首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study integrates the use of multi-source and multi-resolution remote sensing, topographic and field-based datasets to quantify land-use and land-cover (LULC) changes along a coastal stretch of Thua Thien Hue Province (central Vietnam). The LULC change analysis involves the Tam Giang-Cau Hai lagoon, the largest lagoon system in Southeast Asia, which is running nearly 70 km along the coast and having about 22,000 ha of water surface.The LULC change analysis was performed by computer-aided visual interpretation for 5 years (1965, 1989, 2000, 2006 and 2014) using satellite imagery from LANDSAT MSS, TM, ETM+ and 8, ASTER and SPOT5. National topographic maps were also used for the 1965 and 2000 years.To adequately represent the LULC features and peculiarities of central Vietnam coastal areas, an adapted CORINE Land Cover nomenclature was used where new 3rd and 4th level classes were adopted. Due to their intrinsic relative high spatial and radiometric resolution, SPOT5 images from 2006 were assumed as a reference for interpretation keys and first delineation. Changes were mapped by editing those vectors representing features which underwent LULC change prior or after 2006. Spatial and temporal changes were analyzed by post-classification approach and validated by ground truth information. High detail object-based classification was finally performed to infer the capability of medium spatial resolution imagery for extracting cadastral scale pond maps. The accuracy of classification was checked by a polygon by polygon comparison with an existing aquaculture facility inventory.Five LULC maps were obtained by applying a legend of 21 classes including two newly defined: “Aquaculture ponds” and “Mangrove forest”. The overall classification accuracy of the LULC map is 85% while the KHAT statistics 0.81 for the year 2006. Accuracy of the object-based aquaculture facilities classification is 84% or better for the SPOT5 imagery and 47.9% for the ASTER imagery. The study provides a synoptic LULC representation for the largest lagoon system of Southeast Asia and delivers quantitative estimates of main changes occurred during the last 50 years. Moreover, it reveals the adaptability of the CORINE Land Cover method outside European environment. Finally, SPOT5 provides good results to map aquaculture features at cadastral scale, even if in some circumstances (e.g. tidal areas), the integration with higher spatial resolution multispectral sensors should be envisaged.  相似文献   

2.
Detecting land-use change has become of concern to environmentalists, conservationists and land use planners due to its impact on natural ecosystems. We studied land use/land cover (LULC) changes in part of the northwestern desert of Egypt and used the Markov-CA integrated approach to predict future changes. We mapped the LULC distribution of the desert landscape for 1988, 1999, and 2011. Landsat Thematic Mapper 5 data and ancillary data were classified using the random forests approach. The technique produced LULC maps with an overall accuracy of more than 90%. Analysis of LULC classes from the three dates revealed that the study area was subjected to three different stages of modification, each dominated by different land uses. The use of a spatially explicit land use change modeling approach, such as Markov-CA approach, provides ways for projecting different future scenarios. Markov-CA was used to predict land use change in 2011 and project changes in 2023 by extrapolating current trends. The technique was successful in predicting LULC distribution in 2011 and the results were comparable to the actual LULC for 2011. The projected LULC for 2023 revealed more urbanization of the landscape with potential expansion in the croplands westward and northward, an increase in quarries, and growth in residential centers. The outcomes can help management activities directed toward protection of wildlife in the area. The study can also be used as a guide to other studies aiming at projecting changes in arid areas experiencing similar land use changes.  相似文献   

3.
Quality assessment for building footprints data on OpenStreetMap   总被引:1,自引:0,他引:1  
In the past two years, several applications of generating three-dimensional (3D) buildings from OpenStreetMap (OSM) have been made available, for instance, OSM-3D, OSM2World, OSM Building, etc. In these projects, 3D buildings are reconstructed using the buildings’ footprints and information about their attributes, which are documented as tags in OSM. Therefore, the quality of 3D buildings relies strongly on the quality of the building footprints data in OSM. This article is dedicated to a quality assessment of building footprints data in OSM for the German city of Munich, which is one of the most developed cities in OSM. The data are evaluated in terms of completeness, semantic accuracy, position accuracy, and shape accuracy by using building footprints in ATKIS (German Authority Topographic–Cartographic Information System) as reference data. The process contains three steps: finding correspondence between OSM and ATKIS data, calculating parameters of the four quality criteria, and statistical analysis. The results show that OSM footprint data in Munich have a high completeness and semantic accuracy. There is an offset of about four meters on average in terms of position accuracy. With respect to shape, OSM building footprints have a high similarity to those in ATKIS data. However, some architectural details are missing; hence, the OSM footprints can be regarded as a simplified version of those in ATKIS data.  相似文献   

4.
OpenStreetMap (OSM) is a free spatial data source based on crowd sourced data. Although the OSM data have a range of applications, such as generating 3D models, and routing and navigation, quality issues are still significant concerns when using the data. Several studies have undertaken quality assessments by comparing OSM data with reference data. However, reference data are not always available due to high costs or licensing restrictions, and very few studies have quantitatively estimated the quality of OSM data under conditions where the corresponding reference data are not available. This study proposed the use of a building density (or building coverage ratio) indicator as a proxy, and designed a series of experiments involving different study areas to quantitatively explore the relationship between building density and building completeness for OSM data in urban areas. The residuals (estimated building completeness and reference building completeness) were also analyzed. Two main results were found from the experiments. (1) There was an approximate linear relationship between building density and building completeness in the OSM data. More precisely, the building completeness of OSM data was approximately 3.4–4 times the building density of OSM data. (2) Approximately 70–80% of the absolute residuals were smaller than 10%, and 80–90% of them were smaller than 20%. This shows that, in most cases, estimated building completeness was close to the corresponding reference building completeness. Therefore, we concluded that the building density indicator is a potential proxy for the quantitative completeness estimation of OSM building data in urban areas. The limitations of using this indicator were also addressed.  相似文献   

5.
This study investigates the Land Use & Land Cover (LULC) changes in a coastal area of the southwest part of Epirus region, called Preveza, situated in North-western Greece. Remote sensing imagery coming from the Enhanced Thematic Mapper (ETM+) sensor on board at the Landsat 7 satellite platform is used for this purpose. More specifically, we identified LULC changes in this environmentally sensitive coastal area, using Landsat image scenes for the dates of June 19th, 2000 and July 22nd, 2009. During this period, there was an increasing tourist activity and a high growth in the construction sector of the study area. The land-use changes were identified, examining several vegetation indices and band combinations, along with the implementation of different well-known classification techniques. The Normalized Difference Vegetation Index (NDVI) and the Brightness Index (BI) have proved to be the most suitable indices to successfully identify discrete land surface classes for this study area. Regarding the classifiers, a series of traditional and modern algorithms were tested. The Artificial Neural Networks (ANNs) and the Support Vector Machines (SVMs) gave improved results in comparison to other more traditional classification techniques. The best overall accuracy for the study area was achieved with the SVM classifier and reached 96.25% and 97.15% on the dates of June 19th, 2000 and July 22nd, 2009 respectively. The classification results depicted notable urbanization, small deforestation and important LULC changes in the agriculture sector, indicating a rapid coastal environment change in the region of interest.  相似文献   

6.
Volunteered geographic information (VGI), OpenStreetMap (OSM), has been used in many applications, especially when official spatial data are unavailable or outdated. However, the quality of VGI remains a valid concern. In this paper, we use the matched results between OSM building footprints and official data as the samples for training an autoencoder network, which encodes and reconstructs the sample populations according to unknown complex multivariate probability distributions. Then, the OSM data are assessed based on the theory that small probability samples contribute little to the autoencoder network and that they can be recognized by the higher reconstructed errors during training. In the method described here, the selected measures, including data completeness, positional accuracy, shape accuracy, semantic accuracy and orientation consistency between OSM and official data, are used as the inputs for a deep autoencoder network. Finally, building footprint data from Toronto, Canada, are evaluated, and experiments show that the proposed method can assess the OSM data comprehensively, objectively and accurately.  相似文献   

7.
Accurate information on land use and land cover (LULC) is critical for policy decisions especially for management of land and water resources’ activities in large river basins around the world. Phenology based LULC classification is the most promising approach particularly in the areas with diversified cropping patterns. Sometimes in large river basins, local climate and topography provides two different phenological information sets for the same crops in the same season. Based on accurate phenological information of the main crops in spatially segregated units, the remote sensing based classification was used to map the LULC changes for a period of 2003–2013 in the Kabul River Basin (KRB) of Afghanistan. We used remotely sensed Normalized Difference Vegetation Index (NDVI) products of Moderate-resolution Imaging Spectroradiometer (MODIS) from Terra (MOD13Q1) and Aqua (MYD13Q1) with 250 m spatial resolution for this study. The overall accuracy (mean) of the LULC classification throughout the study period was around 68.15% ± 9.45while the producer and user accuracies (mean) were 75.9 ± 11.3% and 76.4 ± 11.2%, respectively. Results show that the cropping patterns vary significantly in the spatially disaggregated units. From 2003 till 2013, the ground coverage of wheat, barley and rice was increased by 31%, 7% and 32%, respectively. Overall, there has been only 2% increment in the agricultural area across the KRB between 2003 and 2013. This relatively increased trend of land cover change has taken place as a result of partial improvement in political stability as well as investment in irrigation infrastructure and agricultural development in the region. This study further provides insight to develop new agriculture strategies in order to maintain the ecosystem required to fulfil the rising food demands.  相似文献   

8.
In the past decade, Volunteered Geographic Information (VGI) has emerged as a new source of geographic information, making it a cheap and universal competitor to existing authoritative data sources. The growing popularity of VGI platforms, such as OpenStreetMap (OSM), would trigger malicious activities such as vandalism or spam. Similarly, wrong entries by unexperienced contributors adds to the complexities and directly impact the reliability of such databases. While there are some existing methods and tools for monitoring OSM data quality, there is still a lack of advanced mechanisms for automatic validation. This paper presents a new recommender tool which evaluates the positional plausibility of incoming POI registrations in OSM by generating near real-time validation scores. Similar to machine learning techniques, the tool discovers, stores and reapplies binary distance-based coexistence patterns between one specific POI and its surrounding objects. To clarify the idea, basic concepts about analysing coexistence patterns including design methodology and algorithms are covered in this context. Furthermore, the results of two case studies are presented to demonstrate the analytical power and reliability of the proposed technique. The encouraging results of this new recommendation tool elevates the need for developing reliable quality assurance systems in OSM and other VGI projects.  相似文献   

9.
There is a need for improved and up-to-date land use/land cover (LULC) data sets over an intensively changing area in the Amur River Basin (ARB) in support of science and policy applications focused on understanding of the role and response of the LULC to environmental change issues. The main goal of this study was to map LULC in the ARB using MODIS 250-m Normalized Difference Vegetation Index (NDVI), Land Surface Vegetation Index (LSWI), and reflectance time series data for 2001 and 2007. Another goal was to test the consistency of the classification results using relatively coarse resolution MODIS imagery data in order to develop a methodology for rapid production of an up-to-date LULC data set. The results on MODIS land cover were evaluated using existing land use/cover data as derived from Landsat TM data. It was found that the MODIS 250-m NDVI data sets featured sufficient spatial, spectral and temporal resolution to detect unique multi-temporal signatures for the region’s major land cover types. It turned out that MODIS 250 NDVI time series data have high potential for large-basin land use/land cover monitoring and information updating for purposes of environmental basin research and management.  相似文献   

10.
Volunteered Geographic Information (VGI) represents a growing source of potentially valuable data for many applications, including land cover map validation. It is still an emerging field and many different approaches can be used to take value from VGI, but also many pros and cons are related to its use. Therefore, since it is timely to get an overview of the subject, the aim of this article is to review the use of VGI as reference data for land cover map validation. The main platforms and types of VGI that are used and that are potentially useful are analysed. Since quality is a fundamental issue in map validation, the quality procedures used by the platforms that collect VGI to increase and control data quality are reviewed and a framework for addressing VGI quality assessment is proposed. A review of cases where VGI was used as an additional data source to assist in map validation is made, as well as cases where only VGI was used, indicating the procedures used to assess VGI quality and fitness for use. A discussion and some conclusions are drawn on best practices, future potential and the challenges of the use of VGI for land cover map validation.  相似文献   

11.
This article describes and compares six disaggregation methods used to produce a dasymetric population density grid of the European Union at a 100 m resolution. Population data were initially available at commune level. The main ancillary information source was CORINE land cover, a land cover map distributed by the European Environment Agency. Information from the Eurostat point survey, land use/cover area frame survey, was also integrated in the parameter estimation of some of the approaches tested. Accurate population data for 1 km cell grids were provided by the Statistical Offices of Austria, Denmark, Finland, the Netherlands, Northern Ireland, Estonia and Sweden. These data provided the basic reference to quantify the accuracy of each method. The best results were obtained with a modified version of the limiting variable method (Eicher, C. and Brewer, C., 2001. Dasymetric mapping and areal interpolation: implementation and evaluation. Cartography and Geographic Information Science, 28, 125–138) that could be implemented, thanks to the national reference grids. For other methods the parameters could be estimated without using the reference grids; among them a method based on logit regression gave the best results. Compared with the traditional choropleth maps that represent a homogeneous density in each commune, the accuracy improvement of the disaggregated maps ranged between 20% and 67% (between 46% and 67% for the best method).  相似文献   

12.
The objective of this paper is to examine a method for estimation of land cover statistics for local environments from available area frame surveys of larger, surrounding areas. The method is a simple version of the small-area estimation methodology. The starting point is a national area frame survey of land cover. This survey is post-stratified using a coarse land cover map based on topographic maps and segmentation of satellite images. The approach is to describe the land cover composition of each stratum and subsequently use the results to calculate land cover statistics for a smaller area where the relative distribution of the strata is known. The method was applied to a mountain environment in Gausdal in Eastern Norway and the result was compared to reference data from a complete in situ land cover map of the study area. The overall correlation (Pearson’s rho) between the observed and the estimated land cover figures was r = 0.95. The method does not produce a map of the target area and the estimation error was large for a few of the land cover classes. The overall conclusion is, however, that the method is applicable when the objective is to produce land cover statistics and the interest is the general composition of land cover classes - not the precise estimate of each class. The method will be applied in outfield pasture management in Norway, where it offers a cost-efficient way to screen the management units and identify local areas with a land cover composition suitable for grazing. The limited resources available for in situ land cover mapping can then be allocated efficiently to in-depth studies of the areas with the highest grazing potential. It is also expected that the method can be used to compile land cover statistics for other purposes as well, provided that the motivation is to describe the overall land cover composition and not to provide exact estimates for the individual land cover classes.  相似文献   

13.
Land cover type is a crucial parameter that is required for various land surface models that simulate water and carbon cycles, ecosystem dynamics, and climate change. Many land use/land cover maps used in recent years have been derived from field investigations and remote-sensing observations. However, no land cover map that is derived from a single source (such as satellite observation) properly meets the needs of land surface simulation in China. This article presents a decision-fuse method to produce a higher-accuracy land cover map by combining multi-source local data based on the Dempster–Shafer (D–S) evidence theory. A practical evidence generation scheme was used to integrate multi-source land cover classification information. The basic probability values of the input data were obtained from literature reviews and expert knowledge. A Multi-source Integrated Chinese Land Cover (MICLCover) map was generated by combining multi-source land cover/land use classification maps including a 1:1,000,000 vegetation map, a 1:100,000 land use map for the year 2000, a 1:1,000,000 swamp-wetland map, a glacier map, and a Moderate-Resolution Imaging Spectroradiometer land cover map for China in 2001 (MODIS2001). The merit of this new map is that it uses a common classification system (the International Geosphere-Biosphere Programme (IGBP) land cover classification system), and it has a unified 1 km resolution. The accuracy of the new map was validated by a hybrid procedure. The validation results show great improvement in accuracy for the MICLCover map. The local-scale visual comparison validations for three regions show that the MICLCover map provides more spatial details on land cover at the local scale compared with other popular land cover products. The improvement in accuracy is true for all classes but particularly for cropland, urban, glacier, wetland, and water body classes. Validation by comparison with the China Forestry Scientific Data Center (CFSDC)–Forest Inventory Data (FID) data shows that overall forest accuracies in five provinces increased to between 42.19% and 88.65% for our MICLCover map, while those of the MODIS2001 map increased between 27.77% and 77.89%. The validation all over China shows that the overall accuracy of the MICLCover map is 71%, which is higher than the accuracies of other land cover maps. This map therefore can be used as an important input for land surface models of China. It has the potential to improve the modeling accuracy of land surface processes as well as to support other aspects of scientific land surface investigations in China.  相似文献   

14.
Rapid change in land use and land cover (LULC) and unplanned urban expansion in Dhaka City, Bangladesh, receives continuous attention from local policymakers and the international community. This study employed a supervised classification procedure and postclassification change detection technique to estimate major changes between different LULC classes. The study revealed that built-up area increased significantly from 1989 to 2014. The total urban growth of 81.54 percent resulted in a substantial decrease in natural vegetation cover and agricultural land. In addition, water bodies have declined consistently over the last twenty-five years. The overall accuracy of LULC change maps produced from Landsat data ranged from 89.72 percent to 92.97 percent. The results should contribute to ongoing LULC information updates while forecasting possible future LULC change and sustainable development under greater population density.  相似文献   

15.
The accuracy of the Mexican National Forest Inventory (NFI) map is derived in four distinct ecogeographical areas, using an assessment design tailored for the project. A main achievement of the design was to integrate the high diversity of classes encompassed at the most detailed subcommunity level of the classification scheme within a cost‐controlled statistically sound assessment. A hybrid double sampling strategy was applied to the 2.5 million‐ha study area. A total of 5955 reference sites were verified against their NFI map label. The availability of detailed quasi‐synchronous reference data for the 2000 Landsat‐derived NFI and the high diversity of mapped classes allowed a careful thematic analysis on the selected regions, relevant for national extrapolation. Global accuracy estimates of 64–78 per cent were registered among the four ecogeographical areas (two with mainly temperate climate and the other two with mainly tropical climate), with the lower accuracy levels found in areas more densely covered with forests. According to the estimates, the NFI map tends to underestimate the presence of temperate forest (especially oak) and overestimate the presence of tropical forest in the areas investigated. The analysis of confusions reveals difficulties in unambiguously interpreting or labelling forests with secondary vegetation, herbaceous and/or shrub‐like vegetation as well as distinguishing between aquatic vegetation types. The design proved useful from the perspective of accuracy assessments of regional maps in biodiverse regions.  相似文献   

16.
随着对地观测和互联网技术的发展,地理大数据时代正在到来,其多尺度、长时序、多模态等海量“超”覆盖数据为土地利用/覆被(Land Use/Land Cover, 简称LULC)分类及变化检测带来巨大的机遇,支撑着新时代人、地两大系统相互作用关系的认知和实践。然而,多数地理学者认为地理学基本原理与核心思想并未因为大数据的到来而发生本质性变化。所以,从地理学基本原理角度理解LULC分类的发展,尤其在地理大数据时代的发展方向,不失为一条可行的途径。为此,本文从区域、尺度、综合三方面的地理学基本原理视角将LULC分类技术的发展划分为地球观测数据匮乏阶段、人类行为数据融合阶段以及地理大数据“超”覆盖阶段分别探讨分析,以期主动把握LULC分类技术及应用的未来发展趋势。研究结果显示:在地球观测数据匮乏阶段,LULC分类多以类型还不丰富的遥感数据源,在空间分辨率较低的像元尺度上,进行以地表覆被状态为主的分类;发展到人类行为数据融合阶段,LULC分类在城市区域率先出现了对地观测数据和人类行为数据相融合,在街区尺度上进行以空间功能异质性划分、识别为主导的城市功能区分类;在地理大数据“超”覆盖阶段,LULC分类将实现多尺度协同、面向全空间的功能异质性划分,并在主体功能的基础上融合“社会-经济-自然”多维定量属性,本文称之为“空间场景”。希望本文的探讨能够为地理大数据时代LULC分类的新技术发展和新产品应用提供有益启示。  相似文献   

17.
Extensive aerial photography cover is available for parts of the British Antarctic Territory, but the fisoffinfillijl characteristics of the photography, combined with the sparsity of ground control information and rugged snow-covered terrain, make photogrammetric mapping techniques difficult to apply. This paper shows, by reference to a new 1:50,000 scale topographic map of part of the Antarctic Peninsula, how merging topographic data from various sources in a GIS environment can make photogrammetric mapping more effective. Information sources used in the map compilation include three types of aerial photography, geo-referenced satellite imagery, surveyed points in a control network and satellite image-derived control points. A shape-from-shading algorithm was used to generate contours for snowfields where absence of surface detail prevented photogrammetric contouring. A horizontal and vertical accuracy of better than ±5 m was achieved in orientation of photography covering almost all of the map area. Such errors have allowed the construction of an accurate large-scale map for an area where previous mapping had been restricted to medium and small scales.  相似文献   

18.
The accuracy of old maps can hold interesting historical information, and is therefore studied using distortion analysis methods. These methods start from a set of ground control points that are identified both on the old map and on a modern reference map or globe, and conclude with techniques that compute and visualise distortion. Such techniques have advanced over the years, but leave room for improvement, as the current ones result in approximate values and a coarse spatial resolution. We propose a more elegant and more accurate way to compute distortion of old maps by translating the technique of differential distortion analysis, used in map projection theory, to the setting where an old map and a reference map are directly compared. This enables the application of various useful distortion metrics to the study of old maps, such as the area scale factor, the maximum angular distortion and the Tissot indicatrices. As such a technique is always embedded in a full distortion analysis method we start by putting forward an optimal analysis method for a general-purpose study, which then serves as the foundation for the development of our technique. Thereto, we discuss the structure of distortion analysis methods and the various options available for every step of the process, including the different settings in which the old map can be compared to its modern counterpart, the techniques that can be used to interpolate between both, and the techniques available to compute and visualise the distortion. We conclude by applying our general-purpose method, including the differential distortion analysis technique, to an example map also used in other literature.  相似文献   

19.
Land use and land cover (LULC) change in the Ganges-Brahmaputra delta (GBD) poses significant challenges towards future environmental sustainability of the region and requires regional scale monitoring of key bio-physical variables and changes in their inter-relationship over space and time. Focusing on the southern part of the lower GBD region along the international border of India and Bangladesh, this study examined the spatio-temporal variability of LULC change and its relationship with Land Surface Temperature (LST). Furthermore, LULC-LST relationships were compared between Indian and Bangladesh part and its trend in and around big cities (with more than 1 million population) and towns (with more than 100,000 population) was investigated. Results showed that LST changes were predominantly driven by LULC changes on both sides of the border. Urban growth is the dominant form of LULC change, and the rate of land change was faster in 2005–2010 time period than 1989–2005. Over the period of 21 years, mean January LST decreased by approximately 1.83 °C in Indian part and 1.85 °C in the Bangladesh part. Areas that changed from to rural from agricultural experienced decrease in mean LST, whereas those areas that changed to urban from either agriculture or rural, experienced increase in mean LST. The relationship between LULC and LST are same on both sides of the Indo-Bangladesh border. In bigger cities like Kolkata (in India) and Khulna (in Bangladesh), there is a high spatial variability in relationship between LULC and LST compared to large towns. The LULC-LST relationship in large towns in India was influenced by proximity to Kolkata and coastal areas, whereas in Bangladesh no such influence was evident. The results and the data produced in this study are crucial for monitoring LULC changes, for developing spatial decision support system, and thus will be helpful to address the current challenges of land management in the GBD region. Changes in the LULC and LST are important indicators of GBD's environmental health and access its vulnerability and thus the present findings serve as baseline information for future studies seeking to examine the impact of differential policies on the LULC change in the region.  相似文献   

20.
A small-scale land resource map was compiled by combining generalised large-scale maps with auxiliary data and interpreted satellite images. The large-scale maps covered areas below the treeline and were generalised using an expansion-contraction algorithm (ECA). Areas above the treeline were added by manual interpretation of a Landsat TM image (Band 4,5,3). Certain features were also copied from small-scale topographic maps. The thematic accuracy was evaluated individually for different segments of the map, according to the production technique. The general accuracy was satisfactory in areas where the ECA technique had been applied. Areas mapped using auxiliary data were rendered inaccurately both below and above the treeline, but the result was still found acceptable. The results from satellite interpretation above the treeline were promising, but need to be improved. The image interpretation can either be refined by using alternative sensors, by improved training of the interpreters, or by adjusting the definition of the land resource classes in order to attain a better match between the class definitions and the result of the classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号