首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 193 毫秒
1.
This study verifies the applicability of EPIC model for an erosion plot (61 .2 m~2) and an uplandterraced watershed (72 ha) using a total of 94 rainfall events over a study period of two years. Inorder to analyze the effect of storm size on runoff and soil loss processes, rainfall events aredivided into three groups: small (<25mm), moderate (25--50mm) and large (>50mm). Resultsindicate that the model could predict reasonably well the runoff and soil loss from the erosion plotand the watershed for the moderate and large rainfall events. However, the runoff and soil lossprediction for the small rainfall events is found to be poor. On annual basis, both surface runoff andsoil loss predictions match well the observations. In ligh of the importance of the moderate andlarge rainfall events in producing most of the annual runoff and soil loss in the study area, the EPICmodel is applied to assess the impacts of erosion on agricultural productivity and to evaluatemanagement practices to protect watersheds in the  相似文献   

2.
1 INTRODUCTION Erosion caused by ephemeral flows is a frequent phenomenon in nature and contributes to the shape of the landscape. This type of erosion may cause great soil losses in agricultural areas, which are quickly transferred to the watershed outlets through the rill and gully network (Bennett et al., 2000; Poesen et al., 2003). Concentrated flow erosion is controlled by the erodibility of surface materials, climate, soil use and management, and watershed topography. Several metho…  相似文献   

3.
Forest land affected by deforestation yields high soil and water losses.Suitable management practices need to be found that can reduce these losses and achieve ecological and hydrological sustainability of the deforested areas.Mulch has been found to be effective in reducing soil losses;straw mulch is easy to apply,contributes soil organic matter,and is efficient since the day of application.However,the complex effects of rice straw mulch with different application rates and lengths on surface runoff and soil loss have not been clarified in depth.The current paper evaluates the efficiency of rice straw mulch in reducing the hydrological response of a silty clay loam soil under high intensity and low frequency rainfall events(tap water with total depth of 49 mm and intensity of 98 mm/h)simulated in the laboratory.Surface runoff and soil loss at three lengths of the straw(10,30,and 200 mm)and three application rates(1,2,and 3 Mg/ha)were measured in 50 cm(width)×100 cm(length)×10 cm(depth)plots with disturbed soil samples(aggregate soil size<4 mm)collected in a deforested area.Bare soil was used as control experiment.Runoff volume and erosion were significantly(at p<0.05)lower in mulched soils compared to control plots.These reductions were ascribed to the water absorption capacity of the rice straw and the protection cover of the mulch layer.The minimum runoff was observed for a mulch layer of3 Mg/ha of straw with a length of 200 mm.The lowest soil losses were found with straw length of10 mm.The models developed predict runoff and erosion based on simple linear functions of mulch application rate and length,and can be used for a suitable hydrological management of soil.It is concluded that,thanks to rice straw mulch used as an organic soil conditioner,soil erosion and surface runoff are significantly(at p<0.05)reduced,and the mulch protection contributes to reduce the risk of soil degradation.Further research is,however,needed to analyze the upscaling of the hydrological effects of mulching from the plot to the hillslope scale.  相似文献   

4.
Sedimentation from soil erosion is a critical reservoir watershed management issue. Due to the difficulty of field investigations, empirical formulas are commonly used to estimate the soil erosion rate. However, these estimations are often far from accurate. An effective alternative to estimating soil erosion is to analyze the spatial variation of 137Cs inventory in the soil. 137Cs can be adsorbed by the soil and is widely assumed to change its distribution only when disturbed by rainfall and human activities. Thus, 137Cs distributed in soils can be a useful environmental tracer to estimate soil erosion. In this study, the net soil loss estimate is 108,346 t/yr and the gross erosion and net erosion rates are 10.1 and 9 t/ha yr respectively. The sediment delivery ratio is therefore estimated to be 0.9 based on the two erosion rates. Because of the steep hillsides in the watershed, only 10% of the sediment yield stayed in the deposition sites and 90% was transported to the river as the sediment output. Soil erosion estimates from spatial variations of the 137Cs activity in the Baishi river watershed showed satisfactory accuracy when compared to sediment yield data. Using soil 137Cs concentrations is therefore a feasible method for estimating soil loss or deposition in Taiwan. Data sampling, analysis and result of this approach are given in this paper.  相似文献   

5.
Concentrated flow can cause gully formation on sloping lands and in riparian zones. Current practice for riparian gully erosion control involves blocking the gully with a structure comprised of an earthen embankment and a metal or plastic pipe. Measures involving native vegetation would be more attractive for habitat recovery and economic reasons. To test the hypothesis that switchgrass (Panicum virgatum L.) hedges planted at 0.5-m vertical intervals within a gully would control erosion, a series of hedges was established in four concentrated flow channels. Two of the channels were previously eroded trapezoidal channels cut into compacted fill in an outdoor laboratory. The other two channels were natural gullies located at the edge of floodplain fields adjacent to an incised stream. While vegetation was dormant, artificial runoff events were created in the two laboratory gullies and one of the natural gullies using synthetic trapezoidal-shaped hydrographs with peak discharge rates of approximately 0.03, 0.07, and 0.16 m3/s. During these tests flow depth, velocity, turbidity, and soil pore water pressures were monitored. The fourth gully was subjected to a series of natural runoff events over a five-month period with peaks up to 0.09 m3/s. Flow depths in all tests were generally 〈 0.3 m, and flow velocities varied spatially and exceeded 2.0 m/s at the steepest points of the gullies. Erosion rates were negligible for controlled flow experiments, but natural flows in the fourth gully resulted in 1 m ofthalweg degradation, destroying the central portions of the grass hedges, most likely due to the highly erodible nature of the soils at this site. Geotechnical modeling of soil steps reinforced with switchgrass roots showed factors of safety 〉 1 for step heights 〈 0.5 m, but instability was indicated for step heights 〉1 m, consistent with the experimental observations.  相似文献   

6.
Physical soil crusts likely have significant effects on infiltration and soil erosion, however, little is known on whether the effects of the crusts change during a rainfall event. Further, there is a lack of discussions on the differences among the crusting effects of different soil types. The objectives of this study are as follows: (i) to study the effects of soil crusts on infiltration, runoff, and splash erosion using three typical soils in China, (ii) to distinguish the different effects on hydrology and erosion of the three soils and discuss the primary reasons for these differences, and (iii) to understand the variations in real soil shear strength of the three soils during rainfall events and mathematically model the effects of the crusts on soil erosion. This study showed that the soil crusts delayed the onset of infiltration by 5 to 15 min and reduced the total amount of infiltration by 42.9 to 53.4% during rainfall events. For a purple soil and a loess soil, the initial crust increased the runoff by 2.8% and 3.4%, respectively, and reduced the splash erosion by 3.1% and 8.9%, respectively. For a black soil, the soil crust increased the runoff by 42.9% and unexpectedly increased the splash erosion by 95.2%. In general, the effects of crusts on the purple and loess soils were similar and negligible, but the effects were significant for the black soil. The soil shear strength decreased dynamically and gradually during the rainfall events, and the values of crusted soils were higher than those of incrusted soils, especially during the early stage of the rainfall. Mathematical models were developed to describe the effects of soil crusts on the splash erosion for the three soils as follows: purple soil, Fc= 0.002t- 0.384 ; black soil, Fc. =-0.022t + 3.060 ; and loess soil, Fc = 0.233 In t- 1.239 . Combined with the equation Rc= Fc (Ruc - 1), the splash erosion of the crusted soil can be predicted over time.  相似文献   

7.
On hillslopes and agricultural fields, discrete areas of intense, localized soil erosion commonly take place in the form of migrating headcuts. These erosional features significantly increase soil loss and landscape degradation, yet the unsteady, transient, and migratory habits of headcuts complicate their phenomenological and erosional characterization. Here a unique experimental facility was constructed to examine actively migrating headcuts typical of upland concentrated flows. Essential components of the facility include a deep soil cavity with external drainage, rainfall simulator, capacity for overland flow, and a video recording technique for data collection. Results from these experiments show that: (1) after a short period of adjustment, headcut migration attained a steady-state condition, where the rate of migration, scour hole geometry, and sediment discharge remain constant with time; (2) boundary conditions of higher rates of overland flow, steeper bed slopes, and larger initial headcut heights produced systematically larger scour holes with higher rates of soil erosion; and (3) during migration, the turbulent flow structure within the scour hole remained unchanged, consisting of an overfall nappe at the brink transitioning into a reattached wall jet with two recirculation eddies within the plunge pool. The systematic behavior of headcut development and migration enabled the application of modified jet impingement theory to predict with good success the characteristics of the impinging jet, the depth of maximum scour, the rate of headcut migration, and the rate of sediment erosion. These laboratory data and the analytical formulation can be used in conjunction with soil erosion prediction technology to improve the management of agricultural areas impacted by headcut development and ephemeral gully erosion.  相似文献   

8.
Numerical modeling of gravitational erosion in rill systems   总被引:1,自引:0,他引:1  
A self-organizing model was developed for simulating rill erosion process on slopes with particular attention to the role of gravitational erosion.For a complete simulation circle,processes such as precipitation,infiltration,runoff,scouring,gravitational erosion and elevation variation were fully considered.Precipitation time(or runoff time) was regarded as iteration benchmark in the model.To specify the contribution of gravitational erosion to the process of rill formation and development,a gravitational erosion module was inserted into the model.Gravitational erosion in rill development was regarded as a Gaussian random process.A model was calibrated by our experimental data,and further validated satisfactorily with 22 runs of experimental results from different investigators. Systematic comparison was made between sediment yields with and without consideration of gravitational erosion module.It was demonstrated that the model could reasonably simulate the rill erosion process under a variety of slope gradients,rainfall intensities and soil conditions upon the gravitational erosion being considered.However,the role of gravitational erosion on sediment yields in rill systems varies significantly under different conditions,although it is of the utmost importance in steeper slopes.The process of gravitational erosion in rill development was studied by a newly-defined parameter a>,which is defined as the volume ratio of gravitational erosion over hydraulic-related erosion.The gravitational contribution to the total erosion could be over 50%for the rill systems with higher rainfall intensity and steeper slopes.  相似文献   

9.
This study sought to contribute to an improved understanding of soil erosion and redistribution on Mediterranean agricultural land, where traditional soil conservation practices have been applied over millennia to provide effective protection of cultivated land. The study was undertaken in the Na Borges catchment, a groundwater-dominated lowland limestone basin (319 km2), located in the northeastern part of Mallorca, Spain. The average sediment yield from the basin, based on river sediment load data, is 1 t/km2·yr. The 137Cs technique was used to quantify soil redistribution rates over the past 40 years and to identify the key factors involved in soil erosion and redistribution processes. To estimate erosion and deposition rates and to elucidate the main factors affecting soil redistribution, samples were collected from six slope transects representative of the local land use and slope gradients and the presence or absence of soil conservation practices. A mass balance and a profile distribution conversion model were used for cultivated areas and areas of natural vegetation, respectively, to derive point estimates of the soil redistribution rates from the 137Cs inventories measured for individual soil bulk cores. In areas without soil conservation practices, the estimated mean soil erosion rates ranged from 12.7 to 26.4 t/ha·yr, which correspond to the slight and moderate erosion classes. The erosivity of Mediterranean climatic conditions combined with the influence of agricultural practices and slope gradient on soil erosion, represent the main factors responsible for the variation of soil losses documented for the cultivated land located in downslope areas, in the absence of soil conservation practices. Deposition dominated for those transects affected by soil conservation practices, with rates ranging between 18.8 and 96.6 t/ha·yr. However, this situation does not mean that soil conservation measures retain all the sediment, but rather that agriculture and urbanization (i.e. new rural paths and stone boundaries) modified the micro-topography and diverted sediment from other upslope zones towards the slopes where sampling transects were located.  相似文献   

10.
Effects of rainfall patterns on runoff and rainfall-induced erosion   总被引:3,自引:0,他引:3  
Rainfall-induced erosion involves the detachment of soil particles by raindrop impact and their transport by the combined action of the shallow surface runoff and raindrop impact.Although temporal variation in rainfall intensity(pattern)during natural rainstorms is a common phenomenon,the available information is inadequate to understand its effects on runoff and rainfall-induced erosion processes.To address this issue,four simulated rainfall patterns(constant,increasing,decreasing,and increasing-decreasing)with the same total kinetic energy were designed.Two soil types(sandy and sandy loam)were subjected to simulated rainfall using 15 cm×30 cm long detachment trays under infiltration conditions.For each simulation,runoff and sediment concentration were sampled at regular intervals.No obvious difference was observed in runoff across the two soil types,but there were significant differences in soil losses among the different rainfall patterns and stages.For varying-intensity rainfall patterns,the dominant sediment transport mechanism was not only influenced by raindrop detachment but also was affected by raindrop-induced shallow flow transport.Moreover,the efficiency of equations that predict the interrill erosion rate increased when the integrated raindrop impact and surface runoff rate were applied.Although the processes of interrill erosion are complex,the findings in this study may provide useful insight for developing models that predict the effects of rainfall pattern on runoff and erosion.  相似文献   

11.
Although there is much evidence of intense soil erosion in cultivated areas of Navarre (Spain), information on it is currently scarce. Rill and ephemeral gully volumes can be used as a guide to minimum erosion rates. With the main purpose of determining the annual soil loss rates in cultivated areas of central Navarre, a detailed assessment of rainfall and of rill and gully erosion was made in 19 small catchments from October 1999 to September 2001. Seventeen of them were randomly selected, and were cultivated with winter cereals, vineyards or sunflowers. The other two catchments were selected to represent partially uncultivated lands abandoned for ten years. Channel cross‐sections were measured by using a 1‐m‐wide micro‐topographic profile meter, describing 632 cross‐sections and processing information from 31 600 pins. Erosive events happened every year in the three study areas. For cereal catchments, soil losses occurred in only one or two rainfall events each year, usually at the end of autumn and in some summers, with high erosion rates (0·20–11·50 kg m?2 a?1). In vineyards, soil losses occurred several times per year, and in any season. This is attributed to the small percentage of surface covered by the crop throughout the year. Again, high erosion rates were found (0·33–16·19 kg m?2 a?1), with ephemeral gully erosion causing more loss than rill erosion. No‐till is proposed as an effective conservation measure. From this large data set, it can be stated that rill erosion and ephemeral gully erosion are widespread in Mediterranean regions, and that much more attention should be paid to the problem. Abandoned fields showed very high erosion rates (16·19 kg m?2 a?1 on average), suggesting that the abandonment of marginal lands without implementing any erosion control can lead to severe erosion rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This paper reports the results of a field investigation aimed to establish morphological similarity between rills and ephemeral gullies. Rill measurements were made on 14 plots having a surface area of 22–352 m2 located on a 14·9% slope and on a plot 6·0 m wide and 22·0 m long having a uniform 22·0% slope. The plots are located on the experimental station for soil erosion measurements, ‘Sparacia’, of the Agricultural Faculty of Palermo University, in Sicily, Italy. All plots are subjected to natural rainfall. The measurements were made immediately following five events between November 2004 and December 2005. The ephemeral gully measurements were made on a cultivated area of about 120 ha, located in Central Sicily, which is representative of many soil‐crop conditions in the Mediterranean basin. The morphological similarity between rill and ephemeral gully was first tested. Then a power relationship between rill or gully volume and length, theoretically deduced by dimensional analysis and self‐similarity theory, was applied. This power relationship needs a different scale factor for rill and gully measurements. Finally, using two dimensionless groups representative of the channel morphology variables, the analysis showed that a single relationship can be applied to rill and gully measurements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Knowledge of soil loss rates by water erosion under given climate, soil, topography, and management conditions is important for establishing soil conservation schemes. In Galicia, a region with Atlantic climatic conditions in Spain, field observations over the last decade indicate that interrill, rill and ephemeral gully erosion may be an important sediment source. The aim of this work was to assess concentrated erosion rates, describe types of rills and ephemeral gullies and determine their origin, evolution and importance as sediment sources. Soil surface state and concentrated flow erosion were surveyed on medium textured soils, developed over basic schists of the Ordenes Complex series (Coruña province, Spain) from 1997 to 2006. Soil surface state was characterized by crust development, tillage features and roughness degree. Soil erosion rate was directly measured in the field. Concentrated flow erosion took place mainly on seedbeds and recently tilled surfaces in late spring and by autumn or early winter. During the study period, erosion rates were highly variable and the following situations could be distinguished: (a) no incision or limited rill incision, i.e. below 2 Mg ha?1 year?1; (b) generalized rill and ephemeral gully incision in the class of mean values between 2·5 and 6·25 Mg ha?1 year?1, this was the most common erosion pattern; and (c) heavy erosion as observed during an extremely wet winter period, between October 2000 and February 2001, with erosion figures that may be about ten orders of magnitude higher, up to 55–60 Mg ha?1 year?1. Therefore, low values of soil losses are dominant, but also large values of rill and ephemeral gully erosion occurred during the study period. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Concentrated flow erosion is the dominant form of winter erosion in northern France. This study correlates the ephemeral rill and gully volumes measured in 20 cultivated catchments (4–95 ha) for three consecutive winters with the size of the potential runoff-contributing areas. These areas were identified by characterizing soil surface state through crust development stage, importance of surface wheel tracks and roughness grade. A single and significant relationship was found between the size of runoff-contributing areas, estimated by this criterion, and the rill and gully volumes. This identified the proportion of the catchment area occupied by fields with a degraded surface structure as the main factor controlling the variability of erosion in a context of concentrated flow erosion on cultivated land. The extension of degraded areas was shown to be controlled by dynamic interactions between weather, land occupation and soil physical properties. This criterion accounts for the uneven distribution of rainfall in space and time. Morphological factors, such as talweg length and slope, are believed to determine part of the residual variability.  相似文献   

15.
Few models can predict ephemeral gully erosion rates (e.g. CREAMS, EGEM). The Ephemeral Gully Erosion Model (EGEM) was specifically developed to predict soil loss by ephemeral gully erosion. Although EGEM claims to have a great potential in predicting soil losses by ephemeral gully erosion, it has never been thoroughly tested. The objective of this study was to evaluate the suitability of EGEM for predicting ephemeral gully erosion rates in Mediterranean environments. An EGEM‐input data set for 86 ephemeral gullies was collected: detailed measurements of 46 ephemeral gullies were made in intensively cultivated land in southeast Spain (Guadalentin study area) and another 40 ephemeral gullies were measured in both intensively cultivated land and abandoned land in southeast Portugal (Alentejo study area). Together with the assessment of all EGEM‐input parameters, the actual eroded volume for each ephemeral gully was also determined in the field. A very good relationship between predicted and measured ephemeral gully volumes was found (R2 = 0·88). But as ephemeral gully length is an EGEM input parameter, both predicted and measured ephemeral gully volumes have to be divided by this ephemeral gully length in order to test the predictive capability of EGEM. The resulting relationship between predicted and measured ephemeral gully cross‐sections is rather weak (R2 = 0·27). Therefore it can be concluded that EGEM is not capable of predicting ephemeral gully erosion for the given Mediterranean areas. A second conclusion is that ephemeral gully length is a key parameter in determining the ephemeral gully volume. Regression analysis shows that a very significant relation between ephemeral gully length and ephemeral gully volume exists (R2 = 0·91). Accurate prediction of ephemeral gully length is therefore crucial for assessing ephemeral gully erosion rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Erosion caused by concentrated flows in agricultural areas is responsible for important soil losses, and rapid sediment transfer through the channel network. The main factors controlling concentrated flow erosion rates include the erodibility of soil materials, soil use and management, climate and watershed topography. In this paper, two topographic indices, closely related to mathematical expressions suggested by different authors, are used to characterize the influence of watershed topography on gully erosion. The AS1 index is defined as the product of the watershed area and the partial area‐weighted average slope. The AS2 index is similar to the AS1 but uses the swale slope as the weighting factor. Formally, AS2 is the product of the watershed area and the length‐weighted average swale slope. From studies made using different ephemeral gully erosion databases, it is shown that a high correlation consistently exists between the topographic indices and the volume of eroded soil. The resulting relationships are therefore useful to assess soil losses from gully erosion, to identify the most susceptible watersheds within large areas, and to compare the susceptibility to gully erosion among different catchments. This information is also important in studying the response of natural drainage network systems to different rainfall inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabilities have been expanded over earlier versions using methods of estimating time‐varying runoff and process‐based sediment transport routines so that it can estimate sediment transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2 database. The methods were derived from analysis of 30‐year simulations using a widely accepted climate generator and runoff model and were validated against additional independent simulations not used in developing the index events, as well as against long‐term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2‐predicted monthly runoff suggested that the procedures outlined may underestimate plot‐scale runoff during periods of the year with greater than average rainfall intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2 with a process‐based channel erosion model, the resulting set of representative storms was used as an input to the channel routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral gully erosion. The method was applied to a hypothetical 5‐ha field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having channel slopes ranging from 0·5 to 5% and with hillslopes on both sides of the channel with 5% steepness and 22·1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Soil‐mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This study sought to monitor erosion processes within an experimental landscape filled with packed homogenous soil, which was exogenically forced by rainfall and base level adjustments, and to define the temporal and spatial variation of the erosion regimes. Close‐range photogrammetry and terrain analysis were employed as the primary methods to discriminate these erosion regimes. Results show that (1) four distinct erosion regimes can be identified (raindrop impact, sheet flow, rill, and gully), and these regimes conformed to an expected trajectory of landscape evolution; (2) as the landscape evolved, the erosion regimes varied in areal coverage and in relative contribution to total sediment efflux measured at the outlet of the catchment; and (3) the sheet flow and rill erosion regimes dominated the contributions to total soil loss. Disaggregating the soil erosion processes greatly facilitated identifying and mapping each regime in time and space. Such information has important implications for improving soil erosion prediction technology, for assessing landscape degradation by soil erosion, for mapping regions vulnerable to future erosion, and for mitigating soil losses and managing soil resources. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号