首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
J. S. Wu  K. -W. Chen 《Ocean Engineering》2003,30(14):1791-1806
For convenience of dynamic analysis, some offshore structures such as fixed-type platforms are often modeled as the wedge beams supporting tip lumped masses. It is well-known that, due to the effect of the surrounding water, the natural frequencies of a beam in air (or dry beam) are different from those of the same beam immersed in water (or wet beam). However, if the natural frequencies and the associated mode shapes of a dry beam are calculated by taking account of the “added mass” for the immersed beam, then the last natural frequencies and mode shapes will be equal to the corresponding ones of the wet beam. Based on the last concept, the closed form solutions for natural frequencies and the associated mode shapes of the dry beam were determined first, then the partial differential equation of motion for the wet beam was transformed into a matrix equation by using the expansion theorem and the foregoing closed form solutions of free vibration responses for the dry beam. Solving the last matrix equation will give the required natural frequencies and the associated mode shapes of the wet beam. The formulation of this paper is available for the fully or partially immersed double tapered beams with either circular, square or rectangular cross-sections. The taper ratio for width and that for depth may be equal or unequal. The numerical results of this paper were compared with the existing results or the finite-element-method results and good agreement was achieved.  相似文献   

2.
The coupled horizontal-torsional-warping vibration of a thin-walled open-section 7800 TEU container ship bare-hull, modelled as a non-uniform girder, is analysed by the efficient energy-based Rayleigh-Ritz method, in order to generate the dry asymmetric vibration frequencies. Since the centre of gravity is within the hull and the shear centre is below the keel, the horizontal and torsional modes of vibration are highly coupled. An open section is also prone to warping. In a novel attempt, the bare-hull geometry is generated mathematically, using section-wise closed-form semi super-ellipses (Lame’s curves). The main dimensions, weight distributions, and fineness ratios are preserved, and closed-form expressions of sectional properties become available in the process. The hull has arbitrarily (non-mathematically) varying mass, bending stiffness, warping stiffness, and shear stiffness distributions along the length. The non-uniform beam modeshape in horizontal/torsional vibration is assumed to be a weighted sum of the uniform beam horizontal/torsional modeshapes. Several benchmark cases of simpler geometry have been analysed first, for both torsion-warping vibration, and coupled horizontal-torsional-warping vibration. Pontoon approximation of the containership has been analysed and validated. Subsequently, the coupled dry vibration frequencies are obtained for the open deck non-uniform girder, and compared with published results.  相似文献   

3.
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization.The strong-interaction method is used in analyzing the coupled model,and the dynamic characteristics of the TLP for offshore wind turbine support are recognized.As shown by the calculated results:for the lower modes,the shapes are water’s vibration,and the vibration of water induces the structure’s swing;the mode shapes of the structure are complex,and can largely change among different members;the mode shapes of the platform are related to the tower’s.The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform;the TLP has good adaptability for the water depths and the environment loads.The change of the size and parameters of TLP can improve the dynamic characteristics,which can reduce the vibration of the TLP caused by the loads.Through the vibration analysis,the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads,and thus the resonance vibration can be avoided,therefore the offshore wind turbine can work normally in the complex conditions.  相似文献   

4.
Dynamic responses of structures due to earthquake excitation are the important problems in engineering, thus, the information concerned is plenty. However, most of the literature is relating to the discrete methods, particularly to the finite element method (FEM), and the one relating to the method combining both the “continuous” and “discrete” models is rare. The objective of this paper is to provide some information in this respect. First, the analytical solution for the natural frequencies and normal mode shapes of a “continuous” tower, without contacting water (or “dry” tower), carrying an eccentric tip mass possessing rotary inertia is determined. Next, the partial differential equation of motion for the forced vibration of the tower, contacting water (or “wet” tower), subjected to support excitation is transformed into a matrix equation by using the last natural frequencies and normal modes shape of the freely vibrating dry tower. Finally, the numerical integration method is used to solve the matrix equation to yield the seismic response of the wet tower. In theory, the mode superposition method is correct only if the total number of modes considered approaches infinity, however, numerical results of this paper reveal that superposition of only the lowest six modes will yield excellent results to be very close to the corresponding ones obtained from the conventional FEM. For this reason, the CPU time required by the presented approach is less than 5% of that required by the conventional FEM.  相似文献   

5.
In this paper a new approach is introduced for structural health monitoring of offshore jacket platforms. The procedure uses the measured ambient vibration responses and the corresponding readable natural frequencies and mode shapes of the structural system. Since offshore platforms are composed of heavy topsides supported by jacket structures, participation of the first mode is dominant in each direction in the response of the structure under field excitations. Moreover, ambient vibrations such as wave loads and boat impacts only excite the first modes of the structure. Therefore, it is difficult to find higher modes and the pertinent frequencies by use of accelerometers data. The introduced innovative method in this research uses the first few fundamental frequencies and mode shapes of the structure. The algorithm employs the inverse vibration technique to develop a simple two and three dimensional reference model for monitoring health of the structure. To show the efficiency of the proposed procedure, a case study is carried out on the models of a jacket-type platform in the Persian Gulf, namely SPD2. Finally, an uncertainty analysis is performed, due to the existence of noises and uncertainties in input data collected by accelerometers. Results indicate that the proposed method has the ability to detect the induced damages by a high level of accuracy considering probable sources of error.  相似文献   

6.
Like any other engineering structure, the dynamic aspects of semisubmersible offshore platforms require serious consideration. The free vibrations of the semisubmersible structures have been investigated in the present work, in which the effect of the variation of the length, draft and hull spacings on the natural frequencies and mode shapes has been studied and the nature of the variations and their reasons have been discussed.  相似文献   

7.
地震是危害海上风电结构作业安全的重要环境因素,目前,国内尚未公开发表真实地震响应下,海上风电结构的实测动力响应数据。分析了某地震活动区海上风电结构的实测地震响应,采用随机子空间识别方法进行风机的模态识别,阐述了风机机舱偏航将引起前后、左右两个正交方向振动的耦合,并从理论上证明了利用耦合、解耦数据识别模态参数的差异。结果表明:1)耦合与解耦信号识别的频率、阻尼比完全相同,而耦合信号识别的模态振型与偏航角有关;2)地震作用会对结构产生巨大冲击;3)非地震作用下,风机塔筒前后、左右第一阶弯曲模态为主要模态,地震作用可以激发风机的高阶模态,使得塔筒中上部而不是顶部的振动响应最大。此分析对地震活动区海上风电结构的抗震设计具有一定的参考价值。  相似文献   

8.
海洋立管复模态动力特性分析   总被引:1,自引:0,他引:1  
考虑阻尼的影响,研究海洋立管的动力特性。通过分析管内流体及管外海洋环境荷载的共同作用,建立海洋立管涡激振动偏微分方程,进而得到立管动力特性方程,用复模态分析法求解动力特性方程得到立管考虑阻尼的自振频率。算例计算表明:考虑阻尼的立管自振频率略小于不考虑阻尼的立管自振频率;立管的自振频率随着内流流速的增加而减小,但内流流速不大时,影响较小;管道长度对立管的自振频率影响较大。  相似文献   

9.
ZHANG Li-wei  LI Xin 《海洋工程》2017,31(5):559-566
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

10.
基于柔性杆理论和尾流振子模型计算陡波形立管的涡激振动响应;综合使用S-N曲线法、雨流计数法、Palmgren-Miner线性累积疲劳理论对立管涡激振动导致的疲劳损伤进行计算分析。并以MATLAB为平台编写相应计算程序,将本文计算得到的静力分析结果、固有频率和疲劳损伤分别与专业海工计算软件OrcaFlex和已发表文献进行对比验证。进一步对陡波形立管在涡激振动下的疲劳损伤进行参数敏感性分析,结果表明:浮子段长度、浮力因子、弹性模量、海流速度、波浪高度对陡波形立管疲劳损伤均有较大影响,有望为陡波形立管的实际工程设计提供参考。  相似文献   

11.
为了研究循环载荷作用下扶强材初始损伤对其极限强度的影响,进行了14组扶强材的循环加载试验和分析。构造了考虑材料累积损伤完整、断筋和大变形的扶强材单元极限承载力计算公式,提出了相应循环载荷作用下损伤扶强材单元的端缩曲线表达式和船体梁极限强度计算的简化逐步破坏法。编制了循环载荷作用下船体梁损伤极限强度计算程序,进行了船体梁极限强度计算,并与有限元结果进行对比。研究结果表明:改进的损伤扶强材模型可较为准确地描述扶强材材料损伤的完整、断筋和大变形的极限承载力退化情况,扶强材腹板断裂的损伤相较初始大变形及材料累积损伤形式承载力下降程度更明显;所提出的循环载荷作用下损伤船体梁极限强度计算的简化逐步迭代方法,能定量地计算扶强材在不同类型损伤下的极限承载力退化程度,具有较高精度,方便易行,可应用于工程设计。  相似文献   

12.
The free vibration analysis of submerged cantilever plates   总被引:3,自引:0,他引:3  
Based on empirical added mass formulation, this work presents a simple procedure to determine the vibration frequencies and mode shapes of submerged cantilever plates. Once the added mass formulation is derived, the procedure can be used to analyze free vibration response easily. An analytical and numerical study is also performed for the vibrations of cantilever plates in air and in water, with these results compared with experimental and numerical data from pertinent literature. Besides, the frequency parameters of the submerged plate for various aspect ratios and thickness ratios are given in design data sheet form and are appropriate for engineering design applications.  相似文献   

13.
Marine propellers usually operate in a spatially nonuniform wake and then the propeller exciting forces are produced. These exciting forces will cause serious hull vibration and noise radiation. So, there are many researches on the exciting forces of propellers. However, the effects of the shaft and blade elasticity are ignored in most studies. Therefore, firstly, considered the effects of the shaft and blade elasticity, a fluid–structure interaction dynamic model of the fluid-propeller-shaft system is established by coupled BEM and FEM. Then, based on this model, the characteristics of axial exciting force and theirs transmission mechanism to the hull via the shaft are studied. The research results show that first, there are two kinds of vibration modes for blade bending vibration: global mode and local mode. The elastic coupling effect between the blade and the shafting only affects the global mode, but hardly affects the local mode of the blade. Secondly, during the transmission of axial exciting force to the hull through the blades and shafting, only the global mode of the blades can amplify it, while the local mode cannot. These studies could provide a guideline for the optimal design of the propeller-shaft system to make the exciting force transmitted to the ship hull via the shafting be the smallest.  相似文献   

14.
Fixed offshore wind turbines usually have large underwater supporting structures.The fluid influences the dynamic characteristics of the structure system.The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction(FSI) is established,and the structural modes in air and in water are obtained by use of ANSYS.By comparing low-order natural frequencies and mode shapes,the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed.On basis of the above work,seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method.The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water.The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

15.
This paper presents a model formulation that can be used for analyzing the three-dimensional vibration behaviours of an inclined extensible marine cable. The virtual work-energy functional, which involves strain energy due to axial stretching of the cable and virtual work done by external hydrostatic forces is formulated. The coupled equations of motion in the Cartesian coordinates of global systems are obtained by taking into account the difference between Euler’s equations and equilibrium equations. The method of Galerkin finite element is used to obtain the mass and stiffness matrices which are transformed into the local coordinate systems. Then the eigenvalue problem is solved to determine its natural frequencies and corresponding mode shapes. The model formulation developed herein is conveniently applied for the cases of specified top tension. The numerical investigations are carried out to demonstrate the validity of the model and to explore in details the influence of various parameters on the behaviours of marine cables. Results for the frequency avoidance phenomenon, maximum dynamic tension and coupled transverse mode shapes are presented and discussed.  相似文献   

16.
Optimal Active Control of Wave-Induced Vibration for Offshore Platforms   总被引:2,自引:0,他引:2  
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H2 control algorithm, which is an optimal frequency domain control method based on minimization of H2 norm of the system transfer function. In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model. This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding "generalized" wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H2 active control and the corresponding passive control using a T  相似文献   

17.
In this paper theoretical models are proposed for computing the natural frequencies and modal shapes of two-dimensional asymmetric and symmetric moonpools in the finite water depth. The boundary value problem is solved by using a domain decomposition approach. On the outer vertical boundary bounded by the beam of the two bodies, linearized velocity potential is assumed to be nil. Eigenvalue problem is formulated by matching the velocity potential and fluid flux on the common boundaries to obtain the natural frequencies and modal shapes of the free surface elevation. In the symmetric moonpool cases, so-called single mode approximations (SMA) have been derived and can be adopted for rapid estimation of the natural frequencies for both piston and sloshing modes. The present results have been extensively compared with the solutions using the two-dimensional infinite water depth model developed by Molin [1], the numerical solutions and experimental data by Faltinsen et al. [2]. It is found that the solutions have been improved from the infinite water depth model. It is demonstrated that the proposed models can well predict the resonance frequencies and modal shapes for the two-dimensional asymmetric and symmetric moonpools.  相似文献   

18.
谢文会  唐友刚 《海洋工程》2007,25(2):21-25,32
研究计入弹性变形铰接塔平台在深水中的非线性动力响应。将铰接塔平台简化为顶部具有集中质量,底部具有扭转线性弹簧约束的均匀弹性梁,考虑波浪对平台的作用,应用莫里森(Morison)公式计算铰接塔平台瞬时位置所受水动力,建立了铰接塔平台横向运动的偏微分方程,采用伽辽金方法计算波浪作用下铰接塔平台非线性动力响应。计算了铰接塔平台的固有频率和模态,得到了铰接塔平台不同频率波浪激励下各阶模态的动力响应。计算结果表明,在波浪激励下系统二阶模态将发生2、34、倍超谐共振运动,并且揭示了弹性铰接塔平台在波浪作用下振动的不对称性。  相似文献   

19.
After borrowing the idea of precise integration method, a precise integration transfer matrix method (PITMM) is proposed by modifying traditional transfer matrix method. The submarine hull can be modeled as joined conicalcylindrical-spherical shells. By considering the effect of the ring-stiffeners, the field transfer matrixes of shells of revolution are obtained accurately by PITMM. After assembling the field transfer matrixes into an entire matrix, the dynamic model is established to solve the dynamic responses of the joined shell. By describing the sound pressure in fluid by modified wave superposition method (MWSM) and collocating points along the meridian line of the joined shell, finally the structural and acoustic responses of a finite stiffened submarine hull can be predicted by coupled PITMM and MWSM. The effectiveness of the present method has been verified by comparing the structural and acoustic responses of the spherical shell with existing results. Furthermore, the effects of the model truncation, stiffness and thickness on the structural and acoustic responses of the submarine hull are studied.  相似文献   

20.
Small Waterplane Area Twin Hulls (SWATHs) are known to have superior seakeeping performance but higher resistance compared to equivalent catamarans or mono-hulls. A way to improve their resistance characteristics is to use unconventional hull forms parametrically defined and optimized by CFD methods. This study builds on previous SWATH optimization studies proposing a comprehensive, systematic investigation on the effect of different shapes and canting angles of the struts. For the first time we demonstrate the importance of considering the shape of the strut that is fully parametrized in our study. The effect of the design speed on the best shape is addressed through a multi-objective optimization targeting the minimum total resistance at two very different speeds, namely the cruise and slow transfer speeds. Optimum hull shapes are discussed in terms of maximum resistance reduction, together with the predicted free waves patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号