首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated classification maps were produced by combining sediment grain-size and hydrological data (water renewal time, WRT) from two Mediterranean lagoons, Lesina (LL) and Varano (LV), Italy. The geophysical characteristics of the two basins, derived from detailed bathymetric charts, are quite distinct: ~30% of LL (mean depth ~1 m) but only 3% of LV (mean depth ~3 m) is shallower than 1 m. The sediments of both lagoons are mainly composed of mud (~80%). A detailed multivariate analysis of grain-size data by EntropyMax classified the lagoon beds of LL and LV into five sedimentary facies. WRT data, computed by a hydrodynamic model, indicated different hydrological conditions in the two lagoons: LL showed a sharp west–east gradient, with a basin-wide average of ~190 days, whilst LV showed a fairly uniform distribution and a higher basin-wide average (~260 days). The distribution of sedimentary facies and water renewal times were combined in a composite map representing the distribution of environmental patterns. The approach outlined in this study can be used to improve zonation schemes by providing a hydromorphological perspective on transitional and coastal environments.  相似文献   

2.
The Mapocho river, which crosses downtown Santiago, is one of the most important rivers in contact with a population of about six million inhabitants. Anthropogenic activities, industrialization, farming activities, transport, urbanization, animal and human excretions, domestic wastes and copper mining have affected the river, contaminating it and its sediments with heavy metals. Concentration and distribution of Cu, Zn, Pb and Cd were studied with the purpose of determining their bioavailability and their relation with the characteristics of the sediments. Freshly deposited seasonal sediments were collected from 0–8 cm depths from 6 locations (S1 to S6) along the 30-km long channel length, in the four seasons of year on the following dates: May 2001 (D1, autumn); August 2001 (D2, winter); October 2001 (D3, spring) and January 2002 (D4, summer). The dried samples were sifted to obtain the < 63-μm sediment fraction, since it has been shown that large amounts of heavy metals are bound in the fine-grained fraction of the sediment. Cu and Zn were analyzed by atomic absorption spectrophotometry and Pb and Cd by square wave anodic stripping voltammetry. The highest concentrations of Cu (2850 μg g− 1) were found in the northern part of the river (S1, average D1–D4), near the mountains and a copper mine, and then decreased downstream to 209 μg g− 1 (S6). Total Zn showed an irregular variation, with higher values at S1 (1290 μg g− 1) and high values in some winter sampling (1384 μg g− 1 S4, S5–D2). Pb showed different trends, increasing from S1 to S6 (17 to 61 μg g− 1), with the highest values in the summer samples (83 μg g− 1, S4–S6, D4), and total Cd increased slightly from mean values of 0.2 and 0.5 μg g− 1. Partition into five fractions was made using Tessier's analytical sequential extraction technique; the residue was treated with aqua regia for recovery studies, although this step is not part of the Tessier procedure. The results show that Cu, Zn and Pb in the sediments were dependent on the sampling places along the river, and variation in two years was low (D1–D4). The highest values of total organic matter, carbonate and conductivity were found in S6, which has the smallest size particles, while at S1 the sediments were predominantly sand and contain larger amounts of silica. Cu associated with carbonate decreased gradually from 58% (1771 μg g− 1, S1) to 16% (32 μg g− 1, S6); Cu bonded to reducible fraction was almost constant (33% to 37%), and Cu associated with oxidizable fraction increased from 7% (S1) to 34% (S6), but copper content was lower (214 to 68 μg g− 1). Zn had a similar fractionation profile. However, Pb bound to oxidizable fraction did not show significant percent variation along the river (20% to 19%), but the amount bounded was 4 to 12 μg g− 1. The residual fraction increased from 24% to 41% (5 to 25 μg g− 1, S1 to S6). The distribution of Cd in the sediment was almost independent of the sampling stations and was bound to carbonate, reducible and residual fraction in similar proportion. Cu and Zn at S1 were mainly bound to carbonates and reducible phases with 91% and 73% (2779 and 965 μg g− 1, respectively), and with a change in the pH and/or the redox potential of the sediment–water system, these contaminants could easily enter the food chain. In S6 the amount of Cu and Zn in these phases was 50% and 53% (100 to 313 μg g− 1, respectively).  相似文献   

3.
The geochemical and isotopic signature of Quaternary alluvial sediments filling a post-orogenic basin along the Tyrrhenian coasts of Italy (Cornia Plain, Tuscany) was investigated to unravel possible interactions with geothermal fluids from the Larderello geothermal field. Two cores located in the upper (UCP) and lower (LCP) sector of the plain were sampled to depths of up to 80 m. A third core in a neighbouring area not affected by geothermal activity was also sampled (Arno plain at Pisa), and its sediment composition was used as reference. The Cornia sediments (fraction < 65 μm) show high B, Cs and Sb concentrations related to a peculiar chemical enrichment of the clay fraction. They also show remarkable enrichments in As (up to 1000 μg g− 1) reflecting a contribution from local ore deposits.87Sr/86Sr ratios, ranging from 0.71022 to 0.71698, reveal the nature of the weathered mother rocks of the alluvial sediments, whereas the boron isotopic composition, varying from − 20‰ to − 10‰, suggests an interaction between the clay fraction and boron-rich fluids at temperatures greater than 50 °C. This implies that hydrothermal fluids widely circulated within the Cornia basin in the past, ultimately leading to the geochemical anomalies currently recorded in local sediments.Although natural (geogenic) in origin, these anomalies cause severe problems to the regional water management (groundwater exploitation) through leaching of trace elements into circulating groundwater, a phenomenon which has to be carefully studied and monitored.  相似文献   

4.
Experimental studies concerning the dissolved air flotation (DAF) of fine (dp < 100 μm) quartz particles, using two different flotation cells (setups), are presented. Pure and well characterised quartz samples were treated with a commercial amine as collector prior to flotation and bubbles were characterised by the LTM-BSizer technique. Bubble size distribution showed 71% (by volume) and 94% (by number) of the bubbles having sizes (db) lower than 100 μm (i.e. microbubbles). The Sauter and arithmetic mean diameters were 79 μm and 56 μm, respectively, for the bubbles generated at 300 kPa (gauge) saturation pressure (after 30 minute saturation time). Quartz particle size distribution (obtained by laser diffraction) showed a volume-moment diameter of 13 μm. The Rosin–Rammler–Bennett, Gates–Gaudin–Schumann and log-normal distribution functions were well fitted (R2 > 0.96) to the bubble size distribution and quartz particle size distribution data. Values of total quartz recovery ranging from 6% to 53% (by mass) were obtained for the DAF experiments under different collector concentrations (up to 2 mg g− 1), with an optimal collector concentration found at 1 mg g− 1. These results are significant considering that 27% (by volume) of the quartz particles are ultrafine (dp < 5 μm), demonstrating the widely-known efficiency of DAF to remove small particles when applied in the field of water and wastewater treatment. The true flotation behaviour, as a function of particle diameter (dp), exhibits a local minimum when particles are approximately 3–5 μm in size. The results contribute to the discussion in the literature about the existence of such a minimum, which is generally interpreted as a change in the mechanism of particle collection from convection (collision) to diffusion at lower particle sizes.  相似文献   

5.
Field observations and interpretations of satellite images reveal that the westernmost segment of the Altyn Tagh Fault (called Karakax Fault Zone) striking WNW located in the northwestern margin of the Tibetan Plateau has distinctive geomorphic and tectonic features indicative of right-lateral strike-slip fault in the Late Quaternary. South-flowing gullies and N–S-trending ridges are systematically deflected and offset by up to ~ 1250 m, and Late Pleistocene–Holocene alluvial fans and small gullies that incise south-sloping fans record dextral offset up to ~ 150 m along the fault zone. Fault scarps developed on alluvial fans vary in height from 1 to 24 m. Riedel composite fabrics of foliated cataclastic rocks including cataclasite and fault gouge developed in the shear zone indicate a principal right-lateral shear sense with a thrust component. Based on offset Late Quaternary alluvial fans, 14C ages and composite fabrics of cataclastic fault rocks, it is inferred that the average right-lateral strike-slip rate along the Karakax Fault Zone is ~ 9 mm/a in the Late Quaternary, with a vertical component of ~ 2 mm/a, and that a M 7.5 morphogenic earthquake occurred along this fault in 1902. We suggest that right-lateral slip in the Late Quaternary along the WNW-trending Karakax Fault Zone is caused by escape tectonics that accommodate north–south shortening of the western Tibetan Plateau due to ongoing northward penetration of the Indian plate into the Eurasian plate.  相似文献   

6.
The present study identified and quantified dinoflagellate cysts in surface sediments from three Mediterranean lagoons. Sediment samples were recovered from 11 stations in May 2009 at Cabras Lagoon, eight stations in May 2010 at Corru S'Ittiri Lagoon, and five stations in May 2011 at Santa Giusta Lagoon. Fifty-three dinoflagellate cyst morphotypes were identified. Sixteen species are first reports for the lagoons, and two for the Mediterranean Sea. Moreover, a new Scrippsiella species was discovered in Cabras. Seven harmful algal species were identified, primarily belonging to the potentially toxic genus Alexandrium. Total cyst abundance, number of morphotypes, and assemblages varied among lagoons, and each lagoon showed a distinct morphotype composition. A degree of heterogeneity was also detected within lagoon. Cabras and Santa Giusta cyst assemblages were characterised by morphotypes belonging to the autotrophic genus Scrippsiella, whereas Corru S'Ittiri assemblages showed dominance of heterotrophic morphotypes, including Protoperidinium cf tricingulatum. Differentiation among lagoons was also evident according to environmental conditions. Salinity proved to be a fundamental variable in determining total cyst abundance, morphotype number, and composition. This study was among the first to examine dinoflagellate cyst composition in coastal lagoons, especially from the Mediterranean region, and contributed data that increased our knowledge of cyst-producing dinoflagellates in these environments.  相似文献   

7.
A simple process to produce fine and low soda α-alumina (α-Al2O3) from a commercial grade aluminium trihydroxide (gibbsite, Al(OH)3) produced by KC Corporation Ltd was developed. There are two options for this process with the first one producing low soda α-alumina (< 0.05% Na2O) having a mean particle size of 50 μm. The second option yields a fine product with a mean size of less than 10 μm. In the first option, a plant aluminium trihydroxide containing 0.20% Na2O was first fluidized with nitrogen at 400–600 °C to yield an amorphous activated alumina. This intermediate product was then treated with acetic or oxalic acid, washed with water and heated to 1200 °C to form calcined α-alumina, having a Na2O content of less than 0.05%. A 20 min leaching using 0.2 M acetic or oxalic acid could yield an alumina product containing 0.04% Na2O. In the second option, a new technique for the preparation of fine and low soda α-alumina was evaluated using an attrition mill working also as a leaching vessel at 80 °C. Fine (< 10 μm in mean particle size) and low soda (< 0.04% Na2O) alumina was produced by a 20 min leaching step with 0.2 M acetic acid and concurrent attrition milling.  相似文献   

8.
The electron backscattering diffraction technique (EBSD) was used to analyze bulging recrystallization microstructures from naturally and experimentally deformed quartz aggregates, both of which are characterized by porphyroclasts with finely serrated grain boundaries and grain boundary bulges set in a matrix of very fine recrystallized grains. For the Tonale mylonites we investigated, a temperature range of 300–380 °C, 0.25 GPa confining pressure, a flow stress range of ~ 0.1–0.2 GPa, and a strain rate of ~ 10− 13 s− 1 were estimated. Experimental samples of Black Hills quartzite were analyzed, which had been deformed in axial compression at 700 °C, 1.2–1.5 GPa confining pressure, a flow stress of ~ 0.3–0.4 GPa, a strain rate of ~ 10− 6 s− 1, and to 44% to 73% axial shortening. Using orientation imaging we investigated the dynamic recrystallization microstructures and discuss which processes may contribute to their development. Our results suggest that several deformation processes are important for the dismantling of the porphyroclasts and the formation of recrystallized grains. Grain boundary bulges are not only formed by local grain boundary migration, but they also display a lattice misorientation indicative of subgrain rotation. Dynamic recrystallization affects especially the rims of host porphyroclasts with a hard orientation, i.e. with an orientation unsuitable for easy basal slip. In addition, Dauphiné twins within porphyroclasts are preferred sites for recrystallization. We interpret large misorientation angles in the experimental samples, which increase with increasing strain, as formed by the activity of fluid-assisted grain boundary sliding.  相似文献   

9.
The Ibituruna quartz-syenite was emplaced as a sill in the Ribeira-Araçuaí Neoproterozoic belt (Southeastern Brazil) during the last stages of the Gondwana supercontinent amalgamation. We have measured the Anisotropy of Magnetic Susceptibility (AMS) in samples from the Ibituruna sill to unravel its magnetic fabric that is regarded as a proxy for its magmatic fabric. A large magnetic anisotropy, dominantly due to magnetite, and a consistent magnetic fabric have been determined over the entire Ibituruna massif. The magmatic foliation and lineation are strikingly parallel to the solid-state mylonitic foliation and lineation measured in the country-rock. Altogether, these observations suggest that the Ibituruna sill was emplaced during the high temperature (~ 750 °C) regional deformation and was deformed before full solidification coherently with its country-rock. Unexpectedly, geochronological data suggest a rather different conclusion. LA-ICP-MS and SHRIMP ages of zircons from the Ibituruna quartz-syenite are in the range 530–535 Ma and LA-ICP-MS ages of zircons and monazites from synkinematic leucocratic veins in the country-rocks suggest a crystallization at ~ 570–580 Ma, i.e., an HT deformation > 35My older than the emplacement of the Ibituruna quartz-syenite. Conclusions from the structural and the geochronological studies are therefore conflicting. A possible explanation arises from 40Ar–39Ar thermochronology. We have dated amphiboles from the quartz-syenite, and amphiboles and biotites from the country-rock. Together with the ages of monazites and zircons in the country-rock, 40Ar–39Ar mineral ages suggest a very low cooling rate: < 3 °C/My between 570 and ~ 500 Ma and ~ 5 °C/My between 500 and 460 Ma. Assuming a protracted regional deformation consistent over tens of My, under such stable thermal conditions the fabric and microstructure of deformed rocks may remain almost unchanged even if they underwent and recorded strain pulses separated by long periods of time. This may be a characteristic of slow cooling “hot orogens” that rocks deformed at significantly different periods during the orogeny, but under roughly unchanged temperature conditions, may display almost indiscernible microstructure and fabric.  相似文献   

10.
Fission-track (FT) thermochronologic analysis was performed on zircon separates from rocks in and around the Nojima fault, which was activated during the 1995 Kobe earthquake. Samples were collected from the University Group 500 m (UG-500) borehole and nearby outcrops. FT lengths in zircons from localities > 25 m away from the fault plane as well as one 0.1 m away from the fault in the footwall are characterized by concordant mean values of  10–11 μm and unimodal distributions with negative skewness, which showed no signs of appreciable reduction in FT length. In contrast, those adjacent (< 3 m) to the fault at depths on the hanging wall side showed significantly reduced mean track lengths of  6–8 μm and distributions having a peak around 6–7 μm with rather positive skewness. The former pattern is interpreted to reflect cooling through the zircon partial annealing zone (ZPAZ), without later, partial thermal overprints. The latter indicates substantial track shortening due probably to secondary heating by a thermal event(s) that locally perturbed the geothermal structure. Modeled zircon FT length and age data of partially annealed samples from the UG-500 borehole revealed a cooling episode in the ZPAZ that started at  4 Ma within  3 m from the fault plane, whereas those from the Geological Survey of Japan 750 m borehole record cooling started at  31–38 Ma within  25 m from the fault. On the basis of one-dimensional heat conduction modeling as well as the consistency between the degree of FT annealing and the degree of deformation/alteration of borehole rocks, these cooling ages in both boreholes are interpreted as consequences of ancient thermal overprints by heat transfer or dispersion via fluids in the fault zone. Together with the zircon FT data of a pseudotachylyte layer recently analyzed, it is suggested that the present Nojima fault system was reactivated in the Middle Quaternary from an ancient fault initiated at  56 Ma at mid-crustal depths. Also shown is a temporal/spatial variation in terms of the thermal anomalies recorded in the fault rocks, implying heterogeneity of hot fluid flows in the fault zone.  相似文献   

11.
Marine black shales of the Lower Cambrian Niutitang Formation in southern China host Mo–Ni–platinum group elements (PGE) mineralization confined to a phosphate- and pyrite-rich stratiform body (max. 20-cm thick). The H/C atomic ratio, carbon isotopic composition, FTIR spectra of bulk organic matter, and spectra of extractable part of organic matter indicate similar sources and thermal evolution of organic matter in barren and mineralized black shales.The morphology and relative abundance of organic particles in barren and mineralized shales are different. In barren black shales, organic particles comprise only elongated bodies and laminae 2–10 μm across or elongated larger bodies (> 10 μm) with Rmax = 2.96–5.21% (Type I particles). Mineralized black shales contain Type I particles in rock matrix (90–95 vol%), small veinlets or irregular organic accumulations (Type II particles, 1–5 vol%) that display weak to well developed mosaic texture and a variable reflectance (Rmax = 3.55–8.65%), and small (< 1 to 5 μm) rounded or irregular Type III organic particles (1–4 vol%) distributed within phosphate nodules and sulphide rip-up clasts. Type III particles show similar reflectance as particles of Type I in rock matrix. Type I particles are interpreted as remnants of in situ bacterially reworked organic matter of cyanobacteria/algal type, Type II as solidified products or oil-derived material (migrabitumen), and Type III particles as remnants of original organic matter in phosphatized or sulphidized algal/microbial oncolite-like bodies. Equivalent vitrinite reflectances of Type I and III particles in barren and mineralized rocks are similar and correspond to semi-anthracite and anthracite. Micro-Raman spectra of organic particles in rocks display a wide belt in the area of 1600 cm− 1 (G belt) and approximately the same belt in the area of 1350 cm− 1 (D belt). The ratio of integrated areas of the two belts correlate with Rmax values.The Mo–Ni–PGE mineralized body is interpreted as to represent a remnant of phosphate- and sulphide-rich subaquatic hardground supplied with organic material derived from plankton and benthic communities as well as with algal/microbial oncolite-like bodies that originated in wave-agitated, shallow-water, nearshore environment.  相似文献   

12.
We study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a.  相似文献   

13.
The integration of new and published geochronologic data with structural, magmatic/anatectic and pressure–temperature (P–T) process information allow the recognition of high-grade polymetamorphic granulites and associated high-grade shear zones in the Central Zone (CZ) of the Limpopo high-grade terrain in South Africa. Together, these two important features reflect a major high-grade D3/M3 event at ~ 2.02 Ga that overprinted the > 2.63 Ga high-grade Neoarchaean D2/M2 event, characterized by SW-plunging sheath folds. These major D2/M2 folds developed before ~ 2.63 Ga based on U–Pb zircon age data for precursors to leucocratic anatectic gneisses that cut the high-grade gneissic fabric. The D3/M3 shear event is accurately dated by U–Pb monazite (2017.1 ± 2.8 Ma) and PbSL garnet (2023 ± 11 Ma) age data obtained from syntectonic anatectic material, and from sheared metapelitic gneisses that were completely reworked during the high-grade shear event. The shear event was preceded by isobaric heating (P = ~ 6 kbar and T = ~ 670–780 °C), which resulted in the widespread formation of polymetamorphic granulites. Many efforts to date high-grade gneisses from the CZ using PbSL garnet dating resulted in a large spread of ages (~ 2.0–2.6 Ga) that reflect the polymetamorphic nature of these complexly deformed high-grade rocks.  相似文献   

14.
The evidence of coseismic uplift on the dynamic, wave-dominated Hua-tung coast fringing the active Coastal Range (eastern Taiwan) has been equivocal, due to complex controls by wave and terrestrial sediment over morphological and ecological systems of the coast. This study, by applying radiocarbon dating methods, demonstrates coseismic-uplift nature of the coast by finding synchronously killed intertidal organisms (mostly boring shell Jouannetia sp.) stranded at different sites of the coast with distinct physiographic characters. Based on these data, together with evidence from wave-cut notch sequences, two coseismic-uplift systems are recognized. One centers around the northern-middle part of the coast and yields events with uplift amounts of maximal 3–6 m and an average recurrence interval of at least several hundred years. The most recent activity of this system, influencing at least 70 km of coast, occurred at ~ 0.9 ka. The earthquake generating this event also triggered extensive landslides/debris flows in the region. Another system, exemplified by the uplift associated with the 2003 Cheng-kung earthquake, centers on the southern part of the coast and yields uplift of likely < 1 m every < 0.2 ky. Two pre-historic events of this system are identified as occurring at ~ 0.7 ka and ~ 1.1 ka. These two coseismic-uplift systems are consistent in position with two anticlinal structures defined by long-term uplift of the coast. However, the areas subjected to maximal coseismic uplift are located off where the climaxes of long-term uplift occur, implying that the latter areas have been uplifted mainly by aseismic and/or relatively frequent/small-magnitude coseismic motion.  相似文献   

15.
This paper describes a technique, which allows precise and accurate Sr isotope measurement combined with trace element analysis of individual melt inclusions, of sample sizes  1 ng of Sr. The technique involves sampling by micro-milling, chemical dissolution, micro Sr column chemistry, TIMS, and ICPMS analyses. A 10% aliquot of each sample solution is used for trace element analysis by double focusing magnetic sector field ICPMS, while Sr is chemically separated from the remaining 90% and used for 87Sr/86Sr determinations by TIMS.During the development of the technique outlined above, we documented in detail the potential sources of blank contributions and their magnitude. The average size and Sr isotope composition of our laboratory total procedural blank during this study was 5.4 pg ± 0.3 pg Sr (n = 21) with an 87Sr/86Sr of 0.7111 ± 0.0002 (2SE, n = 3). The total procedural Rb blank was 1.9 ± 0.7 pg (n = 21). The total procedural blank was found to have minimal effect (< 150 ppm shift) on the 87Sr/86Sr of sample material containing down to  250 pg Sr. Applying a blank correction allows ‘in house’ standards of this size to be corrected back to within 175 ppm of their accepted values. By applying blank corrections we can confidently measure the Sr isotope composition on sample sizes down to  25 pg Sr to an accuracy better than 400 ppm.The utility of the technique is illustrated by application to a suite of melt inclusions from NW Iceland and their host olivines. It is shown that the effect of a small amount of entrainment of the host olivine during sampling of 50 μm melt inclusions has a negligible effect on the measured Sr isotope and trace element composition. Furthermore, where melt inclusions are < 50 μm it is possible to obtain Sr isotope and trace element data on multiple melt inclusions hosted in a single olivine. This provides similar information to that of the single melt inclusions.  相似文献   

16.
Grain size and grain shape analysis of fault rocks   总被引:4,自引:0,他引:4  
  相似文献   

17.
Widespread molluscan samples were collected from raised marine sediments to date the last retreat of the NW Laurentide Ice Sheet from the western Canadian Arctic Archipelago. At the head of Mercy Bay, northern Banks Island, deglacial mud at the modern coast contains Hiatella arctica and Portlandia arctica bivalves, as well as Cyrtodaria kurriana, previously unreported for this area. Multiple H. arctica and C. kurriana valves from this site yield a mean age of 11.5 14C ka BP (with 740 yr marine reservoir correction). The occurrence of C. kurriana, a low Arctic taxon, raises questions concerning its origin, because evidence is currently lacking for a molluscan refugium in the Arctic Ocean during the last glacial maximum. Elsewhere, the oldest late glacial age available on C. kurriana comes from the Laptev Sea where it is < 10.3 14C ka BP and attributed to a North Atlantic source. This is 2000 cal yr younger than the Mercy Bay samples reported here, making the Laptev Sea, ~ 3000 km to the west, an unlikely source. An alternate route from the North Atlantic into the Canadian Arctic Archipelago was precluded by coalescent Laurentide, Innuitian and Greenland ice east of Banks Island until ~ 10 14C ka BP. We conclude that the presence of C. kurriana on northern Banks Island records migration from the North Pacific. This requires the resubmergence of Bering Strait by 11.5 14C ka BP, extending previous age determinations on the reconnection of the Pacific and Arctic oceans by up to 1000 yr. This renewed ingress of Pacific water likely played an important role in re-establishing Arctic Ocean surface currents, including the evacuation of thick multi-year sea ice into the North Atlantic prior to the Younger Dryas geochron.  相似文献   

18.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

19.
Cinnabar (α-HgS) and metacinnabar (β-HgS) dissolved at environmentally significant rates in oxygenated slurry experiments simulating a low-flow fluvial system. Based on SO42− production, cinnabar dissolution rates were 2.64 to 6.16 μmol (SO42−) m− 2 day− 1, and metacinnabar dissolution rates were 1.20 to 1.90 μmol (SO42−) m− 2 day− 1. Monodentate-bound thiosulfate (S2O32−) was identified as an oxidation product on the HgS surface by ATR-IR spectroscopy based on strong infrared absorption bands in the 1140–1145 cm− 1 and 1006–1014 cm− 1 regions. The presence of sulfide oxidation intermediates on the HgS surface indicates that SO42− concentration underestimates α-HgS and β-HgS dissolution in this setting. Mercury release rates during dissolution were more than two orders of magnitude less than SO42− production, but were significant: 0.47 mg (Hg) m− 2 y− 1 from cinnabar [6.45 nmol (Hg) m− 2 day− 1], and 0.17 mg (Hg) m− 2 y− 1 from metacinnabar [2.29 nmol (Hg) m− 2 day− 1]. The Hg mobilized during α-HgS and β-HgS dissolution is sufficient to form natural Au–Hg amalgam in downstream placer settings. The proportion of mercury that is not remobilized during α-HgS and β-HgS dissolution likely adsorbs to the dissolving mercuric sulfide. Adsorption of Hg2+ to cinnabar was detected in situ by anodic stripping voltammetry using a cinnabar-modified carbon paste electrode following accumulation of Hg2+ on the electrode at open circuit potential.  相似文献   

20.
Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (Ro) values between about 0.4 and 0.8%. This range of Ro values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar Ro values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from ~ 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher Ro values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号