首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Yixian Formation at Sihetun in western Liao- ning Province has attracted considerable attention over the last two decades due to discovery of a wide range of well-preserved ‘feathered’ dinosaurs and primitive bird fossils[1―4]. This formation is dominated by vol- canic rocks, with fossil-bearing lacustrine sedimentary rocks at the upper part of the section[4]. The sedimen- tary rocks contain thin layers of tuff. According to previous studies[4], the total thickness of the Yixian Form…  相似文献   

2.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.  相似文献   

3.
Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = 3.28― 5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, ?8/4=21.18―774.43, ?7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.  相似文献   

4.
It is well known that the destruction of the North China Carton(NCC) is closely related to subduction of the PaleoPacific slab, but materials recording such subduction has not been identified at the peak time of decratonization. This paper presents data of whole-rock major and trace elements and Sr-Nd-Hf isotopes and zircon U-Pb ages and Hf-O isotopes for Mesozoic volcanic rocks from the Liaodong-Jinan region in the northeastern NCC, in order to trace the subduction-related materials in their source and origin. The Mesozoic volcanic rocks in the Liaodong-Jinan region are mainly composed of two series of rocks, including alkaline basaltic trachyandesite, trachyandesite and trachyte, and subalkaline trachyandesite and andesite. Zircon U-Pb dating yields eruption ages of 129–124 Ma for these rocks. The Early Cretaceous volcanic rocks are all enriched in LILEs(such as Rb, Sr, Ba and Th) and LREEs, depleted in HFSEs(such as Nb, Ta and Ti), indicating that they were originated from mantle sources that had been modified by subducted crustal materials. However, they have relatively heterogeneous and variable isotopic compositions. The alkaline basaltic trachyandesite, trachyandesite and trachyte have enriched whole-rock Sr-Nd-Hf and zircon Hf isotopic compositions and mantle-like δ~(18)O values, suggesting that they were derived from low-degree partial melting of an isotopically enriched lithospheric mantle source. In contrast, the subalkaline trachyandesite and andesite have relatively depleted isotopic compositions with zircon ε_(Hf)(t) values up to +5.2 and heavy zircon O isotopic compositions with δ~(18)O values of +8.1‰ to +9.0‰, indicating that they were originated from a lithospheric mantle source that had been metasomatized by melts/fluids derived from the recycled low-T altered oceanic basalt. All of these geochemical features suggest that the Early Cretaceous volcanic rocks in the Liaodong-Jinan region would result from mixing of mafic magmas with different compositions. Such magmas were originated from the enriched lithospheric mantle and the young metasomatized mantle, respectively, with variable extents of enrichment and depletion in trace elements, radiogenic isotopes and O isotopes. Importantly, the identification of the low-T altered oceanic crust component in the origin of Early Cretaceous volcanic rocks by the zircon Hf-O isotopes provides affirmative isotopic evidence and direct material records for Mesozoic subduction of the Paleo-Pacific slab that induced decratonization of the North China Craton.  相似文献   

5.
Fogang granitic batholith, the largest Late Mesozoic batholith in the Nanling region, has an exposure area of ca. 6000 km2. Wushi diorite-hornblende gabbro body is situated at the northeast part of the ba- tholith. Both the granitic batholith main body and the diorite-hornblende gabbro body belong to high-K calc alkaline series. Compared with the granitic main body, the Wushi body has lower Si (49%―55%), higher Fe, Mg, Ca, lower REE, less depletion of Eu, Ba, P, Ti, and obvious depletion of Zr, Hf. Zircon LA-ICP-MS dating and the mineral-whole rock isochron dating reveal that Fogang granitic main body and Wushi body were generated simultaneously at ca. 160 Ma. The Fogang granitic main body has high (87Sr/86Sr)i ratios (0.70871―0.71570) and low εNd(t) values (?5.11―?8.93), suggesting the origins of the granitic rocks from crustal materials. Their Nd two-stage model ages range from 1.37―1.68 Ga. The Sr and Nd isotopic compositions and the Nd model ages of the granitic rocks may suggest that the giant Fogang granitic main body was generated from a heterogeneous source, with participation of mantle component. Wushi diorite-hornblende gabbro is an unusual intermediate-basic magmatic rock series, with high (87Sr/86Sr)i ratios (0.71256―0.71318) and low εNd(t) values (?7.32―?7.92), which was possibly formed through mixing between the mantle-derived juvenile basaltic magma and the magma produced by the dehydration melting of lower crustal basaltic rocks.  相似文献   

6.
Chronology and geochemistry of the Shangyu gabbro-diorite in western Shandong were studied to understand their petrogenesis and the nature of the Mesozoic lithospheric mantle. The Shangyu intru-sion is mainly composed of a suite of gabbro-diorite. Zircons from the intrusion display eu-hedral-subhedral in shape and have high Th/U ratios (1.23―2.87), implying their magmatic origin. LA-ICP-MS zircon U-Pb dating results for two samples indicate that they were formed in the Early Cre-taceous, yielding weighted mean 206Pb/238U ages of 129±1Ma and 134±2Ma, respectively. Except for early cumulate such as sample QT-19, their SiO2 and MgO contents range from 50.12% to 56.37% and from 3.52% to 6.37%, respectively. Moreover, the gabbro-diorites are characterized by high Mg# (0.54―0.63), enrichment in Na (Na2O/K2O ratios more than 1), Cr (73×10-6―217×10-6) and Ni (34×10-6―241×10-6), and intensive enrichments in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). Their initial 87Sr/86Sr ratios and ε Nd(t) values range from 0.70962 to 0.71081 and from-16.60 to-13.04, respectively. Taken together with the Early Creta-ceous high-Mg diorites and the mantle xenoliths from the Tietonggou and Jinling as well as basalts from the Fangcheng and Feixian, it is suggested that the primary magma for the Shangyu gab-bro-diorites should be derived from the enriched lithospheric mantle intensively modified by conti-nental crust. The Sr-Nd-Pb isotopic compositions for the Early Cretaceous high-Mg diorites in western Shandong display a trend of spatial variations, i.e., initial 87Sr/86Sr, 207Pb/204Pb and 208Pb/204Pb ratios de-creasing and ε Nd(t) values increasing from southeast to northwest in western Shandong, which is con-sistent with the tectonic model that the Yangtze Craton subducted beneath the North China Craton oriented in north-west direction in the Early Mesozoic.  相似文献   

7.
The Dongco ophiolite occurred in the middle-western segment of the Bangong-Nujiang suture zone. The thickness of the ophiolite suite is more than 5 km, which is composed, from bottom to top, of the mantle peridotite, mafic-ultramafic cumulates, basic sills (dykes) and basic lava and tectoni- cally emplaced in Jurassic strata (Mugagongru Group). The Dongco cumulates consist of dunite- troctolite-olivine-gabbro, being a part of DTG series of mafic-ultramafic cumulates. The basic lavas are characterized by being rich in alkali (Na2O K2O), TiO2, P2O5 and a LREE-rich type pattern dip- ping right with [La/Yb]=6.94―16.6 as well as a trace elements spider-diagram with normal anomaly of Th, Nb, Ta, Hf. Therefore, the Dongco basic lavas belong to ocean-island basalt (OIB) and dis- tinctly differ from mid-ocean ridge basalt (MORB) and island-arc basalt (IAB) formed in the plate convergence margin. The basic lavas have higher 87Sr/86Sr (0.704363―0.705007), lower 143Nd/144Nd (0.512708―0.512887) and εNd(t ) from 2.7― 5.8, indicating that they derive from a two-components mixing mantle source of depleted mantle (DM) and enriched mantle (EMI). From above it is ready to see that the Dongco ophiolite forms in oceanic island (OIB) where the mantle source is replaced by a large amount of enriched material, therefore it distinctly differs from these ophiolites formed in island-arc and mid-oecan ridge. Newly obtained SHRIMP U-Pb dating for zircon of the cumulate troctolite is 132 ± 3 Ma and whole-rock dating of ~(39)Ar/~(40)Ar for the basalt is 173.4 ± 2.7 Ma and 140.9 ± 2.8 Ma, indicating that the Dongco ophiolite formed at Early Cretaceous and the middle-western segment of the Bangong-Nujiang oceanic basin was still in the developing and evolving period at Early Cretaceous.  相似文献   

8.
The suspended particulate and fine-grained floodplain sediments were collected from the main stream and tributaries of the Changjiang River for Sr-Nd isotopic measurements. The εNd(0) values gradually decrease downstream from -10.8 on average in the upper reaches to -12.3 in the lower reaches, whereas the 87Sr/86Sr ratios increase correspondingly, averaging 0.721899 and 0.725826 respectively in the upper and middle-lower reaches. The compositional variations primarily reflect the complex con- trols of provenance rocks, chemical weathering, and sediment characters between different catchments, among which the abnormal Sr-Nd isotopic compositions of the Yalong, Fujiang, Tuojiang and Yuanjiang rivers indicate the sediment provenance contributions from the Emeishan Basalt in the upper reaches and the old metamorphic and siliceous rocks in the middle-lower reaches. The Sr-Nd isotopic ratios of the Changjiang sediments can better reflect the average composition of weathered continental crust compared to other major rivers in the world because of the unique source rock types in the Changjiang drainage basin. The recognition of the Sr-Nd isotopic systematics of the Changjiang sediments will contribute to our understanding of the Changjiang evolution history and continental weathering processes during the Cenozoic, and also to reconstructing the paleoenvironmental changes in East China and the marginal seas.  相似文献   

9.
Field observation showed that there are many irregular leucocratic intrusive rocks in pillow lavas in the Danfeng Group in the Xiaowangjian area, north Qinling orogenic belt. Photomicrographs indicated that the protoliths of those altered leucocratic intrusive rocks are dioritic rocks. Geochemical analyses showed that pillow lavas have a range of SiO2 from 47.35% to 51.20%, low abundance of TiO2 from 0.97% to 1.72%, and percentages of MgO (MgO#=41―49). Chondrite-normalized REE patterns of pillow lavas are even, indicative of a weak differentiation between LREE and HREE (La/YbN=1.52―0.99). N-MORB-normalized trace element abundances showed that pillow lavas are enriched in incompatible elements (e.g., K, Rb, and Ba). Leucocratic intrusive rocks in pillow lavas have a wide range of SiO2 from 53.85%―67.20%, low abundances of TiO2 from 0.51%―1.10%, and MgO (MgO#=40―51), and higher percentages of Al2O3 (13.32%―16.62%) and concentration of Sr (342-539 μg/g), ratios of Na2O/K2O (2―7) and Sr/Y (17―28). Chondrite-normalized REE patterns of leucocratic intrusive rocks showed highly differentiation between LREE and HREE (La/YbN=12.26―19.41). N-MORB-normalized trace element abundances showed that leucocratic intrusive rocks are enriched in incompatible elements (e.g., K, Rb, and Ba), and significantly depleted in HFSE (e.g., Nb, Ta, Zr and Ti), indicative of a relationship to subduction. Isotopically, leucocratic intrusive rocks have a similar εNd(t) ( 7.45― 13.14) to that of MORB ( 8.8― 9.7), which indicates that those leucocratic intrusive rocks sourced from depleted mantle most likely. SHRIMP U-Pb analyses for zircon showed that those leucocratic intrusive rocks were formed at 442±7 Ma, yielding an age of subduction in the early Paleozoic in the north Qinling orogenic belt.  相似文献   

10.
We report here geochemical data, U-Pb zircon ages, and Hf isotopes for the high-Mg diorites (HMDs), Nb-enriched basaltic porphyrys (NEBPs) and plagiogranites (PLAGs) in the Pingshui segment of the Jiangshan-Shaoxing suture zone. The HMDs are characterized by high Mg# (>60), high Na and LREE contents, depletion of HREE and HFSE, and pronounced positive εNd(t) values of 7.0 to 7.7, similar to some adakitic high-Mg andesites. The NEBPs are relatively Na-rich (Na2O/K2O>6) and display high abundances of P2O5 (∼1.00%), TiO2 (∼3.08%) and HFSE (e.g., Nb=9.53–10.27 ppm). Their Nd isotopic compositions (εNd(t)=6.8–8.0) are comparable to those of the HMDs. The PLAGs are metaluminous (A/CNK=0.84–0.89) and sodic (Na2O/K2O>10). Their depletion in HFSE (e.g., Nb, Ta) is consistent with “SSZ-type” plagiogranite. Zircon LA-ICP-MS U-Pb dating yields an age of 932±7 Ma for the HMD, 916±6 Ma for the NEBP, and 902±5 Ma for the PLAG, respectively, indicating that they were products of early Neoproterozoic magmatism. The PLAGs exhibit relatively high zircon Hf isotopes and positive εHf(t) values of 11.0 to 16.2, consistent with their Nd isotopic data (εNd(t)=7.5–8.4). Such features are similar to those of oceanic plagiogranites in ophiolites and distinct from those of crust-derived granites. The PLAGs were most likely derived from partial melting of subducted oceanic crust in an active continental margin. Considering these results in the context of the regional geology, we suggest that a slab window in the subducting oceanic crust between the Yangtze Block and Cathaysia Block was possibly the principal cause for the unique arc magmatism in the area. The upwelling asthenosphere below the slab window may have provided significant thermodynamic conditions. Supported by China Geological Survey (Grant No. 1212010610611) and the Ministry of Land and Resources (Grant No. 200811015)  相似文献   

11.
High εNd(t)-εHf(t) granites are robust evidence for crustal growth. In this paper we report results of petrologic, geochronological and geochemical investigations on the Huashiban granites from the Ailaoshan tectonic zone in western Yunnan(SW China). Zircon grains separated from the two samples(10HH-119 A and 10HH-120A) yield the weighted mean 206Pb/238 U ages of 229.9 ± 2.0 Ma and 229.3 ± 2.3 Ma, respectively, interpreted as the crystallization ages of the granites. Based on our results, in combination with the existing U-Pb geochronological data for the Ailaoshan metamorphic rocks, we propose that the Ailaoshan Group might be a rock complex composed of the Mesoproterozoic, Neoproterozoic, Hercynian, Indosinian and Himalayan components, rather than a part of the crystalline basement of the Yangtze block. The zircon grains show highly depleted Lu-Hf isotope compositions, with positive εHf(t) values ranging from 8.4 to 13.1. The Huashiban granites have high SiO2(72.66 wt%–73.70 wt%), low Mg#(0.28–0.34) with A/CNK=1.01–1.05, and can be classified as peralumious high-K calc-alkaline I-type granites. A synthesis of these data indicates that the Ailaoshan tectonic zone had evolved into a post-collisional setting by the Late-Triassic(229 Ma). Genesis of the Huashiban high εNd(t)-εHf(t) granites involved into two processes:(1) underplating of the sub-arc mantle into the lower crust, and(2) remelting of the juvenile crustal materials in response to the upwelling of the asthenospheric mantle in the post-collisional setting.  相似文献   

12.
Tonalites from the island arc rock assemblage in the Zêtang segment of the Yarlung Zangbo suture zone were analyzed for major, trace elements (including REE) and Sr-Nd isotope. The experimental datademonstrate that the tonalites have the adakite-like characteristics, including high SiO2 (58%-63%),Al2O3 (18.4%-22.4%), Sr (810×10-6-940×10-6), Sr/Y (77-106), low HREE (Y=9×10-6-11×10-6, Yb=1×10-6-1.3×10-6), with LREE enrichment and faint Eu positive anomaly. Isr (0.70421-0.70487) is relatively low whereas 143Nd/144Nd (0.512896-0.512929) and εNd(t) values ( 6.7- 7.3) are high. These feainvolvement of a small amount of oceanic sediments. The identification of Z(e)tang adakites, derived from slab melting, presents new evidence for the intra-Tethyan subduction and the previous suggestion about the existence of intra-oceanic island arc within Tethys.  相似文献   

13.
Ten volcanic samples at Zhangwu,western Liaoning Province,North China were selected for a sys-tematic geochemical,mineralogical and geochronological study,which provides an opportunity to ex-plore the interaction between the continental crust and mantle beneath the north margin of the North China craton.Except one basalt sample(SiO2= 50.23%),the other nine samples are andesitic with SiO2 contents ranging from 53% to 59%.They have relatively high MgO(3.4%―6.1%,Mg#=50―64) and Ni and Cr contents(Ni 27×10?6―197×10?6,Cr 51×10?6―478×10?6).Other geochemical characteristics of Zhangwu high-Mg andesites(HMAs) include strong fractionation of light rare earth elements(LREE) from heavy rare earth elements(HREE),and Sr from Y,with La/Yb greater than 15,and high Sr/Y(34― 115).Zircons of andesite YX270 yield three age groups with no Precambrian age,which precludes ori-gin of the Zhangwu HMAs from the partial melting of the Precambrian crust.The oldest age group peaking at 253 Ma is interpreted to represent the collision of the Siberia block and the North China block,resulting in formation of the Central Asian orogenic belt by closure of the Mongol-Okhotsk Ocean.The intermediate age group corresponds to the basalt underplating which caused the wide-spread coeval granitoids in the North China craton with a peak 206Pb/238U age of 172 Ma.The youngest age group gives a 206Pb/238U age of 126±2 Ma,which is interpreted as the eruption age of the Zhangwu HMAs.The high 87Sr/86Sri(126 Ma)>0.706 and low εNd(t)= ?6.36―?13.99 of the Zhangwu HMAs are distinct from slab melts.The common presence of reversely zoned clinopyroxene phenocrysts in the Zhangwu HMAs argues against the origin of the Zhangwu HMAs either from melting of the water saturated mantle or melting of the lower crust.In light of the evidence mentioned above,the envisaged scenario for the formation of the Zhangwu HMAs is related to the basaltic underplating at the base of the crust,which led to the thickening of the lower crust and formation of lower crustal eclogite,followed by foundering of the eclogitic lower crust into the asthenosphere.The foundered eclogite then melted and the resul-tant melts interacted with surrounding peridotite during their upward transport,which finally produced the high-Mg andesites.This well explains the high-Mg adakitic characters and absence of ancient in-herited zircon in the Zhangwu lavas.  相似文献   

14.
Alignmentsilkwormsasseismicanimalanomalousbehavior(SAAB)andelectromagneticmodelofafault:atheoryandlaboratoryexperimentMOTO...  相似文献   

15.
In this paper we suggest that conditional estimator/predictor of rockburst probability (and rockburst hazard, P T (t)) can be approximated with the formula P T (t) = P 1(θ 1)…P N (θ N P dyn T (t), where P dyn T (t) is a time-dependent probability of rockburst given only the predicted seismic energy parameters, while P i (θ i ) are amplifying coefficients due to local geologic and mining conditions, as defined by the Expert Method of (rockburst) Hazard Evaluation (MRG) known in the Polish mining industry. All the elements of the formula are (approximately) calculable (on-line) and the resulting P T value satisfies inequalities 0 ≤ P T (t) ≤ 1. As a result, the hazard space (0–1) can be always divided into smaller subspaces (e.g., 0–10−5, 10−5–10−4, 10−4–10−3, 10−3–1), possibly named with symbols (e.g., A, B, C, D, …) called “hazard states” — which saves the prediction users from worrying of probabilities. The estimator P T can be interpreted as a formal statement of (reformulated) Comprehensive Method of Rockburst State of Hazard Evaluation, well known in Polish mining industry. The estimator P T is natural, logically consistent and physically interpretable. Due to full formalization, it can be easily generalized, incorporating relevant information from other sources/methods.  相似文献   

16.
The Cenozoic magmatic rocks of shoshonitic series in the eastern Qinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187– 0.707 254 for87Sr/86Sr, 0.512 305–0.512 630 for143Nd/144Nd, 18.53–18.97 for206Pb/204Pb, 15.51–15.72 for207Pb/204Pb and 38.38–39.24 for208Pb/204Pb. They are isotopically similar to the EMII end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau  相似文献   

17.
18.
~~Characteristics of the mantle source region of sodium lamprophyres and petrogenetic tectonic setting in northeastern Hunan,China~~  相似文献   

19.
Velocity measurements with vertical resolution 0.02 m were conducted in the lowest 0.5 m of the water column using acoustic Doppler current profiler (ADCP) at a test site in the western part of the East China Sea. The friction velocity u * and the turbulent kinetic energy dissipation rate ε wl(ζ) profiles were calculated using log-layer fits; ζ is the height above the bottom. During a semidiurnal tidal cycle, u * was found to vary in the range (1–7) × 10−3 m/s. The law-of-the-wall dissipation profiles ε wl(ζ) were consistent with the dissipation profiles ε mc(ζ) evaluated using independent microstructure measurements of small-scale shear, except in the presence of westward currents. It was hypothesized that an isolated bathymetric rise (25 m height at a 50-m seafloor) located to the east of the measurement site is responsible for the latter. Calculation of the depth integrated internal tide generating body force in the region showed that the flanks of the rise are hotspots of internal wave energy that may locally produce a significant turbulent zone while emitting tidal and shorter nonlinear internal waves. This distant topographic source of turbulence may enhance the microstructure-based dissipation levels ε mc(ζ) in the bottom boundary layer (BBL) beyond the dissipation ε wl(ζ) associated with purely locally generated turbulence by skin currents. Semi-empirical estimates for dissipation at a distance from the bathymetric rise agree well with the BBL values of ε mc measured 15 km upslope.  相似文献   

20.
The Nanling Mountains lying in the southern part of South China are an economically important gran-ite-related multi-metallogenic province. The Nanling Mountains granites can be described as: temporally spanning from Caledonian to Yanshanian and spatially distributed as three EW trending zones: the north one in Zhuguangshan-Qingzhangshan, the middle one in Dadongshan-Guidong, and the south one in Fogang-Xinfengjiang with two neighboring zones’ midline having an interval of ca. latitude …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号