首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
We found extremely high-Mg# (=Mg/(Mg + total Fe) atomic ratio) ultramafic rocks in Avacha peridotite suite. All the high-Mg# rocks have higher modal amounts of clinopyroxene than ordinary Avacha peridotite xenoliths, and their lithology is characteristically heterogeneous, varying from clinopyroxenite through olivine websterite to pyroxene-bearing dunite. The Mg# of minerals is up to 0.99, 0.98 and 0.97 in clinopyroxene, orthopyroxene and olivine, respectively, decreasing progressively toward contact with dunitic part, if any. The petrographical feature of pyroxenes in the high-Mg# pyroxenite indicates their metasomatic origin, and high LREE/HREE ratio of the metasomatic clinopyroxene implies that the pyroxenites are the products of reaction between dunitic peridotites and high-Ca, silicate-rich fluids. The lithological variation of the Avacha high-Mg# pyroxenites from clinopyroxenite to olivine websterite resulted from various degrees of fluid-rock reaction coupled with fractional crystallization of the high-Ca fluids, which started by precipitation of high-Mg# clinopyroxene. Such fluids were possibly generated originally at a highly reduced serpentinized peridotite layer above the subducting slab. The fluids can reach the uppermost mantle along a shear zone as a conduit composed of fine-grained peridotite that developed after continent-ward asthenospheric retreats from the mantle wedge beneath the volcanic front. The fluids are incorporated in mantle partial melts when the magmatism is activated by expansion of asthenosphere to mantle wedge beneath the volcanic front.  相似文献   

3.
Major-element compositions of minerals in peridotite xenoliths from the Lac de Gras kimberlites provide constraints on the mode of lithosphere formation beneath the central Slave Craton, Canada. Magnesia contents of reconstructed whole rocks correlate positively with NiO and negatively with CaO contents, consistent with variable partial melt extraction. Alumina and Cr2O3 contents are broadly positively correlated, suggestive of melt depletion in the absence of a Cr–Al phase. Garnet modes are high at a given Al2O3 content (a proxy for melt depletion), falling about a 7 GPa melt depletion model. These observations, combined with high olivine Mg# and major-element relationships of FeO-poor peridotites (<7.5 wt%) indicative of melt loss at pressures >3 GPa (residual FeO content being a sensitive indicator of melt extraction pressure), and similar high pressures of last equilibration (∼4.2 to 5.8 GPa), provide multiple lines of evidence that the mantle beneath the central Slave Craton has originated as a residue from high-pressure melting, possibly during plume subcretion. Apparent low melt depletion pressures for high-FeO peridotites (>7.5 wt%) could suggest formation in an oceanic setting, followed by subduction to their depth of entrainment. However, these rocks, which are characterised by low SiO2 contents (<43 wt%), are more likely to be the result of post-melting FeO-addition, leading to spuriously low estimates of melt extraction pressures. They may have reacted with a silica-undersaturated melt that dissolved orthopyroxene, or experienced olivine injection by crystallising melts. A secular FeO-enrichment of parts of the deep mantle lithosphere is supported by lower average Mg# in xenolithic olivine (91.7) compared to olivine inclusions in diamond (92.6).  相似文献   

4.
Metasomatism of the lithospheric mantle sometimes produces unusual assemblages containing native metals and alloys, which provide important insight into metasomatic processes in the mantle. In this study, we describe the metasomatic enrichment of a refractory harzburgite xenolith in Ni, Fe and, to a lesser extent, Cu, Co, As and Sb. The xenolith (XM1/422) derives from the Bultfontein kimberlite (Kimberley, South Africa) and hosts Ni mineralisation that includes native nickel (Ni84.5-98.0), heazlewoodite (Ni3S2) and Ni-rich silicates (e.g. up to 37.5 wt % NiO in olivine, and 22.4 wt % NiO in phlogopite). The presence of several mineral phases enriched in alkali and volatile species (e.g. phlogopite, phosphates, carbonates, chlorides, djerfisherite) indicates that the transition metal cations were likely introduced during metasomatism by alkali-rich C–O–H fluids or alkali-carbonate melts. It is postulated that sulphide breakdown and fluid reaction with refractory mantle rocks contributed to the fluid’s enrichment in Ni and other metallic cations. The Ni-rich assemblages of xenolith XM1/422 show local chemical disequilibrium, and modelling of the Ni diffusion profiles adjacent to olivine-native nickel and olivine-heazlewoodite grain boundaries, suggests a close temporal relationship between Ni-rich metasomatism and subsequent entrainment by the kimberlite magma. However, metal-rich metasomatism has also been observed in other lithospheric mantle domains, including orogenic peridotitic massifs and the suboceanic mantle; regions unaffected by kimberlite magmatsim. As micro-scale occurrences of metallic phases are easily overlooked, it is possible that metal-rich metasomatism is more widespread in the Earth’s mantle than previously recognised.  相似文献   

5.
The Xigaze ophiolite in the central part of the Yarlung–Zangbo suture zone, southern Tibet, has a well-preserved sequence of sheeted dykes, basalts, cumulates and mantle peridotites at Jiding and Luqu. Both the basalts and diabases at Jiding have similar compositions with SiO2 ranging from 45.9 to 53.5 wt%, MgO from 3.1 to 6.8 wt% and TiO2 from 0.87 to 1.21 wt%. Their Mg#s [100Mg/(Mg + Fe)] range from 40 to 60, indicating crystallization from relatively evolved magmas. They have LREE-depleted, chondrite-normalized REE diagrams, suggesting a depleted mantle source. These basaltic rocks have slightly negative Nb- and Ti-anomalies, suggesting that the Xigaze ophiolite represents a fragment of mature MORB lithosphere modified in a suprasubduction zone environment. The mantle peridotites at Luqu are high depleted with low CaO (0.3–1.2 wt%) and Al2O3 (0.04–0.42 wt%). They display V-shaped, chondrite-normalized REE patterns with (La/Gd)N ratios ranging from 3.17 to 64.6 and (Gd/Yb)N from 0.02 to 0.20, features reflecting secondary metasomatism by melts derived from the underlying subducted slab. Thus, the geochemistry of both the basaltic rocks and mantle peridotites suggests that the Xigaze ophiolite formed in a suprasubduction zone.Both the diabases and basalts have Pd/Ir ratios ranging from 7 to 77, similar to MORB. However, they have very low PGE abundances, closely approximating the predicted concentration in a silicate melt that has fully equilibrated with a fractionated immiscible sulfide melt, indicating that the rocks originated from magmas that were S-saturated before eruption. Moderate degrees of partial melting and early precipitation of PGE alloys explain their high Pd/Ir ratios and negative Pt-anomalies. The mantle peridotites contain variable amounts of Pd (5.99–13.5 ppb) and Pt (7.92–20.5 ppb), and have a relatively narrow range of Ir (3.47–5.01 ppb). In the mantle-normalized Ni, PGE, Au and Cu diagram, they are relatively rich in Pd and depleted in Cu. There is a positive correlation between CaO and Pd. The Pd enrichment is possibly due to secondary enrichment by metasomatism. Al2O3 and Hf do not correlate with Ir, but show positive variations with Pt, Pd and Au, indicating that some noble metals can be enriched by metasomatic fluids or melts carrying a little Al and Hf. We propose a model in which the low PGE contents and high Pd/Ir ratios of the basaltic rocks reflect precipitation of sulfides and moderate degrees of partial melting. The high Pd mantle peridotites of Xigaze ophiolites were formed by secondary metasomatism by a boninitic melt above a subduction zone.  相似文献   

6.
 K-richterite/phlogopite-bearing peridotite xenoliths and MARID inclusions have been found in Late Cretaceous (67±0.2 million years) monchiquites and an olivine nephelinite from North Eastern Morocco. It is the first evidence of MARID rocks and K-richterite/phlogopite-bearing peridotites outside the kimberlitic context. In the hydrous xenoliths, textural features suggest that K-richterite, phlogopite and Al-poor diopside are replacement minerals. K-richterites contain 2–5 wt% FeO, 0.1–1.5 wt% TiO2 and <0.5 wt% Cr2O3. Micas contain 5.4–7.4 wt% FeO and 0.3–2.2 wt% TiO2, with Cr and Ni contents <0.2 wt%. Diopsides are Al-poor (<0.2 wt% Al2O3) and contain 0.1–0.2 wt% TiO2, 0.9–1.1 wt% Na2O and 1.3–1.7 wt% Cr2O3. Compared to known K-richterites and micas from metasomatised peridotite nodules (PKP types), the Moroccan minerals are more Fe rich, K-richterites have higher Ti and micas less Cr and Ni. They are thus closer to MARID than to PKP minerals. K-richterites and mica from the MARID inclusions show typical characteristics, e.g. high FeO (4.3–4.7 wt% in richterite and 7.2 wt% in mica), low NiO and/or Cr2O3 and the incomplete filling of the tetrahedral site by Si+Al. Ion probe D/H analyses of amphiboles and micas from both xenolith types give high δD values ranging from –8 to –73, with large variations within single grains (up to 50‰). Both the D-enrichment and the δD variations are inherited from the mantle. The similar chemical composition and δD values of K-richterite/phlogopite from the hydrous peridotites and MARID minerals suggest a genetic link between the two types of xenoliths. The conditions required for producing MARIDs and K-richterite/phlogopite-bearing peridotites may thus exist in contexts other than stable cratonic settings. MARID rocks and the associated metasomites may result from a hydrous fluid interaction with a peridotite, the metasomatic agent being characterised by a high K and low Al signature and a high δD value. A D-rich source is involved in the metasomatic event producing the hydrous minerals, and the scatter observed in the δD values suggests a mixing between this source and another one with typical upper mantle D/H composition. As indicated by the low δD (–74) values of micas from the host lava, metasomatism predated and is unrelated to the alkaline volcanism. Received: 9 March 1995 / Accepted: 4 April 1996  相似文献   

7.
Spinel and plagioclase peridotites from the Mt.Maggiore (Corsica, France) ophiolitic massif record a composite asthenosphere–lithosphere history of partial melting and subsequent multi-stage melt–rock interaction. Cpx-poor spinel lherzolites are consistent with mantle residues after low-degree fractional melting (F = 5–10%). Opx + spinel symplectites at the rims of orthopyroxene porphyroclasts indicate post-melting lithospheric cooling (T = 970–1,100°C); this was followed by formation of olivine embayments within pyroxene porphyroclasts by melt–rock interaction. Enrichment in modal olivine (up to 85 wt%) at constant bulk Mg values, and variable absolute REE contents (at constant LREE/HREE) indicate olivine precipitation and pyroxene dissolution during reactive porous melt flow. This stage occurred at spinel-facies depths, after incorporation of the peridotites in the thermal lithosphere. Plagioclase-enriched peridotites show melt impregnation microtextures, like opx + plag intergrowths replacing exsolved cpx porphyroclasts and interstitial gabbronoritic veinlets. This second melt–rock interaction stage caused systematic chemical changes in clinopyroxene (e.g. Ti, REE, Zr, Y increase), related to the concomitant effects of local melt–rock interaction at decreasing melt mass, and crystallization of small (<3%) trapped melt fractions. LREE depletion in minerals of the gabbronoritic veinlets indicates that the impregnating melts were more depleted than normal MORB. Preserved microtextural evidence of previous melt–rock interaction in the impregnated peridotites suggests that they were progressively uplifted in response to lithosphere extension and thinning. Migrating melts were likely produced by mantle upwelling and melting related to extension; they were modified from olivine-saturated to opx-saturated compositions, and caused different styles of melt–rock interaction (reactive spinel harzburgites, vs. impregnated plagioclase peridotites) depending on the lithospheric depths at which interaction occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
We report the finding of peridotite xenoliths in the Early Cretaceous Longmengou olivine-bearing diabase (138 Ma) in the Northern Taihang Mountains in the central North China Craton. Based on the modal proportions of olivine, clinopyroxene, amphibole and anorthite, these peridotite xenoliths can be divided into three zones: clinopyroxene-bearing olivine zone (COZ), olivine-clinopyroxene zone (OCZ), and amphibole-bearing anorthite-clinopyroxene zone (AACZ). The core of olivine grains in clinopyroxene-bearing olivine zone have higher Mg# (> 95), SiO2 (41.80–42.53 wt%) and lower CaO (< 0.07 wt%), FeO (3.91–4.54 wt%) than the rim (Mg# = 92.5–93.4, SiO2 = 41.27–41.98 wt%, CaO = 0.20–0.34 wt%, and FeO = 7.02–8.87 wt%), suggesting that rim is reaction product. The core of olivine grains with higher Mg# (> 95) and lower NiO content (< 0.04 wt%) in the clinopyroxene-bearing olivine zone was derived from ultra-depleted mantle subsequently altered by high Mg# melts/magma with low Ni. Two generations of olivine grains occur in the OCZ where the first generation shows exsolution of ilmenite and magnetite rods containing up to 0.35 wt% TiO2, and was likely derived from garnet peridotite hydrated by water. The second generation shows high Mg# (96.2–97.1) and cataclastic texture, and was possibly formed by decomposition of the COZ. The occurrence of aluminous spinel suggests the role of melts with extremely high Al and Mg. Clinopyroxene in the AACZ shows systematic core-rim compositional variation with CaO and SiO2 contents increasing towards the rim, and MgO and Fe2O3 concentrations decreasing from the core to the rim, indicating that the amphibole-bearing anorthite-clinopyroxene zone is a product of the reaction between mantle xenoliths and mafic magma. Plagioclase with high An value (92.0–99.95, average 97.79) indicates that the metasomatic melts have high Ca/Na and Al/Si ratios, possibly produced by the partial melting of ultra-depleted mantle under “wet” conditions. Combined with the data on other mantle xenoliths discovered in the NCC, our results suggest that the Mesozoic lithospheric mantle beneath the North Taihang Mountains within the central NCC is composed of ultra-depleted Archean and Paleoproterozoic peridotites and dunites modified by complex melts. We also propose that the destruction of eastern part of the NCC mainly occurred during Early Cretaceous, and that the boundary of the lithospheric destruction coincides with the Taihang Mountains.  相似文献   

9.
Dunite, wehrlite and websterite are rare members of the mantle xenolith suite in the Kimberley kimberlites of the Kaapvaal Craton in southern Africa. All three types were originally residues of extensive melt extraction and experienced varying amounts and types of melt re-enrichment. The melt depletion event, dated by Re-Os isotope systematics at 2.9 Ga or older, is evidenced by the high Mg# (Mg/(Mg + Fe)) of silicate minerals (olivine (0.89-0.93); pyroxene (0.88-0.93); garnet (0.72-0.85)), high Cr# (Cr/(Cr + Al)) of spinel (0.53-0.84) and mostly low whole-rock SiO2, CaO and Al2O3 contents. Shortly after melt depletion, websterites were formed by reaction between depleted peridotites and silica-rich melt (>60 wt% SiO2) derived by partial melting of eclogite before or during cratonization. The melt-peridotite interaction converted olivine into orthopyroxene.All three xenolith types have secondary metasomatic clinopyroxene and garnet, which occur along olivine grain boundaries and have an amoeboid texture. As indicated by the preservation of oxygen isotope disequilibrium in the minerals and trace-element concentrations in clinopyroxene and garnet, this metasomatic event is probably of Mesozoic age and was caused by percolating alkaline basaltic melts. This melt metasomatism enriched the xenoliths in CaO, Al2O3, FeO and high-field-strength-elements, and might correspond to the Karoo magmatism at 200 Ma. The websterite xenoliths experienced both the orthoyproxene-enrichment and clinopyroxene-garnet metasomatic events, whereas dunite and wehrlite xenoliths only saw the later basaltic melt event, and may have been situated further away from the source of melt migration channels.  相似文献   

10.
The Lengshuiqing area contains several small intrusions made up of peridotite ± quartz diorite ± granite spatially associated with the Gaojiacun pluton (gabbroids + peridotite + diorite). Ni–Cu sulfide ore occur at Lengshuiqing, hosted in peridotite. SHRIMP U–Pb zircon dating produced the ages of 803 ± 4.2 Ma (peridotite), 807 ± 2.6 Ma (oikocrystic hornblende gabbro), 809 ± 4.3 Ma (hornblende gabbronorites) for the Gaojiacun pluton and 807 ± 3.8 Ma (diorite, intrusion I), 817 ± 6.3 Ma (quartz diorite, intrusion II) and 817 ± 5 Ma (peridotite, intrusion 101) for Lengshuiqing. These ages suggest the emplacement of the Gaojiacun pluton later than the intrusions from Lengshuiqing. The olivine from Lengshuiqing does not contain sulfide inclusions and is relatively Ni-rich (1,150–1,550 ppm Ni), suggesting its crystallisation before the sulfide saturation that generated the Ni–Cu deposits. The olivine of the gabbros in the Gaojiacun pluton is Ni-poor (250–800 ppm), which indicates crystallisation from a severely metal-depleted magma after a sulfide saturation event. The olivine in the peridotites from the Gaojiacun pluton has 800–1,150 ppm Ni and contains sulfide inclusions. Moreover, geological evidence suggests the genesis of the peridotites from Gaojiacun in conduits that were ascending through the gabbroids. A sequence of at least three stages of magma emplacement is proposed: (1) Lengshuiqing; (2) gabbroids from Gaojiacun; (3) peridotites from Gaojiacun. Given the age differences, the intrusions at Lengshuiqing and the Gaojiacun pluton might have been produced by different magmatic events.  相似文献   

11.
陈意  苏斌  郭顺 《地球科学》2019,44(12):4086-4094
俯冲地壳衍生流体交代地幔楔,是产生俯冲带岩浆作用的重要机制.但是,目前人们对俯冲大陆物质改造地幔楔的岩石学过程和机理仍缺乏深入认识,造山带橄榄岩是解析这一问题的直接样品.通过对大别-苏鲁造山带橄榄岩进行系统的矿物学、岩石学和地球化学研究,发现橄榄石Ni/Co比值可有效区分幔源和壳源造山带橄榄岩,揭示幔源造山带橄榄岩起源于华北岩石圈地幔.苏鲁李家屯纯橄岩在进入俯冲带之前就已在地幔内部经历了碳酸盐熔体交代.大别毛屋和苏鲁蒋庄橄榄岩及其交代脉体记录了约170~200 km深度的俯冲带壳幔相互作用过程.深俯冲陆壳释放的富Si-Al质熔体可不同程度地改造地幔楔底部,形成富石榴石和富辉石的交代岩,并引发强烈的Os同位素分馏效应.该过程不仅改变地幔楔岩性和化学组成,还能够改变交代介质成分,为俯冲带各类深部地幔岩浆提供源区物质.因此,大陆深俯冲是导致上地幔不均一的重要途径.   相似文献   

12.
Despite the occurrence of highly variable lithium (Li) elemental distribution and isotopic fractionation in mantle mineral, the mechanism of Li heterogeneity and fractionation remains a controversial issue. We measured Li contents and isotopic compositions of olivine and clinopyroxene xenocrysts and phenocrysts from kamafugite host lavas, as well as minerals in melt pockets occurring as metasomatic products in peridotite xenoliths from the Western Qinling, central China. The olivine xenocrysts in the kamafugites show compositional zonation. The cores have high Mg# (100 × Mg/(Mg+Fe); 91.0–92.2) and Li abundances (5.63–21.7 ppm), low CaO contents (≤0.12 wt%) and low δ7Li values (−39.6 to −6.76‰), which overlap with the compositional ranges of the olivines in the melt pockets as well as those in peridotite xenoliths. The rims of the olivine xenocrysts display relatively low Mg# (85.9–88.2), high CaO contents (0.19–0.38 wt%) and high δ7Li values (18.3–26.9‰), which are comparable to the olivine phenocrysts (Mg#: 86.4–87.1; CaO: 0.20–0.28 wt%; Li: 12.4–36.8 ppm; δ7Li: 18.1–26.0‰) and the silicate-melt metasomatized olivines. The clinopyroxene phenocrysts and clinopyroxenes in the melt pockets have no distinct characteristics with respect to the Li abundances and δ7Li values, but show higher and lower CaO contents, respectively, than the clinopyroxenes from silicate and carbonatite metasomatized samples. These features indicate that Li concentration and isotopic signatures of the cores of the xenocrysts recorded carbonatite melt-peridotite reaction (carbonatite metasomatism) at mantle depth, and the variations in the rims probably resulted from xenocryst–host magma interaction during ascent. Our results reveal that the interaction with carbonatite and silicate melts gave rise to an increase in Li abundance in minerals of peridotite xenoliths at mantle depth or during transportation. In terms of δ7Li, the carbonatite and silicate melts produced remarkably contrasting δ7Li variations in olivine. Based on the systematic variations of Li abundances and Li isotopes in olivines, we suggest that the δ7Li value of olivine is a more important indicator than that of clinopyroxene in discriminating carbonatite and silicate melt interaction agents with peridotites.  相似文献   

13.
High-Mg basaltic andesites and andesites occur in the central trans-Mexican volcanic belt, and their primitive geochemical characteristics suggest equilibration with mantle peridotite. These lavas may represent slab melts that reequilibrated with overlying peridotite or hydrous partial melts of a peridotite source. Here, we experimentally map the liquidus mineralogy for a high-Mg basaltic andesite (9.6 wt% MgO, 54.4 wt% SiO2, Mg# = 75.3) as a function of temperature and H2O content over a range of mantle wedge pressures. Our results permit equilibration of this composition with a harzburgite residue at relatively high water contents (>7 wt%) and low temperatures (1,080–1,150°C) at 11–14 kbar. However, in contrast to the high Ni contents characteristic of olivine phenocrysts in many such samples from central Mexico, those of olivine phenocrysts in our sample are more typical of mantle melts that have fractionated a small amount of olivine. To account for this and the possibility that the refractory mantle source may have had olivine more Fo-rich than Fo90, we numerically evaluated alternative equilibration conditions, using our starting bulk composition adjusted to be in equilibrium with Fo92 olivine. This shifts equilibration conditions to higher temperatures (1,180–1,250°C) at mantle wedge pressures (11–15 kbar) for H2O contents (>3 wt%) comparable to those analyzed in olivine-hosted melt inclusions from this region. Comparison with geodynamic models shows that final equilibration occurred shallower than the peak temperature of the mantle wedge, suggesting that basaltic melts from the hottest part of the wedge reequilibrated with shallower mantle as they approached the Moho.  相似文献   

14.
Hiroaki Sato 《Lithos》1977,10(2):113-120
Available NiO analyses of olivine in peridotites of probable mantle origin are consistent in giving values around 0.40 weight per cent. Assuming that basaltic magma forming from the mantle was in equilibrium with such peridotitic olivine, the NiO content of primary basaltic magmas is estimated to be about 0.030–0.050 weight per cent. The fractionation behaviour of nickel in basaltic magma due to the crystallization of olivine has been calculated using constant NiMg and FeMg exchange partition coefficients between olivine and magma. It is shown that the NiO content of both magma and olivine decreases by 50 per cent after fractional crystallization of 6–12 per cent of olivine. The nickel distribution in some basaltic rocks and olivines is examined in the light of these results, and it is suggested that basaltic magmas, such as some of the ocean-floor basalt and the Hawaiian tholeiite and alkali basalts, represent primary magmas from mantle peridotites.  相似文献   

15.
Dunitic xenoliths from late Palaeogene, alkaline basalt flows on Ubekendt Ejland, West Greenland contain olivine with 100 × Mg/(Mg + Fe), or Mg#, between 92.0 and 93.7. Orthopyroxene has very low Al2O3 and CaO contents (0.024–1.639 and 0.062–0.275 wt%, respectively). Spinel has 100 × Cr/(Cr + Al), or Cr#, between 46.98 and 95.67. Clinopyroxene is absent. The osmium isotopic composition of olivine and spinel mineral separates shows a considerable span of 187Os/188Os values. The most unradiogenic 187Os/188Os value of 0.1046 corresponds to a Re-depletion age of ca. 3.3 Gy, while the most radiogenic value of 0.1336 is higher than present-day chondrite. The Os isotopic composition of the xenoliths is consistent with their origin as restites from a melt extraction event in the Archaean, followed by one or more subsequent metasomatic event(s). The high Cr# in spinel and low modal pyroxene of the Ubekendt Ejland xenoliths are similar to values of some highly depleted mantle peridotites from arc settings. However, highly depleted, arc-related peridotites have higher Cr# in spinel for a given proportion of modal olivine, compared to cratonic xenolith suites from Greenland, which instead form coherent trends with abyssal peridotites, dredged from modern mid-ocean ridges. This suggests that depleted cratonic harzburgites and dunites from shallow lithospheric mantle represent the residue from dry melting in the Archaean.  相似文献   

16.
毛亚晶  秦克章  唐冬梅 《岩石学报》2018,34(8):2410-2424
岩浆铜镍矿床100%硫化物中的Ni含量与赋矿岩石和成矿过程紧密相关,记录岩浆成分、分异程度与硫化物演化过程。硫化物异常高镍(高镍硫化物)往往被认为与科马提质岩浆或者后期热液作用密切相关。近年研究结合勘查证实,赋含高镍硫化物的矿床(高镍铜镍矿床)不仅限于科马提岩,还与苦橄质、玄武质岩浆有关,另外,热液富集作用并不是必要因素。本文总结了世界上高镍铜镍矿床的基本特征和形成机制,分析提出了不同机制的判别标志,并展望了其勘查前景。详细对比高镍铜镍矿床的产出环境、赋矿岩相、矿石特征、矿物组合等特征,该类矿床往往产于大陆裂谷和造山带环境,与基性程度较高的岩浆有关,以橄榄岩赋矿为主,含镍硫化物组合主要为镍黄铁矿-磁黄铁矿-黄铜矿组合,少数为针镍矿-镍黄铁矿-黄铁矿组合。科马提岩相关矿床可将Ni含量大于16%的硫化物定义为高镍硫化物,苦橄质-玄武质岩浆相关矿床的硫化物可分为高镍硫化物(Ni10%)、中镍硫化物(5%~10%)和富铜硫化物(Ni5%,CuNi)。原生高镍硫化物可由富镍岩浆熔离、硫化物从橄榄石中吸取Ni、硫化物结晶分异、硫化物与硫不饱和岩浆反应等机制形成。苦橄质-玄武质岩浆相关的矿床,硫化物与橄榄石的Fe-Ni交换反应是高镍硫化物形成的重要机制。辉石岩源区地幔部分熔融形成富镍岩浆是否为高镍硫化物形成的必要条件尚存争议。不同机制形成的高镍硫化物具有迥异的岩石-矿物组合和地化特征。硫化物矿物组合、橄榄石成分(Fo值、Ni含量、Fo值-Ni含量的相关性)、伴生元素(铜、铂族元素)丰度-配分模式等特征可作为区分不同高镍硫化物形成机制的有效指标。我国新疆黄山南、坡一和青海夏日哈木矿床(部分浸染状矿化橄榄岩)以赋含高镍硫化物为特征,新疆喀拉通克矿床的硫化物则以富铜为特征,中国其余矿床的硫化物均属中镍硫化物。目前研究指示中国的高镍铜镍矿床与母岩浆相对富镍、硫化物与橄榄石Fe-Ni交换作用密切相关,后者可使硫化物Ni含量提升3%~5%。在铜镍矿床勘查方面,稀疏-中等浸染状高镍硫化物矿石即可达到工业品位,稠密浸染状-块状高镍硫化物矿石可达到很高的Ni品位(10%),是高品位镍矿勘查的一个重要方向。造山带环境富水、相对高氧逸度(可高达QFM+1)的岩浆可能是形成高镍硫化物的有利条件,该环境橄榄石Fo值较高(87mol%)的岩体有利于形成高镍硫化物。  相似文献   

17.
Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine(54%–58%) + orthopyroxene(40%–46%)+minor clinopyroxene(1%)+spinel. Samples with boninite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-Al end-members with Al_2O_3 content of 30 wt % –50 wt %, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO_2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements(REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of arc-and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have ~(187)Os/~(188)Os ratios ranging from 0.113–0.122, which is typical of cratonic lithospheric mantle. These ~(187)Os/~(188)Os ratios yield model melt extraction ages(TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Al_2O_3-~(187)Os/~(188)Os-proxy isochron ages of 2.4 Ga–2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean-Paleoproterozoic.  相似文献   

18.
The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92–0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05–0.23), Zr/Nb (0.28–0.80), and Zn/Cu (3–20) ratios and low Li concentrations (1.2–2.0 ppm), and the oxygen isotopic composition of this olivine δ18O = 5.64‰ is higher than that of olivine in mantle peridotites (δ18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90–0.93, high Ti concentrations (100–300 ppm), high ratios Ti/Na (0.90–2.39), Zr/Nb (0.31–1.96), and Zn/Cu (12–56), elevated Li concentrations (1.9–3.4 ppm), and oxygen isotopic composition δ18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the δ18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose δ18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water–silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.  相似文献   

19.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

20.
The Huangshannan Ni–Cu sulfide deposit at the southern margin of the Central Asian Orogenic Belt (CAOB) is an important recent discovery in the Eastern Tianshan Region, Northwestern China. The Huangshannan Intrusion is composed of mafic and ultramafic rocks, and its websterite and lherzolite sequences host the sulfide orebodies. Olivine is the dominant mineral in the Huangshannan Intrusion, occurring as olivine inclusions hosted by pyroxene oikocrysts, as olivine crystals in magmatic sulfides, and as poikilitic crystals in the lherzolite. Small olivine inclusions always coexist with large poikilitic olivine crystals in the same sample, resulting in a heterogeneous texture on the scale of the oikocrysts. The Ni abundance ranges from 1540 to 3772 ppm in poikilitic olivine grains, from 2114 to 3740 ppm in olivine grains hosted by sulfide minerals, and from 2043 to 4023 ppm in olivine inclusions hosted by pyroxene oikocrysts. For the three types of olivine, the ranges in forsterite (Fo) content are 78.97–84.92 mol.%, 81.57–84.79 mol.%, and 80.33–84.68 mol.%, respectively. The Ni content of olivine in the lherzolite is anomalously high relative to the range found in most within plate olivine-bearing mafic-ultramafic rocks. The composition of olivine is controlled mainly by that of the parental magma, fractional crystallization and reactions with interstitial silicate and sulfide melts. Both fractional crystallization and reaction with interstitial silicate may cause a decrease in the Ni content of olivine. The possibility that Ni–Fe exchange causes the anomalously high Ni contents in olivine can be excluded because the olivine grains contained in sulfide have similar or lower Ni content than the olivine grains hosted in the silicate rock. Most of the olivine grains are unzoned, and they have anomalously high Ni contents throughout the crystal. Assuming a partition coefficient of Ni between olivine and silicate magma to be 7, the measured Ni content of olivine in the lherzolite (1540–4023 ppm with a mean of 2907 ppm) indicates that the parental magma contains 220–575 ppm (average of 415 ppm) Ni. This value is higher than that found in basaltic magmas that crystallized olivine with similar Fo contents compared to the Huangshannan Intrusion. As mentioned above, the symmetric and reproducible variations in both Fo and Ni contents from core to margin in most of the olivine grains cannot be explained by fractional crystallization and reactions with interstitial silicate or sulfide melts but may reflect the equilibration of the olivine with new fluxes of magma as the chamber was replenished. The anomalously Ni-rich composition of the parental magmas of the Huangshannan Intrusion, relative to those of many other mineralized olivine-bearing mafic-ultramafic intrusions, may be produced by upgrading and scavenging of metals from a previously formed sulfide melts by a moderately Ni-rich magma. The mass-balance calculations of PGE data indicate that the parental magma that formed lherzolite contains 0.04 ppb Os, 0.02 ppb Ir and 0.4 ppb Pd, whereas the parental magma that formed websterite has 0.02 ppb Os, 0.009 ppb Ir and 0.75 ppb Pd. Rayleigh modeling using PGE tenors indicates that the massive sulfides may be produced by monosulfide solid solution (MSS)-sulfide liquid fractionation from the magma that formed the websterite. Rayleigh modeling of Fo and Ni contents of olivine shows that the parental magma that formed the lherzolite has experienced previous sulfide segregation and olivine crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号