using the mountain lake-type as an example, the 1850 reference SAR appears to show good agreement with available data for lakes beyond Europe indicating these values may be more broadly applicable. Contemporary SARs in lakes of all classes showed exceedence over their defined reference SAR. This may be partly due to diagenetic processes. Greatest exceedences were found in shallow, low altitude lakes and these are considered to be the ones under the greatest threat from continued elevation of SAR. It is considered that climate change may play a progressively more important role in driving SAR in the future.  相似文献   

16.
Low‐energy gamma ray spectroscopy has been employed to estimate floodplain sedimentation rates using measurements of 210Pb in floodplain alluvium. The utility of the technique is assessed through the analysis of excess (unsupported) 210Pb profiles in three sediment cores taken from the floodplain of the Labasa River on Vanua Levu in northern Fiji. A low‐energy germanium spectrometer (LEGe) was used for the nondestructive determination of excess 210Pb in a region cultivated intensively with sugarcane. Measured average historical (c. 25 years) vertical accretion rates are between 2.2 and 4.4 cm yr?1. The findings are broadly comparable with published sedimentation rates from analyses of radionuclide profiles elsewhere in the tropical South Pacific Islands, but the rates are higher than those measured previously at the same Labasa River sites using 137Cs profiles. Accelerated soil erosion owing to cane burning and land tillage seems to be largely responsible for sediment production, although flood‐related effects such as channel accretion by coarse bedload and the emplacement of large organic debris also influence floodplain sedimentation. However, application of the 210Pb technique in Fiji (and perhaps neighbouring island countries) is found to have serious drawbacks compared to the more robust 137Cs method, owing principally to the low 210Pb concentrations in the sandy alluvial sediment tested.  相似文献   

17.
Pyrolysis–gas chromatography mass spectrometry (py-GC/MS) allows the characterisation of complex macromolecular organic matter. In lakes and wetlands this can potentially be used to assess the preservation/diagenesis and provenance of sediment organic matter. It can complement palaeoenvironmental investigations utilising ‘bulk’ sediment variables such as total organic carbon (TOC) and TOC/total nitrogen ratios. We applied py-GC/MS analyses to a ~32,000-year sediment record from the southern Cape coastline of South Africa. We used the results to evaluate the sources and extent of degradation of organic matter in this semi-arid environment. Marked down-core changes in the relative abundance of multiple pyrolysis products were observed. Correspondence analysis revealed that the major driver of this down-core variability in OM composition was selective preservation/degradation. Samples comprising highly degraded OM are primarily confined to the lower half of the core, older than ~12,000 years, and are characterised by suites of low-molecular-weight aromatic pyrolysis products. Samples rich in organic matter, e.g. surface sediments, are characterised by products derived from fresh emergent or terrestrial vegetation, which include lignin monomers, plant-derived fatty acids and long-chain n-alkanes. Pyrolysates from the late glacial-early Holocene period, approximately mid-way down the core are characterised by distinct suites of long-chain n-alkene/n-alkane doublets, which may reflect the selective preservation of recalcitrant aliphatic macromolecules and/or enhanced inputs of the algal macromolecule algaenan/polymerised algal lipids. Increased TOC, lower δ13C and increased abundance of more labile lignin and fatty acid products at the same depths suggest this period was associated with increased lake primary productivity and enhanced inputs of terrestrial OM. TOC is the only ‘bulk’ parameter correlated with the correspondence analysis axes extracted from the py-GC/MS data. Distinct fluctuations in TOC/total nitrogen ratio are not explained by variation in organo-nitrogen pyrolysis products. Notwithstanding, the study suggests that py-GC/MS has potential to complement palaeolimnological investigations, particularly in regions such as southern Africa, where other paleoenvironmental proxy variables in sediments may be lacking or equivocal.  相似文献   

18.
The sediment record from a 5.3-m core from Sargent Mountain Pond, Maine USA indicates strong co-evolutionary relationships among climate, vegetation, soil development, runoff chemistry, lake processes, diatom community, and water and sediment chemistry. Early post-glacial time (16,600–12,500 Cal Yr BP) was dominated by deposition of mineral-rich sediment, low in organic matter and secondary hydroxides of Al and Fe; pollen indicate tundra conditions; diatom taxa indicate pH between 7.5 and 8, and total P concentrations of about 25 μg L−1, favoring higher productivity. Chemical weathering was rapid, with high alkalinity, pH, Ca, and P in runoff. As climate ameliorated, about 12,500 Cal Yr BP, forest vegetation became established; soils would have developed vertical zonation, including organic matter accumulation, and incipient podzolic horizons, with accumulating secondary hydroxides of Al and Fe that sequestered P in the soils. Labile minerals (primarily apatite, Ca5(PO4)3(OH,F,Cl)) became depleted in the soil, further reducing the supply of P to the lake. Dissolved organic carbon (DOC) from soil organic matter mobilized Al and Fe to the lake where Al(OH)3 (primarily) and Fe(OH)3 (minor) were precipitated. The sedimenting hydroxides adsorbed P from the water column, further reducing bioavailable P. These long-term trends of moderating climate, and changing terrestrial biology, soils, and aquatic chemistry and phytoplankton were interrupted by the 1,000-year long Younger Dryas cooling, which led to a temporary reversal of these processes, a period that ended with the major onset of Holocene warming. The sequestration of P by soils would have strengthened because of long-term soil acidification and pedogenesis. The lake was transformed from a more productive, high P, high pH, low DOC system into an oligotrophic, relatively low P, acidic, humic lake over a period of 16,600 years, a natural trend that continues. In contrast to many human-affected lakes that become increasingly eutrophic, many lakes become more oligotrophic during their history. The precursors for that are: (1) absence of human land-use in watersheds, (2) bedrock lithology and soil with a paucity of soluble Ca-rich minerals, and (3) vegetation that promotes the accumulation of soil organic matter, podzolization, and increased export of metal-DOC complexes, particularly Al.  相似文献   

19.
Stratigraphy of total metals in PIRLA sediment cores   总被引:1,自引:0,他引:1  
Sediment cores from 30 low-alkalinity lakes in northern New England (NE), New York (NY), the northern Great Lakes States (NGLS) of Minnesota, Michigan, and Wisconsin, and Florida (FL) have been dated by 210Pb and analyzed for water and organic content, eight major elements (Al, Ti, Fe, Mn, Ca, Mg, Na, K) plus four trace metals (Pb, Zn, Cu, and V). Variations in the percentages of major elements through time are dominated by long-term independent variations in the abundance of SiO2, FeO, and to a lesser extent Ca and Al. Additional variations are caused by varying proportions of inorganic matter. Major variations in chemistry are generally unrelated to documented distrubances in the watersheds; most disturbances are minor fires or selective logging.Accelerated accumulation of Pb from atmospheric sources into sediment first occurs in sediment dated between 1800 and 1850 in NY and NE, slightly later in the NGLS region, and about 1900 in FL. Modern accumulation rates in all areas are comparable (ca. 1 to 4 g cm–2 yr–1). Accumulation rates of Pb in some lakes have declined significantly from 1975 to 1985. Atmospheric deposition of anthropogenic Zn and Cu is also indicated by generally increasing accumulation rates in sediment cores, but the record is not as clear nor are chemical profiles in all lakes parallel to the trends in atmospheric emissions inferred on the basis of fossil fuel consumption, smelting, and other industrial activities. Inter-lake variations in profiles of Cu and Zn are large. Vanadium accumulation rates increase by the 1940s in NY and NE, but not until the 1950s in the NGLS region. This timing correlates with regional trends in the combustion of fuel oil, a major source of atmospheric V.Acidification of some of the lakes is suggested by decreases in the concentration and accumulation rates of Mn, Ca, and Zn in recent sediment, relative to other elements of catchment origin. The decreases generally occur slightly before the onset of acidification as indicated by diatoms. Increased sediment accumulation rates for Fe may indicate the acidification of watershed soils. The use of the accumulation rate of TiO2 as an indicator of rates of erosion and for normalization of trace metal accumulation rates is in question for lakes where the flux of TiO2 from the atmosphere varies and is a significant fraction of the total flux of TiO2 to the sediment.This is the thirteenth of a series of papers to be published by this journal which is a contribution of the Paleoecological Investigation of Recent Lake Acidification (PIRLA) project. Drs. D. F. Charles and D. R. Whitehead are guest editors for this series.  相似文献   

20.
We analyzed seasonally aggregated observations of temperature, conductivity, dissolved oxygen and dissolved inorganic carbon from Soppensee (District of Lucerne, Switzerland) for the yrs 1980 to 1993. Holomictic Soppensee is characterized by a strong summer stratification with a thin epilimnion separated from an anoxic hypolimnion by a strong pycnocline formed by thermal and chemical gradients. A vertical one-dimensional model was developed to simulate the observed seasonal cycles of carbon and oxygen. The processes of net community production, mineralization of organic matter, precipitation and dissolution of calcite, gas exchange, in- and outflow, sedimentation and vertical eddy diffusion are included. According to the model, the annual net community production is estimated to about 110 g C m-2 yr-1 and the annual net primary production to about 330 to 440 g C m-2 yr-1, which is a typical value for eutrophic lakes. A mass balance of the carbon cycle indicates that most of the inflow comes from groundwater which is super-saturated with respect to atmospheric CO2. Therefore the surface waters exhibit a large capacity for calcite precipitation. The results of the model are used to constrain the conditions that favor the formation of varved sediments in Soppensee during thousands of yrs. Model calculations show that the deep waters would still turn anoxic even if the sedimentation rate of organic matter were decreased to 25%. Several physical factors such as biogenic stabilization of the deep waters due to calcite dissolution and low input of wind energy are responsible for the long term anoxia in Soppensee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号