首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption behavior and solid-phase associations of phosphorus (P) in fine-grained sediments (<63 μm) from two upstream tributaries and one downstream main stem site of the Spoon River in west-central Illinois were characterized to better understand phosphorus bioavailability in this agriculturally dominated watershed. The P sorption affinities, as indicated by linear distribution coefficients (K d), of all sediments were 330–5,150 L/kg, and negatively correlated with equilibrium phosphorus concentration (EPCo) values, which ranged between 0.2 and 2.2 μM. pH values measured at the conclusion of the sorption experiments varied only slightly (7.45–8.10) but were nonetheless strongly positively correlated to EPCo values, and negatively correlated to K d values, suggesting the importance of pH to the observed sorption behavior. K d values were generally lower and EPCo values higher at the main stem site than at the upstream tributary sites, suggesting dissolved reactive P (DRP) bioavailability (specifically orthophosphate) increased downstream. The solid phase associations of P were operationally assessed with the streamlined SEDEX (sedimentary extraction) procedure, and most sediment P (≥50%) was released during the step designed to determine iron oxide–associated P. On average, 70–90% of the total sediment P pool was potentially bioavailable, as estimated by the sum of the iron oxide-, authigenic carbonate-, and organic-associated P fractions. Considerable calcium was also extracted from some sediments during the step designed to specifically remove iron oxide–associated P. It is hypothesized that the severe drought conditions that persisted between April and October, 2005 allowed authigenic carbonates (perhaps partly amorphous) to accumulate, and that these carbonates dissolved during the iron oxide extraction step. The extensive benthic algal populations also present may have aided carbonate precipitation, which under more normal hydrologic conditions would be periodically flushed downstream and replaced by fresh sediment. This suggests antecedent hydrologic conditions played a dominant role in the P sorption and solid phase associations identified.  相似文献   

2.
We investigated the accumulation and influence of bioavailable P (BAP) in sediments of a stream located in an agricultural area of the Lake Mendota watershed in Wisconsin, USA. During hydrologic events, the stream carried high concentrations of suspended sediment (up to 250 mg/l) and BAP (up to 2.5 mg/l). Bed sediments were highly enriched in BAP, as inventories of BAP in the top 10 cm of sediment ranged from 143 to 14,500 μg P/cm2. Space variations in BAP inventories were related to site-specific hydrodynamics and geochemical factors, including iron (Fe; r 2 = 0.71) and aluminum (Al; r 2 = 0.54) concentrations. Most sites behaved as potential sinks for dissolved reactive phosphate during hydrologic events and potential sources during base-flow periods. Through the combination of site-specific factors and geochemical controls, Dorn Creek modifies the amount, timing, and composition of P delivered from the watershed to downstream sites and water bodies.  相似文献   

3.
In order to study the first steps of incorporation of lipids in recent organic-rich sediments into free and bound fractions, we have selected the Santa Barbara Basin, off California. This basin with a maximum of 590 m water depth is characterized by high phytoplankton production in surface waters and a low oxygen content in bottom waters. Sediments show the following features: high sedimentation rate ≈ 4 mm/yr, no bioturbation, and development of a bacterial mat community at the surface with predominance of sulphur-oxidizing bacteria trapping particles, thus preventing re-distribution of sediment, which permit a unique observations of organic sedimentation on a new few years basis.A sediment core has been divided into 2 cm thick slices corresponding to a time resolution of ≈5 years, from 1835 up to 1987. Samples have been analyzed using a multi-parameter approach, such as for plankton species identification, carbon stable isotope ratios and, as reported here, for lipid organic tracers. Organic tracers have been analyzed in the sterol and fatty series for both free and bound compounds by gas chromatography and gas chromatography/mass spectrometry.The incorporation processes of sterols with depth appear different for free and bound compounds. Total free sterol concentrations show high values in surface sediments (≈ 100 μg/g dry sediment), rapidly decrease up to ≈ 10 cm depth and remain at a constant value of 30–40 μg/g. Total bound sterol concentrations show low values in surface sediment (13.6 μg/g), and vary irregularly with depth up to a value of 55 μg/g at 7.3 m, and then remain constant at 25–26 μg/g.Profiles of evolution with depth of free C27, C28 sterols show a regular decrease, whereas C29 sterols show an irregular decrease with anomalies at 7.3 cm (approximately age: 1977–1978) and at 14.1 cm (1962–1964). Profiles of bound compounds are rather different, very regular for C28 sterols, irregular with oscillations for C27 and C29 sterols at 7.3, 12.2 and 18.0 cm (1954–1956), suggesting a different mode of incorporation and probably different inputs for C27, C29 and C28 sterols.The study of the kinetics of degradation of sterols between surface (1987) and 10.5 cm (1968–1972) shows that C27 compounds are degraded at a slight higher rate (0.53 μg/μg of initial C27 concentration/ year) than are C28 and C29 compounds (0.047 μg/μg of initial concentration/year). An intermediate value is found for brassicasterol: 0.049 μg/μg/year.  相似文献   

4.
The release of Phosphorus (P) from river sediments has been identified as a contributing factor to waters failing the criteria for ‘Good Ecological Status’ under the EU Water Framework Directive (WFD). To identify the contribution of sediment-P to river systems, an understanding of the factors that influence its distribution within the entire non-tidal system is required. Thus the aims of this work were to examine the (i) total (PTotal) and labile (PLabile) concentrations in sediment, (ii) the sequestration processes and (iii) the interactions between sediment P and the river water in the six non-tidal water bodies of the River Nene, U.K. Collection of sediments followed a long period of flooding and high stream flow. In each water body, five cores were extracted and homogenised for analysis with an additional core being taken and sampled by depth increments. Comparing the distribution of sediment particle size and PTotal data with soil catchment geochemical survey data, large increases in PTotal were identified in sediments from water body 4–6, where median concentrations of PTotal in the sediment (3603 mg kg−1) were up to double those of the catchment soils. A large proportion of this increase may be related to in-stream sorption of P, particularly from sewage treatment facilities where the catchment becomes more urbanised after water body 3. A linear correlation (r = 0.8) between soluble reactive phosphate (SRP) and Boron in the sampled river waters was found suggesting increased STW input in water bodies 4–6.PLabile concentrations in homogenised cores were up to 100 mg kg−1 PO4–P (generally < 2% of PTotal) and showed a general increase with distance from the headwaters. A general increase in Equilibrium Phosphate Concentrations (EPC0) from an average of 0.9–∼1.7 μm L−1 was found between water bodies 1–3 and 4–6. Fixation within oxalate extractable phases (Al, Fe and Mn) accounted for ∼90% of P binding in water bodies 4–6, but only between 31 and 74% in water bodies 1–3. Statistical models predicting PTotal (R2 = 0.78), oxalate extractable P (R2 = 0.78) and Olsen P (R2 = 0.73) concentrations in river sediments identified Mn oxy-hydroxides (MnOx) as a strong predictive variable along with the location within the river system. It is suggested that MnOx within model predictions is identifying a pool of mixed Fe–Mn oxy-hydroxides (MnOx–FeOOH) or Fe oxy-hydroxide (FeOOH) from the wider FeOxalate pool that are particularly effective at sorbing and fixing P. The findings demonstrate how sediment and P may accumulate along a 100 km non-tidal river system, the extent to which a range of processes can fix P within mineral phases and how natural flooding processes may flush sediment from the river channel. The processes identified in this study are likely to be applicable to similar river systems over their non-tidal water bodies in eastern England.  相似文献   

5.
We collected sediment samples and pore water samples from the surface sediment on the Daini Atsumi Knoll, and analyzed the sediments for CH4, C2H6, and δ13CCH4, and the pore fluids for CH4, C2H6, δ13CCH4, Cl, SO42−, δ18OH2O, and δDH2O, respectively. A comparison of the measured concentration and isotopic composition of methane in pore water samples with those in sediment samples revealed that methane was present in the sediment samples at a higher concentration and was isotopically heavier than those in the pore water samples. It suggests that the effect of the release of a sorbed gas bound to organic particles when heated prior to analysis of hydrocarbons was larger than that of the degassing process. A large amount of a sorbed gas would be a significant source of natural gas. Two striking features are the chemical and isotopic composition of the pore water samples taken from the different sites around the Daini Atsumi Knoll. In the KL09, KL10, and KP07 samples, Cl concentrations in the pore water samples showed depletion to a minimum of 460 mmol/kg, correspond to  17% dilution of seawater, however the latter was not enriched in CH4. The isotopic compositions of pore water samples suggested the low-Cl fluids in the pore water were not derived from dissociation of methane hydrate, but were derived from input of meteoric water. In contrast, in the KP05 samples from the north flank of the Daini Atsumi Knoll, pore water were characterized by CH4 enrichment more than 370 μmol/kg, but not depleted in Cl concentrations. The observed methane concentration in the KP05 samples is not sufficient for methane hydrate to form in situ, indicating that the existence of methane hydrate in the surface sediment is negligible, as supported by Cl concentration. Based on the stable carbon isotope ratio of methane in the pore fluid from the KP05 site (δ13CCH4 < − 50‰PDB), methane is thought to be of microbial origin. The pore waters in the surface sediments in the north flank of the Daini Atsumi Knoll were not directly influenced by upward fluid bearing methane of thermogenic origin from a deeper part of the sedimentary layer. However, extremely high methane concentration in the north flank site as compared with the concentration of pore water taken from the normal seafloor suggests that the north flank site is not the normal seafloor. We hypothesize that upward migration of chemically-reduced fluids from a deeper zone of the sedimentary layer reduces chemically-oxidized solutes in the surface sediment. As a consequence methane production replaced sulfate reduction as the microbial metabolism in the reduced environment of the surface sediment.  相似文献   

6.
Vertical distribution patterns of organic geochemical constituents and the enzymes aminopeptidase and β-glucosidase provide insights about the nature and reactivity of sediment organic matter in the sandy sediments of two shallow “South Texas” estuaries. Sediment total organic carbon (TOC) δ13C values indicated that the organic matter (OM) was derived more from a mixture of seagrass and phytoplankton than from terrigenous OM. Down-core amounts of TOC and total nitrogen (TN) were <0.2% of dry weight, respectively. Enzyme activities were highest near surface and ranged from 25 to 1 μM/h for aminopeptidase as compared to 5 to 0.2 μM/h for glucosidase. In Aransas Bay, aminopeptidase activity correlated with sediment TN content (r s = 0.30) and β-glucosidase with TOC content (r s = 0.27). In Copano Bay, aminopeptidase correlated with TOC, TN, and carbohydrate content (r s = 0.89, 0.90, and 0.83, respectively). Variations of glucosidase activity also related positively to TOC, TN, and total carbohydrate content (r s = 0.68, 0.77, and 0.48, respectively). Overall, enzyme activities in these low OM, sandy sediments resembled those for other benthic marine environments.  相似文献   

7.
The triterpenol geochemistry of the Santa Monica Basin from the Southern California Borderland, off the U.S.A., is described from the study of two sets of trap deployments, five box cores (≈30 cm) and a hydroplastic core (≈1 m). The biogenic sources and diagenetic stability of the triterpenols are discussed.The 17β(H), 21β(H)-hopanols (22R isomer) occur in the carbon number range from 30 to 32 and their abundance is nearly uniform in the shallow sediment sections. However, the three hopanols follow the order of abundance, C32 > C31 C30, in deeper sections. Their concentrations spans from trace levels to 156 μg/g organic carbon (<15 ng to 7 μg/g dry sediment). Tetrahymanol (gammaceran-3β-ol) has been identified in all the samples except in one set of trap particles collected at 100 m water depth, from trace level (<1 μg) to 215 μg/g organic carbon (<20 ng to 9 μg/g dry sediment). Diplopterol is also detected in trace amounts in some samples. The triterpenols in the trap material generally increase with the water column depth and decrease with the subbottom depth in the sediment cores.The extended hopanols are either degradation products of polyhydroxybacteriohopanes or are biosynthesized by bacteria. Tetrahymanol is probably the only suggested biological precursor of gammacerane (the reduced counterpart of tetrahymanol), which has been recognized in numerous crude oils and lithified sediments. Although it has been reported earlier from Green River Shale and from a residual Pleistocene lake sediment, tetrahymanol has so far been positively identified from recent marine sediments only in two recent studies. The decreasing content of tetrahymanol in sedimentary depth profiles in the Santa Monica Basin would favor an origin for this compound in the water column or at the sediment surface. The ubiquitous occurrence of this compound throughout the study area suggests that this triterpenol most probably originates from primitive organisms (protozoa, bacteria?), hitherto not identified or, more likely, not yet analyzed for their lipid composition.  相似文献   

8.
Serpentinite soils, common throughout the world, are characterized by low calcium-to-magnesium ratios, low nutrient levels and elevated levels of heavy metals. Yet the water quality and heavy metal concentrations in sediments of streams draining serpentine geology have been little studied. The aim of this work was to collect baseline data on the water quality (for both wet and dry seasons) and metals in sediments at 11 sites on the Marlborough Creek system, which drains serpentine soils in coastal central Queensland, Australia. Water quality of the system was characterized by extremely hard waters (555–698 mg/L as CaCO3), high dissolved salts (684–1285 mg/L), pH (8.3–9.1) and dissolved oxygen (often >110% saturation). Cationic dominance was Mg > Na > Ca > K and for anions HCO3 > Cl > SO4. Al, Cu and Zn in stream waters were naturally high and exceeded Australian and New Zealand Environment and Conservation Council guidelines. Conductivity displayed the highest seasonal variability, decreasing significantly after wet season flows. There was little seasonal variation in pH, which often exceeded regional guidelines. Stream sediments were enriched with concentrations of Ni, Cr, Co and Zn up to 35, 21, 10 and 2 times the world average for shallow sediments, respectively. Concentrations for Ni and Cr were up to 60 and 16 times those of the relevant Interim Sediment Quality Guidelines Low Trigger Values, respectively. The distinctive nature of the water and sediment data suggests that it would be appropriate to establish more localized water quality and sediment guidelines for the creek system for the water quality parameters conductivity, Cu and Zn (and possibly Cr and Cd also), and for sediment concentrations of Cd, Cr and Ni.  相似文献   

9.
The Mapocho river, which crosses downtown Santiago, is one of the most important rivers in contact with a population of about six million inhabitants. Anthropogenic activities, industrialization, farming activities, transport, urbanization, animal and human excretions, domestic wastes and copper mining have affected the river, contaminating it and its sediments with heavy metals. Concentration and distribution of Cu, Zn, Pb and Cd were studied with the purpose of determining their bioavailability and their relation with the characteristics of the sediments. Freshly deposited seasonal sediments were collected from 0–8 cm depths from 6 locations (S1 to S6) along the 30-km long channel length, in the four seasons of year on the following dates: May 2001 (D1, autumn); August 2001 (D2, winter); October 2001 (D3, spring) and January 2002 (D4, summer). The dried samples were sifted to obtain the < 63-μm sediment fraction, since it has been shown that large amounts of heavy metals are bound in the fine-grained fraction of the sediment. Cu and Zn were analyzed by atomic absorption spectrophotometry and Pb and Cd by square wave anodic stripping voltammetry. The highest concentrations of Cu (2850 μg g− 1) were found in the northern part of the river (S1, average D1–D4), near the mountains and a copper mine, and then decreased downstream to 209 μg g− 1 (S6). Total Zn showed an irregular variation, with higher values at S1 (1290 μg g− 1) and high values in some winter sampling (1384 μg g− 1 S4, S5–D2). Pb showed different trends, increasing from S1 to S6 (17 to 61 μg g− 1), with the highest values in the summer samples (83 μg g− 1, S4–S6, D4), and total Cd increased slightly from mean values of 0.2 and 0.5 μg g− 1. Partition into five fractions was made using Tessier's analytical sequential extraction technique; the residue was treated with aqua regia for recovery studies, although this step is not part of the Tessier procedure. The results show that Cu, Zn and Pb in the sediments were dependent on the sampling places along the river, and variation in two years was low (D1–D4). The highest values of total organic matter, carbonate and conductivity were found in S6, which has the smallest size particles, while at S1 the sediments were predominantly sand and contain larger amounts of silica. Cu associated with carbonate decreased gradually from 58% (1771 μg g− 1, S1) to 16% (32 μg g− 1, S6); Cu bonded to reducible fraction was almost constant (33% to 37%), and Cu associated with oxidizable fraction increased from 7% (S1) to 34% (S6), but copper content was lower (214 to 68 μg g− 1). Zn had a similar fractionation profile. However, Pb bound to oxidizable fraction did not show significant percent variation along the river (20% to 19%), but the amount bounded was 4 to 12 μg g− 1. The residual fraction increased from 24% to 41% (5 to 25 μg g− 1, S1 to S6). The distribution of Cd in the sediment was almost independent of the sampling stations and was bound to carbonate, reducible and residual fraction in similar proportion. Cu and Zn at S1 were mainly bound to carbonates and reducible phases with 91% and 73% (2779 and 965 μg g− 1, respectively), and with a change in the pH and/or the redox potential of the sediment–water system, these contaminants could easily enter the food chain. In S6 the amount of Cu and Zn in these phases was 50% and 53% (100 to 313 μg g− 1, respectively).  相似文献   

10.
In this study, the sediment profiles of total phosphorus (TP), inorganic phosphorus (Pi), organic phosphorus (Po), C/P and N/P were used to investigate time-dependent P distribution changes in Lake Chaohu. The characteristics of Pi and Po fractions in the surface sediments were studied and the difference between east and west lake region was also discussed. The Pi and Po contents displayed a clear gradient from east to west in sediments of Lake Chaohu, and the Po/P ratios were lower in sediments with industrial and urban pollution sources input in west lake region. The study indicated that different sediments area had diverse concentrations and distributions of Po fractions due to their different drainage basin and pollution sources. The profile distribution of the C/P and N/P ratios decreased with increasing depths and stayed relatively constant ratios at the depths of 15–30 cm. The C/P and N/P ratios were always below Redfield ratios in sediment profile, indicating P enrichment but likely due to the preferential loss of carbon in respect to phosphorus. The rank order of Pi-fractions extracted was HCl-Pi > NaOH-Pi > NaHCO3-Pi in surface sediments. The relative distribution of NaHCO3-Pi and HCl-Pi was in agreement with the trophic conditions of the regions studied. Among the sequentially extracted Po forms, the rank order of Po fractions was residual Po > HCl-Po > fulvic acid-P > humic acid-P > NaHCO3-Po, with mean relative proportion of 5.4:3.4:2.2:1.1:1.0.  相似文献   

11.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

12.
Hydroxy acids in sediments of Lakes Bonney, Fryxell, Joyce and Vanda, and unnamed ponds (B2, NF1, NF2 and L4) as well as in cyanobacterial mats from the McMurdo Sound region of southern Victoria Land in Antarctica have been studied to clarify their features and elucidate their source organisms. Normal and branched (iso and anteiso) 2-hydroxy acids were found in all the samples studied with the predominance of even- and odd-carbon numbers, respectively. The most dominant 2-hydroxy acids in the sediments were mainly short-chain components (<C20). Normal and branched 3-hydroxy acids were detectewith the predominance of even- and odd-carbon numbers, respectively, in total concentrations between 0.48 and 53 μg/g of dry sediment. (ω-1)-Hydroxy acids were all long-chains (C22, C24, C26, C28 and C30). 9,10-Dihydroxyhexadecanoic and/or 9,10-dihydroxyoctadecanoic acids were identified in all the sediments and a cyanobacterial mat. The composition of hydroxy acids differ considerably among the lakes and ponds, suggesting the difference of source organisms. These 2-, 3- and (ω-1)-hydroxy, and 9,10-dihydroxy acids may be derived from cyanobacteria and microalgae, in addition to non-photosynthetic microorganisms. Cyanobacteria and microalgae which are widely distributed in the world, may be important sources of hydroxy acids in the natural environments.  相似文献   

13.
Lake Kinneret, a relict lake from the Neogene, is characterised by the dominance among its phytoplankton of the dinoflagellate Peridinium cinctum. The lipid geochemistry of Lake Kinneret is discussed herein in terms of the biology, chemistry and hydrology of the lake. Lipids isolated from two sediment sections (surface and 15 cm deep), obtained from the deepest point of Lake Kinneret, include: (1) 4α-methyl-5α (H)-stanols and related derivatives characteristic of P. cinctum, the novel sterol 4a-methylgorgosterol, and peridinosterol and 4α-methylgorgostanol, not previously reported to occur in lacustrine sediments; (2) C30 and C32 alkane-1,15-diols, not previously reported to occur in contemporary lacustrine deposits, and (3) products of early diagenesis. Many similarities were observed with the more widely studied marine dinoflagellates and marine sediments with dinoflagellate input.  相似文献   

14.
A comparison was made of shallow water sediments from the Lagoon of Venice (LV) and the Lagoon of Cabras (LC), comparing depositional environments and exploring the relationships between hydrodynamics and sedimentological parameters. The two water bodies are very different in size (LV: 360 km2; LC: 22 km2), and the sediments predominantly consist of silty-clay (LV: Mz ≈ 26 μm; LC: Mz ≈ 6 μm). However, there are large differences between the two lagoons with respect to sand (LV: mean 19%; LC: mean ~ 3%) and clay (LV: mean 20%; LC: mean 45%) contents. The Lagoon of Venice (mean depth ~ 1 m) can be considered a tidal basin, whereas the Lagoon of Cabras (mean depth ~ 2 m) has the character of a coastal lake in which wind is the main hydrodynamic forcing factor. A comparison of sediment grain-size distributions with water circulation patterns in different parts of the lagoons highlighted some interesting differences. Grain-size analyses of samples reveal a deficiency of particles around 8 μm in the LC, which is interpreted as reflecting the transition between cohesive flocs/aggregates and non-cohesive coarser silt particles, while the transition limit in the LV is ~ 20 μm. Thus, particles are cohesive below 8 μm in the LC and below ~ 20 μm in the LV. This is probably because of the differences in the clay/silt ratio, which is much lower in the LV (~ 0.3) than in LC (~ 1), conferring a “silt-dominated network structure” on most of the LV sediments.The hydrographical data used were root mean square velocity (RMSV) and water residence time (WRT), computed under the main forcing conditions. The results show a general correlation between RMSV and sortable silt in the LC, and between RMSV and coarser sediments (63–105 μm) in the LV. Some significant differences between the lagoons were detected in the degree of correlation between WRT and grain size. Root mean square velocity (~ 7 cm s− 1 in the LV and ~ 3 cm s− 1 in the LC) was a greater forcing factor in the LC than in the LV. Conversely, WRT, which is on average ~ 16 days in the LV and ~ 19 days in the LC, has more influence in the LV. This study highlights the usefulness of comparing environments with different hydrodynamic energies, e.g., tidal and/or wind-driven currents, to elucidate and thereby improve our understanding of the processes governing the spatial distribution of sedimentological features, the transport mechanisms of sediments, and the relationship between them. The results demonstrate that the approach outlined in this study has the potential to provide a universal hydro-sedimentological classification scheme.  相似文献   

15.
High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3–164 μg/L), whereas As levels are much lower in the north (SHP-N: 9%  As MCL of 10 μg/L; range 0.2–43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman’s ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (ρ = 0.56), oxyanion-forming elements and SiO2 (ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ2H: −65 to −27; δ18O: −9.1 to −4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying Triassic Dockum aquifer. Mobilization of As in other semiarid oxidizing systems is caused by increased pH; however, pH in the SHP aquifer is near neutral (10–90 percentiles, 7.0–7.6). Although many processes, such as competitive desorption with SiO2, VO4, or PO4, could be responsible for local mobilization of As in the SHP aquifer, the most plausible explanation for the regional As distribution and correlation with TDS is the counterion effect caused by a change from Ca- to Na-rich, water as shown by the high correlation between As and Na/(Ca)0.5 ratios (ρ = 0.57). This change in chemistry is related to mixing with saline water that moves upward from the underlying Dockum aquifer. This counterion effect may mobilize other anions and oxyanion-forming elements that are correlated with As (F, V, Se, B, Mo and SiO2). Competition among the oxyanions for sorption sites may enhance As mobilization. The SHP case study has similar As sources to those of other semiarid, oxidizing systems (original volcanic ash source followed by sorption onto hydrous metal oxides) but contrasts with these systems by showing lack of evaporative concentration and pH mobilization of As but counterion mobilization of As instead in the SHP-S aquifer.  相似文献   

16.
Trace metals were analyzed in water and sediment samples from Barapukuria coal mine area of Bangladesh in order to evaluate their mobility and possible environment consequences. Cadmium is the most mobile element with an average partition coefficient (log K d ) of 2.95 L/kg, while V is the least mobile element with a mean log K d of 5.50 L/kg, and their order of increasing mobility is: V < As < Pb < Fe < Cr < Se < Mn < Ni < Zn < Cu < Ba < Sr < Cd. Contents of organic carbon in sediment samples shows strong positive correlations with most trace metals as revealed by the multivariate geostatistical analysis. The overall variation in concentration is mainly attributed to the discharge of effluents originating from the coal mining activities around the study area. Compared to their background, Ni and Cu are the most enriched while significant enrichment of As, Mn, Ba, Sr, Cr, and Pb is also observed in the sediments. Geoaccumulation indices (I geo ) suggest sediments are moderately to heavily polluted with respect to Ni and Cu. The metal pollution index (MPI) varied from 91.91 to 212.01 and the highest value is found at site CM03 that is close to discharge point. The sediment quality guideline index (SQG-I Intervention ) values (0.56–1.52) suggest that the sediments at the study area have moderate to high ecotoxicological risk.  相似文献   

17.
《Applied Geochemistry》2004,19(9):1377-1389
This study investigated P and As sediment remobilisation in Lake Yangebup, a shallow lake with an overlying floc layer that covers the consolidated sediment. This floc is frequently resuspended into the water column, a process that was postulated to produce high P and As lakewater concentrations. Rate investigations using deionised water showed that P and As remobilisation reached steady state after 20 h in the consolidated sediment and within 1 h for the floc. Floc resuspension in lakewater showed no net release of either P and As, indicating that the floc was in constant equilibrium with the water column. A protocol to distinguish between desorption and dissolution was applied to both sediments and the response of remobilisation to varying slurry density and As addition measured. For the consolidated sediment, the concentration of Fe(II), P and As were unaffected above a slurry density ∼30 g L−1 and added arsenate (10–100 μg L−1) did not significantly change As and P remobilisation. It is shown that these results do not fit an adsorption/desorption equilibrium formulation for P and As remobilisation. Instead, the evidence suggests that the solubility of a thin, non-stoichiometric FePxFeAsy oxyhydroxide surface coating determined the remobilisation process. Data scatter lead to some uncertainty in the floc results but suggest that dissolved P is controlled by dissolution, while dissolved As is controlled by adsorption/desorption. The results conclusively show that P and As remobilisation was lower from the floc than from the consolidated sediment and that the removal of the floc would not lower P and As lakewater concentrations. Implications of these results for the management of As in Lake Yangebup are outlined.  相似文献   

18.
Past changes in phytoplankton assemblages in Lake Baikal over the last 4.5 Ma, both in population and composition, are inferred from the downcore profiles of the relatively stable chlorophyll derivatives steryl esters of pyropheophorbides a and b (steryl chlorine esters; SCEs) in the 0–200 m section of the BDP-98 drill core, supplemented by the data on biogenic silica (BSi) and total organic carbon (TOC) contents. SCEs-a and -b dominate among sedimentary chlorophyll derivatives in the BDP-98 sediments except for the upper few meters, indicating their high stability during diagenetic alteration of sediments. The depth (age) profiles of SCEs-a are consistent with BSi and TOC profiles and are interpreted as reflecting primary productivity of the lake in the past. Baikal proxies reveal close correlation with marine oxygen isotope records (MIS stratigraphy). These observations confirm that climate change in the northern hemisphere has been a primary factor controlling the total phytoplankton productivity in Lake Baikal during the last several million years.Among SCEs-a, C30 (dinostanol)-SCE-a, a marker of dinoflagellates was identified by GC–MS analysis. SCE-b, a marker of green algae, was identified by its UV–vis spectrum. The ratio of C30-SCE-a to total SCEs-a (TSCEs-a) was higher during 4.5–4.2 and 1.7–1.3 Ma, suggesting that dinoflagellates proliferated preferentially in those periods. The early Pleistocene maximum of this ratio corresponds to the broad minimum of diatom abundance previously suggested to have recorded a prolonged regional cooling. An abrupt increase in the SCE-b/TSCEs-a ratio was observed at 2.5–2.6 Ma, indicating that green algae containing chlorophyll b have proliferated in Lake Baikal during this period. This interval has also been suggested to contain evidence for a significant regional cooling based on minima of diatom abundance and BSi in sediments. The depth profile of C27Δ5 (cholesterol)-SCE-a relative to TSCEs-a showed a trend similar to that of BSi, suggesting that C27Δ5-SCE-a/TSCEs-a ratio is a potential marker of diatoms in Lake Baikal.Certain mismatches between the Lake Baikal profiles of biological indicators and the marine oxygen isotope records, as well as the slight temporal offsets between different Lake Baikal biological marker signals suggest that the regional component of climatic and/or lacustrine environmental changes also have played a role in determining the composition of the Lake Baikal Plio-Pleistocene phytoplankton assemblage.  相似文献   

19.
Sixty-five sediment samples and 25 water samples were collected from Al-Mujib reservoir, central Jordan, in order to investigate the heavy metal and ionic contamination assessment. Therefore, to achieve this aim, water and sediment samples were collected during winter and summer seasons (2007) from Al-Mujib reservoir and the areas surrounding it. The study shows that there are elevated levels of SO4 2−, Cl and Na+ in reservoir water, which might originate from anthropogenic activities in the reservoir catchment area. In addition, the reservoir water has higher total hardness (TH) values together with high Ca and Mg contents. This might be attributed to pH of reservoir water and the nature of the rocks exposed in the catchment area. The average levels of heavy metals in reservoir sediments are Fe = 14,888.1, Cu = 17.8, Zn = 88.6, Ni = 38.7, Cd = 4.4, Mn = 337.9 and Pb = 6.1 mg/kg, which are lower than that observed in Wadi Al-Arab reservoir, northern Jordan. The values of enrichment factor are Cd = 35.5, Ni = 3.02, Zn = 2.54, Cu = 1.26, Mn = 1.2 and Pb = 0.57; these values indicate that heavy metals in sediments of Al-Mujeb reservoir have a different anthropogenic incrimination inputs. The study showed that the sediments are polluted with Cd, relatively contaminated with Ni and Zn and uncontaminated with respect to Mn, Pb and Cu.  相似文献   

20.
The quantification of carbon burial in lake sediments, and carbon fluxes derived from different origins are crucial to understand modern lacustrine carbon budgets, and to assess the role of lakes in the global carbon cycle. In this study, we estimated carbon burial in the sediment of Lake Qinghai, the largest inland lake in China, and the carbon fluxes derived from different origins. We find that: (1) The organic carbon burial rate in lake sediment is approximately 7.23 g m−2 a−1, which is comparable to rates documented in many large lakes worldwide. We determined that the flux of riverine particulate organic carbon (POC) is approximately 10 times higher than that of dissolved organic carbon (DOC). Organic matter in lake sediments is primarily derived from POC in lake water, of which approximately 80% is of terrestrial origin. (2) The inorganic carbon burial rate in lake sediment is slightly higher than that of organic carbon. The flux of riverine dissolved inorganic carbon (DIC) is approximately 20 times that of DOC, and more than 70% of the riverine DIC is drawn directly and/or indirectly from atmospheric CO2. (3) Both DIC and DOC are concentrated in lake water, suggesting that the lake serves as a sink for both organic and inorganic carbon over long term timescales. (4) Our analysis suggests that the carbon burial rates in Lake Qinghai would be much higher in warmer climatic periods than in cold ones, implying a growing role in the global carbon cycle under a continued global warming scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号