首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of thermodynamic models for tonalitic melt and the updated clinopyroxene and amphibole models now allow the use of phase equilibrium modelling to estimate P–T conditions and melt production for anatectic mafic and intermediate rock types at high‐T conditions. The Permian mid‐lower crustal section of the Ivrea Zone preserves a metamorphic field gradient from mid amphibolite facies to granulite facies, and thus records the onset of partial melting in metabasic rocks. Interlayered metabasic and metapelitic rocks allows the direct comparison of P–T estimates and partial melting between both rock types with the same metamorphic evolution. Pseudosections for metabasic compositions calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system are presented and compared with those of metapelitic rocks calculated with consistent end‐member data and a–x models. The results presented in this study show that P–T conditions obtained by phase equilibria modelling of both metabasic and metapelitic rocks give consistent results within uncertainties, allowing integration of results obtained for both rock types. In combination, the calculations for both metabasic and metapelitic rocks allows an updated and more precisely constrained metamorphic field gradient for Val Strona di Omegna to be defined. The new field gradient has a slightly lower dP/dT which is in better agreement with the onset of crustal thinning of the Adriatic margin during the Permian inferred in recent studies.  相似文献   

2.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

3.
Reconstructing late Palaeozoic metamorphism of the Central Asian Orogenic Belt (CAOB) can provide a better understanding of how the CAOB formed. The petrology of sillimanite-bearing metapelitic schists from high-grade portions of the Permian Chinese Altai metamorphic belt (andalusite-type) reflects the effects of poorly understood high-T, low-P metamorphism. Phase equilibria modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–TiO2–O (NCKFMASHTO) system restricts PT conditions of the sillimanite schists to approximately 635–670°C at approximately 5.8–6.8 kbar. SHRIMP U–Pb analyses of zircon from the rocks yield a concordant age of 299.2 ± 3.4 Ma. Combined with the slightly younger (292.8 ± 2.3 Ma) areally restricted pelitic granulite with peak P?T conditions of approximately 780–800°C at approximately 5–6 kbar and high-T granulite with P?T conditions of approximately 860°C at approximately 6 kbar, these metamorphic rocks reflect prograde heating at relatively low pressure in early Permian time. Together with contemporary and widespread magmatic activities, they are best explained in the context of a post-orogenic extensional environment related to a mantle plume.  相似文献   

4.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   

5.
The contact metamorphosed metapelitic and metapsammitic rocks surrounding the Stawell granite, western Victoria, Australia, are divided into three zones: the low-grade zone, the medium-grade zone and the high-grade zone. Detailed petrological study shows consistency of element distributions, implying that equilibrium was widely attained in the rocks, although equilibrium volumes are generally small (millimetre scale) and considerable mineral chemical variations exist between adjacent domains. The metamorphic mineral assemblages are generally of high variance (KFMASH variance ≤ 2). Consequently, the chemical evolution of assemblages is controlled largely by bulk composition and metamorphic temperature, the former factor being more important in most rocks. The chemographic relations of mineral assemblages in low- and medium- to high-grade zones are presented in compatibility diagrams projected from biotite, quartz and H2O, and biotite, K-feldspar and H2O, respectively. These compatibility diagrams have the advantage of showing both quartz-bearing and quartz-absent assemblages. The metamorphic reactions are modelled successfully by a calculated petrogenetic grid that combines both KFASH and KMASH equilibria. Based on petrographic observations and with constraints from the calculated petrogenetic grid, the following KFMASH reactions, in the order of increasing metamorphic grade, are responsible for producing the various mineral assemblages in the Stawell rocks: chl + mu + q = bi + cd + V, chl + q + cd = g + V, mu + bi + q = ksp + cd + V, mu + q = ksp + and + cd + V (or KASH mu + q = ksp + and + V), mu + cd = ksp + and + bi + V, mu + bi + and = ksp + sp + V, and + bi = ksp + sp + cd + V, mu + bi = ksp + cor + sp + V, mu = ksp + cor + and + sp + V (or KASH mu = ksp + cor + V), bi + cd + q = g + ksp + V. The combined KFASH and KMASH grid provides constraints on reaction coefficients in the above sequence of reactions and on temperature and pressure of metamorphism.  相似文献   

6.
Two successive phases of metamorphism can be recognized based on mineralogical and petrological observations coupled with geothermobarometric estimates for chemical zoning in Fe- and Al-rich metapelites from the Teya crystalline rocks of the Transangarian Yenisei Ridge. The first phase is marked by the formation of low-pressure regional metamorphic complexes of the andalusite-sillimanite type (P = 3.9–5.1 kbar; T = 510–640°C), which were most likely related to the Middle Riphean Grenville events. In the second phase, metapelitic rocks underwent Late Riphean medium-pressure collisional metamorphism of the kyanite-sillimanite type (P = 5.7–7.2 kbar, T = 660–700°C), which resulted locally in an increase in pressure in the vicinity of thrusts. These results suggest that medium-pressure kyanite-bearing metapelitic rocks were formed as a result of collision-related metamorphism caused by thrusting of the Siberian cratonal blocks onto the Yenisei Ridge in the vicinity of the Tatarka deep fault.  相似文献   

7.
A detailed study based on textural observations combined with microanalysis [back scattered electron imaging (BSE) and electron microprobe analysis (EMPA)] and microstructural data transmission electron microscopy (TEM) has been made of K-feldspar micro-veins along quartz–plagioclase phase and plagioclase–plagioclase grain boundaries in granulite facies, orthopyroxene–garnet-bearing gneiss's (700–825 °C, 6–8 kbar) from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. The K-feldspar micro-veins are commonly associated with quartz and plagioclase and are not found in quartz absent regions of the thin section. This association appears to represent a localised reaction texture resulting from a common high grade dehydration reaction, namely: amphibole + quartz = orthopyroxene + clinopyroxene + plagioclase + K-feldspar + H2O, which occurred during the granulite facies metamorphism of these rocks. There are a number of lines of evidence for this. These include abundant Ti-rich biotite, which was apparently stable during granulite facies metamorphism, and total lack of amphibole, which apparently was not. Disorder between Al and Si in the K-feldspar indicates crystallisation at temperatures >500 °C. Myrmekite and albitic rim intergrowths in the K-feldspar along the K-feldspar–plagioclase interface could only have formed at temperatures >500–600 °C. Symplectic intergrowths of albite and Ca-rich plagioclase between these albitic rim intergrowths and plagioclase suggest a high temperature grain boundary reaction, which most likely occurred at the start of decompression in conjunction with a fluid phase. Relatively high dislocation densities (>2 × 109 to 3 × 109/cm2) in the K-feldspar suggest plastic deformation at temperatures >500 °C. We propose that this plastic deformation is linked with the extensional tectonic environment present during the mafic underplating event responsible for the granulite facies metamorphism in these rocks. Lastly, apparently active garnet grain rims associated with side inclusions of K-feldspar and quartz and an exterior K-feldspar micro-vein indicate equilibrium temperatures within 20–30 °C of the peak metamorphic temperatures estimated for the sample (770 °C). Contact between these K-feldspar micro-veins and Fe-Mg silicate minerals, such as garnet, orthopyroxene, clinopyroxene or biotite along the interface, is observed to be very clean with no signs of melt textures or alteration to sheet silicates. This lends support to the idea that these micro-veins did not originate from a melt and, if fluid induced, that the water activity of these fluids must have been relatively low. All of these lines of evidence point to a high grade origin for the K-feldspar micro-veins and support the hypothesis that they formed during the granulite facies metamorphism of the metabasite layers in an extensional tectonic environment as the consequence of localised dehydration reactions involving the breakdown of amphibole in the presence of quartz to orthopyroxene, clinopyroxene, plagioclase, K-feldspar and H2O. It is proposed that the dehydration of the metabasite layers to an orthopyroxene–garnet-bearing gneiss over a 4-km traverse in the upper Val Strona during granulite facies metamorphism was a metasomatic event initiated by the presence of a high-grade, low H2O activity fluid (most likely a NaCl–KCl supercritical brine), related to the magmatic underplating event responsible for the Mafic Formation; and that this dehydration event did not involve partial melting. Received: 15 February 2000 / Accepted: 26 June 2000  相似文献   

8.
Zircon from a lower crustal metapelitic granulite (Val Malenco, N‐Italy) display inherited cores, and three metamorphic overgrowths with ages of 281 ± 2, 269 ± 3 and 258 ± 4 Ma. Using mineral inclusions in zircon and garnet and their rare earth element characteristics it is possible to relate the ages to distinct stages of granulite facies metamorphism. The first zircon overgrowth formed during prograde fluid‐absent partial melting of muscovite and biotite apparently caused by the intrusion of a Permian gabbro complex. The second metamorphic zircon grew after formation of peak garnet, during cooling from 850 °C to c. 700 °C. It crystallized from partial melts that were depleted in heavy rare earth elements because of previous, extensive garnet crystallization. A second stage of partial melting is documented in new growth of garnet and produced the third metamorphic zircon. The ages obtained indicate that the granulite facies metamorphism lasted for about 20 Myr and was related to two phases of partial melting producing strongly restitic metapelites. Monazite records three metamorphic stages at 279 ± 5, 270 ± 5 and 257 ± 4 Ma, indicating that formation ages can be obtained in monazite that underwent even granulite facies conditions. However, monazite displays less clear relationships between growth zones and mineral inclusions than zircon, hampering the correlation of age to metamorphism. To overcome this problem garnet–monazite trace element partitioning was determined for the first time, which can be used in future studies to relate monazite formation to garnet growth.  相似文献   

9.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

10.
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The El Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670–820 °C and 4.5–5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between ≈477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration.  相似文献   

11.
The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet‐bearing biotite‐rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid‐driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have contained an essentially anhydrous granulite facies peak metamorphic assemblage of garnet, quartz, plagioclase and ilmenite (±rutile, K‐feldspar and pyroxene) with biotite, hornblende, muscovite, chlorite and/or epidote as hydrous retrograde minerals. P–T constraints imposed by phase equilibria modelling imply conditions of 13–16 kbar at >900 °C for the Badcallian granulite facies metamorphic peak, consistent with the field evidence for partial melting in most lithologies. The white mica gneiss comprises a muscovite‐dominated matrix containing porphyroblasts of staurolite, corundum, kyanite and rare garnet. Previous studies have suggested that staurolite, corundum, kyanite and muscovite all grew at the granulite facies peak, with partial melting and melt loss producing a highly aluminous residue. However, at the inferred peak P–T conditions, staurolite and muscovite are not predicted to be stable, suggesting they are retrograde phases that grew during amphibolite facies retrograde metamorphism. The large proportion of mica suggests extensive H2O‐rich fluid‐influx, consistent with the retrograde growth of hornblende, biotite, epidote and chlorite in the brown gneisses. P–T conditions of 5.0–6.5 kbar at 520–550 °C are derived for the Inverian event. In situ dating of zircon from samples of the white mica gneiss yield apparent ages that are difficult to interpret. However, the data are permissive of granulite facies (Badcallian) metamorphism having occurred at c. 2.7–2.8 Ga with subsequent fluid driven (Inverian) retrogression at c. 2.5–2.6 Ga, consistent with previous interpretations.  相似文献   

12.
Integrated metamorphic and geochronological data place new constraintson the metamorphic evolution of a Neoproterozoic orogen in eastAntarctica. Granulite-facies rocks from a 150 km stretch ofthe Kemp Land coast reflect peak conditions involving T 870–990°Cat P 7·4–10 kbar, with pressure increasing westwardtowards an Archaean craton. Electron microprobe-derived (Th+ U)–Pb monazite ages from metapelitic assemblages indicatethat the major mineral textures in these rocks developed duringthe c. 940 Ma Rayner Orogeny. Complex compositional zoning inmonazite suggests high-T recrystallization over c. 25 Myr. Diversityin metapelitic reaction textures reflects silica and ferromagnesiancontent: Si-saturated Fe-rich metapelites contain garnet thatis partially pseudomorphed by biotite and sillimanite, whereasSi-saturated Mg-rich metapelites and Si-undersaturated metapeliticpods have reaction microstructures involving cordierite enclosingorthopyroxene, garnet and/or sapphirine, cordierite + sapphirinesymplectites around sillimanite and coarse-grained orthopyroxene+ corundum separated by sapphirine coronae. Interpretationsbased on PT pseudosections provide integrated bulk-rockconstraints and indicate a clockwise PTt pathcharacterized by a post-peak PT trajectory with dP/dT 15–20 bar/ °C. This moderately sloped decompressive-coolingPT path is in contrast to near-isothermal decompressionPT paths commonly cited for this region of the RaynerComplex, with implications for the post-collisional tectonicresponse of the mid- to lower crust within this orogenic belt. KEY WORDS: electron microprobe monazite dating; granulite facies; Rayner Complex; sapphirine; THERMOCALCMinerals abbreviations: q, quartz; g, garnet; sill, sillimanite; ky, kyanite; opx, orthopyroxene; cd, cordierite; ksp, alkali feldspar; pl, plagioclase; bi, biotite; sp, spinel; ilm, ilmenite; mt, magnetite; ru, rutile; sa, sapphirine; cor, corundum; osm, osumilite; liq, silicate melt; mnz, monazite  相似文献   

13.
Open‐system behaviour through fluid influx and melt loss can produce a variety of migmatite morphologies and mineral assemblages from the same protolith composition. This is shown by different types of granulite facies migmatite from the contact aureole of the Ceret gabbro–diorite stock in the Roc de Frausa Massif (eastern Pyrenees). Patch, stromatic and schollen migmatites are identified in the inner contact aureole, whereas schollen migmatites and residual melanosomes are found as xenoliths inside the gabbro–diorite. Patch and schollen migmatites record D1 and D2 structures in folded melanosome and mostly preserve the high‐T D2 in granular or weakly foliated leucosome. Stromatic migmatites and residual melanosomes only preserve D2. The assemblage quartz–garnet–biotite–sillimanite–cordierite±K‐feldspar–plagioclase is present in patch and schollen migmatites, whereas stromatic migmatites and residual melanosomes contain a sub‐assemblage with no sillimanite and/or K‐feldspar. A decrease in X Fe (molar Fe/(Fe + Mg)) in garnet, biotite and cordierite is observed from patch migmatites through schollen and stromatic migmatites to residual melanosomes. Whole‐rock compositions of patch, schollen and stromatic migmatites are similar to those of non‐migmatitic rocks from the surrounding area. These metasedimentary rocks are interpreted as the protoliths of the migmatites. A decrease in the silica content of migmatites from 63 to 40 wt% SiO2 is accompanied by an increase in Al2O3 and MgO+FeO and by a depletion in alkalis. Thermodynamic modelling in the NCKFMASHTO system for the different types of migmatite provides peak metamorphic conditions ~7–8 kbar and 840 °C. A nearly isothermal decompression history down to 5.5 kbar was followed by isobaric cooling from 840 °C through 690 °C to lower temperatures. The preservation of granulite facies assemblages and the variation in mineral assemblages and chemical composition can be modelled by ongoing H2O‐fluxed melting accompanied by melt loss. The fluids were probably released by the crystallizing gabbro–diorite, infiltrating the metasedimentary rocks and fluxing melting. Release of fluids and melt loss were probably favoured by coeval deformation (D2). The amount of melt remaining in the system varied considerably among the different types of migmatite. The whole‐rock compositions of the samples, the modelled compositions of melts at the solidus at 5.5 kbar and the residues show a good correlation.  相似文献   

14.
《Precambrian Research》1987,37(4):287-304
Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range.Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985).At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn  相似文献   

15.
Contact metamorphism associated with mafic intrusives is one of several mechanisms that has been invoked to produce extensive high‐temperature (HT) metamorphism and associated partial melting of the crust. Indisputable evidence for polymetamorphism in these settings can be difficult to decipher because both melt loss and retrogression (i.e. rehydration) can erase or obscure the records of earlier HT metamorphism by modifying HT mineral parageneses and compositions. Here, a combination of detailed field and petrographical observations, inverse mineral thermometry, and thermodynamic forward modelling is used to delineate the polymetamorphic history of migmatites from the Smith River Allochthon (SRA) in the central Appalachians. Bulk rock geochemical data suggest that some metapelitic samples lost a significant amount of melt during interpreted contact metamorphism with the Rich Acres gabbro, resulting in a residual bulk composition (<50 wt% SiO2, ~30 wt% Al2O3). Garnet cores (Grt1) in SiO2‐depleted samples are interpreted to grow during this HT contact metamorphism, with Fe‐Ti oxide thermometry on spinel inclusions in Grt1, cordierite–garnet thermometry, and thermodynamic forward modelling constraining peak P–T conditions during contact heating of the migmatites to ~800ºC and ~0.5 GPa. This is associated with an inferred peak assemblage prior to melt loss of crd+kfs+pl+grt+bt+spl (mag+usp+hc)+ilm+sil+qtz+melt. Garnet in SiO2‐depleted samples has a distinct high‐Ca rim (Grt2), which appears to record a younger metamorphic event. A combination of substantial melt loss and later rehydration appears to be a major control on the ability of SiO2‐depleted samples to faithfully record evidence for this polymetamorphism. The tectonic implications of this younger metamorphic event are not entirely clear, but it appears to record renewed burial and heating of the SRA sometime after the Taconic orogeny, which may be related to either the neo‐Acadian or Alleghanian orogenies.  相似文献   

16.
Grampian migmatites in the Buchan Block,NE Scotland   总被引:1,自引:0,他引:1       下载免费PDF全文
Rocks exposed along the Scottish coast between Fraserburgh and Inzie Head contain information critical to understanding the evolution of the Buchan Block, the type locality for low‐P, high‐T regional metamorphism, and its relationship with the rest of the Grampian terrane, one of the major tectonostratigraphic components of the Scottish Caledonides. The ~8 km long section traverses a regional network of shear zones and, at the highest grades around Inzie Head, passes into the core of the Buchan Anticline, a large‐scale open fold that is commonly regarded as a late structure, post‐dating metamorphism. The metasedimentary rocks increase in grade from upper amphibolite to granulite facies and preserve unequivocal evidence for partial melting. The diatexite migmatites around Inzie Head, along with other gneissose units within the Buchan Block, have been regarded as allochthonous Precambrian basement rocks that were thrust into their current position during the Grampian orogenesis. However, field observations show that the onset of in situ partial melting in metapelitic rocks, which was associated with the formation of garnet‐bearing aplites and associated pegmatites, occurred around Fraserburgh, where shear fabrics are absent. Thus, the rocks preserve a continuous metamorphic field gradient that straddles the shear zone network. This observation supports an alternative interpretation that anatexis was the result of mid‐Ordovician (Grampian) metamorphism, rather than an older tectonothermal event, and that the Inzie Head gneisses are autochthonous. Using an average mid‐Dalradian pelite as a plausible representative protolith, phase equilibria modelling satisfactorily reproduces the observed appearance and disappearance of key minerals providing that peritectic garnet produced with the first formed melts (represented by the garnet‐bearing aplites) depleted the source rocks in Mn. The modelled metamorphic field gradient records a temperature increase of at least 150 °C (from ~650 °C near Fraserburgh to in excess of 800 °C at Inzie Head) but is isobaric at pressures of 2.7–2.8 kbar, suggesting the Buchan Anticline developed synchronous with partial melting. The Buchan Anticline is likely an expression of crustal thinning and asthenospheric upwelling, which produced voluminous gabbroic intrusions that supplied the heat for Buchan metamorphism.  相似文献   

17.
Geothermometry and mineral assemblages show an increase of temperature structurally upwards across the Main Central Thrust (MCT); however, peak metamorphic pressures are similar across the boundary, and correspond to depths of 35–45 km. Garnet‐bearing samples from the uppermost Lesser Himalayan sequence (LHS) yield metamorphic conditions of 650–675 °C and 9–13 kbar. Staurolite‐kyanite schists, about 30 m above the MCT, yield P‐T conditions near 650 °C, 8–10 kbar. Kyanite‐bearing migmatites from the Greater Himalayan sequence (GHS) yield pressures of 10–14 kbar at 750–800 °C. Top‐to‐the‐south shearing is synchronous with, and postdates peak metamorphic mineral growth. Metamorphic monazite from a deformed and metamorphosed Proterozoic gneiss within the upper LHS yield U/Pb ages of 20–18 Ma. Staurolite‐kyanite schists within the GHS, a few metres above the MCT, yield monazite ages of c. 22 ± 1 Ma. We interpret these ages to reflect that prograde metamorphism and deformation within the Main Central Thrust Zone (MCTZ) was underway by c. 23 Ma. U/Pb crystallization ages of monazite and xenotime in a deformed kyanite‐bearing leucogranite and kyanite‐garnet migmatites about 2 km above the MCT suggest crystallization of partial melts at 18–16 Ma. Higher in the hanging wall, south‐verging shear bands filled with leucogranite and pegmatite yield U/Pb crystallization ages for monazite and xenotime of 14–15 Ma, and a 1–2 km thick leucogranite sill is 13.4 ± 0.2 Ma. Thus, metamorphism, plutonism and deformation within the GHS continued until at least 13 Ma. P‐T conditions at this time are estimated to be 500–600 °C and near 5 kbar. From these data we infer that the exhumation of the MCT zone from 35 to 45 km to around 18 km, occurred from 18 to 16 to c. 13 Ma, yielding an average exhumation rate of 3–9 mm year?1. This process of exhumation may reflect the ductile extrusion (by channel flow) of the MCTZ from between the overlying Tibetan Plateau and the underthrusting Indian plate, coupled with rapid erosion.  相似文献   

18.
An inverted metamorphic gradient is preserved in the western metamorphic belt near Juneau, Alaska. The western metamorphic belt is part of the Coast plutonic–metamorphic complex of western Canada and southeastern Alaska that developed as a result of tectonic overlap and/or compressional thickening of crustal rocks during collision of the Alexander and Stikine terranes. Detailed mapping of pelitic single-mineral isograds, systematic changes in mineral assemblages, and silicate geothermometry indicate that thermal peak metamorphic conditions increase structurally upward over a distance of about 8 km. Peak temperatures of metamorphism increase progressively from about 530 °C for the garnet zone to about 705 °C for the upper kyanite–biotite zone. Silicate geobarometry suggests that the thermal peak metamorphism occurred under pressures of 9–11 kbar. The metamorphic isograds are in general parallel to the tonalite sill that is regionally continuous along the east side of the western metamorphic belt, although truncation of the isograds north of Juneau indicates that the sill intrusion continued after the isograds were established. Our preferred interpretation of the cause of the inverted gradient is that it formed during compression of a thickened wedge of relatively wet and cool rocks in response to heat flow associated with the formation and emplacement of the tonalite sill magma. Garnet rim compositions and widespread growth of chlorite suggest partial re-equilibration of the schists under pressures of 5–6 kbar during uplift in response to final emplacement and crystallization of the tonalite sill. The combined results of this study with previous studies elsewhere in the western metamorphic belt indicate that high-T/high-P metamorphism associated with the collision of the Alexander and Stikine terranes was a long-lived event, extending from about 98 Ma to about 67 Ma.  相似文献   

19.
We describe field occurrences of sapphirine-bearing granulites, charnockites and migmatites in the Gruf complex, Central Alps and present a new geological map and a structural analysis of the entire Gruf complex for the first time. We have carried out an accurate analysis of the relationships between granulite facies metamorphism, migmatisation and deformation within the complex, in relation to the intrusion of the Bergell pluton. Granulites and charnockites display fabrics different from those defined by the regional foliation and lineation, which are, typically for migmatites, disordered on the mesoscale. On a regional scale, strike variations are also related to the structural complexity of migmatites within which no major antiform could be identified. Irregular interfingering of sub-parallel leucosome veins and back-veining along the contact between the Gruf migmatites and the Bergell tonalite are evidence for contemporaneous emplacement and crystallisation at about 740 °C and 6.5–7.5 kbar in Oligocene times (ca 30 Ma). Metamorphic conditions in the charnockites and granulites (>920 °C for 8.5–9.5 kbar) largely exceed these regional metamorphic conditions and are dated at 282–260 Ma. We propose that the ascending Bergell pluton entrained the polymetamorphic, granulitic lower crust enclosed within the peripheral migmatitic Gruf complex.  相似文献   

20.
Migmatites comprise a minor volume of the high‐grade part of the Damara orogen of Namibia that is dominated by granite complexes and intercalated metasedimentary units. Migmatites of the Southern Central Zone of the Damara orogen consist of melanosomes with garnet+cordierite+biotite+K‐feldspar, and leucosomes, which are sometimes garnet‐ and cordierite‐bearing. Field evidence, petrographic observations, and pseudosection modelling suggest that, in contrast to other areas where intrusion of granitic magmas is more important, in situ partial melting of metasedimentary units was the main migmatite generation processes. Pseudosection modelling and thermobarometric calculations consistently indicate that the peak‐metamorphic grade throughout the area is in the granulite facies (~5 kbar at ~800°C). Cordierite coronas around garnet suggest some decompression from peak‐metamorphic conditions and rare andalusite records late, near‐isobaric cooling to <650°C at low pressures of ~3 kbar. The inferred clockwise P–T path is consistent with minor crustal thickening through continent–continent collision followed by limited post‐collisional exhumation and suggests that the granulite facies terrane of the Southern Central Zone of the Damara orogen formed initially in a metamorphic field gradient of ~35–40°C/km at medium pressures. New high‐precision Lu–Hf garnet‐whole rock dates are 530 ± 13 Ma, 522.0 ± 0.8 Ma, 520.8 ± 3.6 Ma, and 500.3 ± 4.3 Ma for the migmatites that record temperatures of ~800°C. This indicates that high‐grade metamorphism lasted for c. 20–30 Ma, which is compatible with previous estimates using Sm–Nd garnet‐whole rock systematics. In previous studies on Damara orogen migmatites where both Sm–Nd and Lu–Hf chronometers have been applied, the dates (c. 520–510 Ma) agree within their small uncertainties (0.6–0.8% for Sm–Nd and 0.1–0.2% for Lu–Hf). This implies rapid cooling after high‐grade conditions and, by implication, rapid exhumation at that time. The cause of the high geothermal gradient inferred from the metamorphic conditions is unknown but likely requires some extra heat that was probably added by intrusion of magmas from the lithospheric mantle, i.e., syenites that have been recently re‐dated at c. 545 Ma. Some granites derived from the lower crust at c. 545 Ma are the outcome rather than the cause of high‐T metamorphism. In addition, high contents of heat‐producing elements K, Th, and U may have raised peak temperatures by 150–200°C at the base of the crust, resulting in the widespread melting of fertile crustal rocks. The continuous gradation from centimetre‐scale leucosomes to decametre‐scale leucogranite sheets within the high‐grade metamorphic zone suggests that leucosome lenses coalesced to form larger bodies of anatectic leucogranites, thereby documenting a link between high‐grade regional metamorphism and Pan‐African magmatism. In view of the close association of the studied high‐T migmatites with hundreds of synmetamorphic high‐T granites that invaded the terrane as metre‐ to decametre‐wide sills and dykes, we postulate that crystallization of felsic lower crustal magma is, at least partly, responsible for heat supply. Late‐stage isobaric cooling of these granites may explain the occurrence of andalusite in some samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号