首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aswan Lake started impounding in 1964 and reached the highest water level so far in 1978 with a capacity of 133.8 km3, thus forming the second largest man-made lake in the world. An earthquake of magnitude 5.3 (Ms) took place on 14 November 1981 along the most active part of the E-W Kalabsha fault beneath the Kalabsha bay (the largest bay of the lake). This earthquake was followed by a tremendous number of smaller events that continue till now. A radio-telemetry network of 13 seismic short period stations and a piezometer network of six wells were established around the northern part of the lake.Epicenters were found to cluster around active faults near the lake. The space-time distribution and the relation of the seismicity with the lake water level fluctuations were studied. Six years after flooding the eastern segment of the Kalabsha fault, strong seismicity began following the main shock of 14 November 1981. It occurred four days after the reservoir had reached its seasonal max level. The effect of the North African drought (1982 to present) is clearly seen in the reservoir water level. As it decreased and left the most active fault segments uncovered, the activity (Gebel Marawa area) decreased sharply. Also, the shallow activity was found to be more sensitive to rapid discharging than to the filling. This study indicates that geology, topography, lineations in seismicity, offsets in the faults, changes in fault trends and focal mechanisms are closely related. No relation was found between earthquake activity and both-ground water table fluctuations and water temperatures measured in wells located around the Kalabsha area.  相似文献   

2.
The Kalabsha region at the northwest side of Lake Aswan has been a subject of seismological and geodetic investigations since 1981, after the 5.5 M earthquake on 14 November. The subsequent seismic activity was related to the effect of water-level oscillations in the Lake. Geodetic measurements provided indications of regional stress and of the local character of vertical movements. As crustal dynamics represents a potential hazard with respect to the size of the lake, other techniques have been applied to the monitoring system. Repeated gravity test measurements were already made in the late 1980s and in 1994, but only in 1997 was a new epoch of long-term investigation initiated. The measured data showed sufficient accuracy of approx. 5 μGal. Already the first difference of the two campaigns of the years 1997 and 2000 showed a few important features. First of all, the temporal non-tidal changes of gravity exceed the level of confidence significantly. The changes were compared with older available geodetic data, and it was concluded, that the gravity changes were not related directly to the vertical movements of the surface. On the contrary, a water loading effect may be expected on the eastern side of the network, especially in the Kalabsha local net. The development of the stress field is considered to be the main source of observed gravity changes. In both the Kalabsha and Seiyal nets the changes differ according to the relative positions of the particular measuring points with respect to the faults.  相似文献   

3.
After the November 1981 earthquake in the Aswan area along the Kalabsha fault, Nubian Desert, studies on its origin were initiated in the Helwan Institute of Astronomy and Geophysics [now National Research Institute of Astronomy and Geophysics (NRIAG) in Helwan]. As a first step an array of seismic stations were established in cooperation with the Lamont-Doherty Geological Observatory and the correlation between the number of seismic events and the water level in Lake Nasser was investigated. In order to understand the eartqquake mechanism, additional information on the crustal deformation due to water load was required, and the International Center on Recent Crustal Movements (ICRCM) was invited to consult in the necessary procedures aimed at recent crustal movement studies around part of the western bank of Lake Nasser. The first local network of horizontal and vertical geodetic measurements was established and measured in 1984. Simultaneously, with respect to the extreme meteorological conditions in the desert, additional investigations as refraction studies, stability of bench marks etc. were initiated. The extension of the network and an increase of repeated measurements first brought results during the last few years. The results of these studies will be reported in the following papers in detail as a homogenous block of scientific communication.  相似文献   

4.
In this work, we use the magnetotelluric (MT) method to detect geoelectrical conductivity anomalies in the Earth's crust and link them to local seismic activity. This application affords the unusual opportunity to study the percolation of water from a lake into a fault system and its effect on the induced seismicity. MT measurements were carried out in the period range 0.0046–420 s at nine sites along a 15 km-long North–South profile crossing the Kalabsha Fault, on the western bank of Lake Aswan. Data were analysed by 2D simultaneous inversion of both polarisations. The resulting model is compared with the local seismicity map and reveals the conductive signature of the fault, as well as geological and tectonic stresses prevailing in the Aswan area. Our MT investigations show the following features:

The measured MT strike aligns with the seismic epicentre axis corresponding to the Kalabsha Fault.

While crossing the Fault, enhanced conductivity is found down to depths of 5 km on a 1–2 km profile segment.

At mid-crustal depths (20 km), a very high conductive body is found to coincide with the main seismic cluster in the Aswan area.

These observations indicate that seismic activity and high electrical conductivity are related. The link between them is the presence of crustal fluids which are presumably the cause of the high conductivity observed. Their presence is also required to trigger the observed seismicity. In addition, we explain the lower conductivity of the local upper crust in terms of stress-modulated rock porosity. We believe that these results are of general significance, as they could explain the mid-crustal seismicity of tectonically active zones.  相似文献   


5.
A detailed gravity survey was carried out in one of the seismo-active areas at the northwestern region of the High Dam Lake (Kalabsha area) to study its subsurface structure. In order to understand the seismicity of the area, the establishment of a geodynamic model from geological and geodetic data is of great importance. After a series of adjustments and corrections of the measured gravity data, free-air and Bouguer anomaly maps were constructed for the Kalabsha area, and several interpretation techniques were applied to analyse these anomalies. The results of the analysis indicate that the Kalabsha area is affected by several faults trending mainly E-W and N-S. The active area located west of Gebel Marawa is bounded by a set of faults striking NE-SW, N-S and E-W. The throws of these faults range from 160 to 370 m.The minimum depth to the basement complex is about 200 m and its maximum depth is around 600 m. The thickness of the sedimentary column (Nubia sandstone) in the Kalabsha area decreases due west and increases toward the southern and eastern parts of the area. The results explain the tectonic framework of the area well.  相似文献   

6.
A local geodetic network of 20 points was established in 1988 around the Seiyal fault for monitoring lateral movements. Two levellinglines, crossing the fault, were prepared for monitoring vertical movements. The initial horizontal geodetic measurements were carried out in March 1989. The measurements were repeated twice a year. The initial vertical geodetic measurements (levelling) were carried out in November 1989 and repeated in November 1990.Four horizontal geodetic measurements and two levelling measurements were analysed. The results revealed remarkable horizontal and vertical changes during the period of measurement.  相似文献   

7.
Seismic events that occurred during the past half century in the Tellian Atlas, North Africa, are used to establish fundamental seismic empirical relations, tying earthquake magnitude to source parameters (seismic moment, fault plane area, maximal displacement along the fault, and fault plane length). Those empirical relations applied to the overall seismicity from 1716 to present are used to transform the magnitude (or intensity) versus time distribution into (1) cumulative seismic moment versus time, and (2) cumulative displacements versus time. Both of those parameters as well as the computed seismic moment rate, the strain rate along the Tellian Atlas strike, and various other geological observations are consistent with the existence, in the Tellian Atlas, of three distinct active tectonic blocks. These blocks are seismically decoupled from each other, thus allowing consideration of the seismicity as occurring in three different distinct seismotectonic blocks. The cumulative displacement versus time from 1900 to present for each of these tectonic blocks presents a remarkable pattern of recurrence time intervals and precursors associated with major earthquakes. Indeed, most major earthquakes that occurred in these three blocks might have been predicted in time. The Tellian Atlas historical seismicity from the year 881 to the present more substantially confirms these observations, in particular for the western block of the Tellian Atlas. Theoretical determination of recurrence time intervals for the Tellian Atlas large earthquakes using Molnar and Kostrov formalisms is also consistent with these observations. Substantial observations support the fact that the western and central Tellian Atlas are currently at very high seismic risk, in particular the central part. Indeed, most of the accumulated seismic energy in the central Tellian Atlas crust has yet to be released, despite the occurrence of the recent destructive May 2003 Boumerdes earthquake (M w = 6.8). The accumulated seismic energy is equivalent to a magnitude 7.6 earthquake. In situ stress and geodetic measurements, as well as other geophysical field data measurements, are now required to practically check the validity of those observations.  相似文献   

8.
The Thurber iterative simultaneous inversion program is used to determine the three-dimensionalP-wave velocity structure in the Aswan seismic region of Egypt. The tomographic inversion presented in this study is based on 1131P-phase observations at 13 stations from 89 local earthquakes, all of which occurred within the Kalabsha fault zone. The assumed initial velocity model is that deduced from local explosion experiments. The results indicate that the Aswan region is characterized by a heterogeneous crust, consisting of a shallow, low-velocity zone and a deeper high-velocity anomaly. Seismic velocity structure within the shallow part demonstrates that the inferred change in velocity exists primarily across the east-west trending Kalabsha fault scarp, whereas the high-velocity zone is located south of this fault. Two well-resolved, low-velocity zones appear within the upper 6 km of the crust. The first coincides with a graben structure located between the Kalabsha and Seiyal faults and the second exists between the N-S Kurkur fault and the main axis of Lake Aswan. Both low-velocity zones occupy an area of approximately 30×40 km, located along the western bank of the lake. The most significant result of this study is that the location of the deeper, high-velocity anomaly coincides with the concentration of seismic activity in the lower crustal layer.  相似文献   

9.
The data described here are obtained from the continuous record of earthquakeactivity and lake water-level variation in the Lake Aswan area in Egypt between 1982 and 1997. The seismicity is monitored by a local telemetered seismograph network. The hypocentral parameters of earthquakes have been determined using Hypo71. The earthquake foci are distributed in two seismic zones, shallow and deep in the crust. Shallow events have focal depths of less than 10 km. Deep events extend from 10 to 30 km. The temporal sequence of seismicity iscorrelated with both the water-level variation and the average daily change of the water level in the lake Aswan. The temporal variation of the seismicityindicates that there are only six sequences of increased seismic activity during 1982–1997. The correlation between the seismic activity and the daily variation of the lake water level is poorly observed except with the June 1987 events swarm, which was accompanied by the presence of an anomaly in rate of water level decreasing. It is concluded that the increase in seismic activity in the Aswan reservoir is demonstrating an example of rapid reservoir-triggered seismicity. The deeper seismic sequence in this area, which was associated with the November 14, 1981 mainshock (MD = 5.7), and the earlier seismicity (1981–82), has been correlated with a deeper high velocity anomaly (Awad and Mizoue, 1995-b).  相似文献   

10.
The 23 October 2011 Van earthquake took place in the NE part of Lake Van area, surprisingly on a fault (the Van fault) that is not present in the current active fault map of Turkey. However, occurrence of such a large magnitude earthquake in the area is not surprising regarding the historical seismicity of the region. The comparison of the damage patterns suggests that the earthquake is much likely a recurrence of the 1715 Van earthquake. The finite fault modelling of the earthquake using teleseismic broadband body waveforms has shown that the earthquake rupture was unilateral toward SW, was mostly reverse faulting, confined to below the depth of 5 km, did not propagate offshore, and was dominated by a failure of a single asperity with a peak slip of about 5.5 m. The total seismic moment calculated for the model is 4.6?×?1019 Nm (M W ?≈?7.1). The finite fault model coincides with the field observations indicating blind faulting and the vertical displacements over the free surface estimated from it correlate well with the maximum reported uplift along the coast of Lake Van above the hanging wall. The possible offshore continuations of the Van fault and some other faults lying its south are also discussed by assessing a previous offshore seismic reflection study and the earthquake epicentres and focal mechanisms.  相似文献   

11.
Relation between water level changes and pattern of seismicity is an important consideration in studies of Reservoir Induced Seismicity (RIS). Sensitivity of the Regions around Lake Jocassee to small fluctuations in the lake level is presented in this paper. The seismic source regions in the area around the lake seem to be sensitive to changes in the lake level as small as 1 to 1.5 m. Although such changes may produce stress changes of the order of only 0.1 bar, their influence on the spatial pattern of earthquakes seems to be quite perceptible. Observations of this type may help understand the threshold values of pore pressure/effective stress changes that can activate fault zones under high fluid pressure.  相似文献   

12.
福建仙游震群的孔隙压扩散特征   总被引:1,自引:1,他引:0       下载免费PDF全文
胡淑芳  秦双龙  李强  蓝姝 《地震学报》2018,40(2):160-171
2010年8月至2015年12月,福建仙游地区发生了一系列小震群活动。基于孔隙压力扩散机制对精定位的小震数据进行分析,结果显示仙游震群序列在空间上呈丛集分布,且具有明显的分区现象,发震时间受金钟水库水位变化的调制作用较为明显。5个分区(A—E)的流体孔隙压力扩散系数分别为0.04,0.08,0.07,0.12和0.05 m2/s,伴随着地震活动性由强至弱,孔隙压扩散系数呈先增后减的变化规律。仙游震群位于断裂构造发育区内,震中分布优势方向与石苍断裂一致,沿着断裂走向的孔隙压扩散系数最大,说明地下流体沿狭长的石苍断裂由NW向NE活动。各分区的流体孔隙压系数与扩散最大距离、最大诱发地震震级及地震释放能量均有较好的相关性。此外,当金钟水库水位下降时,各分区的扩散距离r呈现减小趋势,震群范围收缩,地震频次增加,并伴有较大震级的地震,说明水位下降时,流体孔隙压力的扩散作用在同一地点反复作用,使得触发源附近区域的应力水平更容易达到饱和或临界状态,进而触发较大震级的地震,这也解释了水位下降过程中地震更为强烈的原因。   相似文献   

13.
In this paper,based on the collected data and earthquake field investigation,characteristics of the MS4.1 Hujiaping earthquake of November 22,2008 at Guizhou town in Zigui county,Hubei Province and the geological and hydrogeological conditions and seismicity background of the area are analyzed,and the earthquake disaster is presented. Some scientific issues relating to earthquake precursors and the cause of the earthquake is discussed. The authors consider that the earthquake is a tectonic type reservoir-induced earthquake,occurring along the Xiannvshan fault under the joint action of reservoir water loading and water infiltration,and that there were certain suspected anomalies appearing in the gravity field before the earthquake. The cause of the earthquake may also be related to the effect of the Wenchuan earthquake on the local stress field.  相似文献   

14.
GPS studies in Turkey date back to the early 1990s, but were mostly focused on the seismically active North Anatolian Fault System (NAFS), or on the more populated Western Anatolia. Relatively few studies were made of the seismically less-active East Anatolian Fault System (EAFS), although it has the potential to produce large earthquakes. In this study, we present the results of a combination of geodetic and seismological data around the Karliova Triple Junction (KTJ), which lies at the intersection of the North- and East Anatolian Fault Systems. In particular, the geodetic slip rates obtained through block modeling of GPS velocities were compared with b-values to assess seismicity in the region. Yedisu segment, one of the best-known seismic gaps in Turkey, was specifically analyzed. The relatively low b-values across Yedisu segment verify the accumulation of seismic energy in this segment, and the GPS-derived geodetic slip rates suggest that it has the potential to produce an earthquake of Mw 7.5 across an 80-km rupture zone.Additionally, analysis of earthquake data reveals that the study area has a ductile or rigid–ductile behavior with respect to its surroundings, characterized by varying b-values. Although, seismic events of moderate- to high magnitudes are confined along the major fault zones, there are also low-seismicity zones along the eastern part of the Bitlis Suture Zone and around Yedisu. Since the high seismicity areas within the region may not accumulate sufficient stress for a large earthquake to occur, it is considered that the deformation in such areas occurs in a ductile manner. On the other hand, the areas characterized by low b-values may have the capacity of stress accumulation, which could lead to brittle deformation.  相似文献   

15.
北京时间2019年6月17日22时55分,四川省宜宾市长宁县发生了MS6.0地震(28.34°N,104.90°E),四川盆地内部及边缘地带的深部孕震环境和潜在地震危险性再次引起了国内外地震专家和学者们的密切关注.为了揭示长宁MS6.0震区的深部介质结构特征和孕震环境,综合解译地震活动的构造背景和展布特征,本文充分收集川东南宜宾长宁地震震区及其周边范围内由四川省数字测震台网、宜宾市地方测震台网以及2016年以后宜宾长宁地区新增小孔径流动地震台阵等共计35套观测地震设备2013年1月—2019年7月记录到的17305次地震的P波到时资料的数据,应用双差地震层析成像方法,反演得到了长宁震区及周边上地壳三维P波速度结构特征,并结合此次震后科考组在震区获取的三维大地电磁阵列测深和重力密集测量等最新观测资料,综合分析讨论了长宁震区速度结构特征与地震活动关系、孕震环境及其地震危险性等科学问题.研究结果表明:长宁震区及周边上地壳P波速度结构呈现出明显的横向不均匀性,震区沉积盖层的物性特征分异明显,双河场背斜褶皱北西侧的波速结构与其东部存在明显的差异性且浅层P波速度结构分布特征与地表地质构造和地层岩性密切相关.重新定位后的长宁MS6.0地震序列空间分布特征与震区上地壳介质速度结构存在密切关系,序列大体上沿着高低速异常分界线呈NW-SE向展布,并终止于白象岩—狮子滩背斜构造东段附近,长宁震区及周边介质速度结构的非均匀变化是控制主震及其序列空间展布的深部构造因素.三维P波速度结构还表明了长宁MS6.0震区双河场褶皱附近存在不一样的深浅构造背景,震区褶皱构造伴生断裂的复杂性可能破坏了盖层地层成层性,造成了介质物性界面的变化多样,从而导致深浅构造耦合存在明显的差异.长宁MS6.0地震震中位于速度结构发生变化的边界带附近,这种介质物性变化的边界带可能是中强地震孕育和发生的有利部位.长宁MS6.0地震及其序列绝大部分发生在基底滑脱带之上,由于受到区域NE-SW向主压应力和经华蓥山构造带传递而来的NW-SE向的现今应力场的共同作用,导致了此次长宁6.0级地震的发生,而随后发生的珙县MS5.1、长宁MS5.3、珙县MS5.4和MS5.6地震以及大量中小地震事件均为长宁6.0级地震触发作用所致.P波速度结构还揭示了震区双河场褶皱以及该褶皱构造地表出露伴生的大地湾断层和NW向大佛崖断层两侧浅层速度结构特征各异,结合长宁—双河背斜与轴线方向一致的NW向伴生断裂构造比较发育,而褶皱东侧的伴生断裂走向表现出多样性和复杂性,由此推断除了受区域性构造运动的影响之外,长宁震区局部构造的差异性活动也较为突出,长宁—双河背斜构造区轴部构造及其伴生的断裂具备一定的发震能力和深部孕震背景,这可能也是长宁地震余震强度较大、活动持续时间较长的主要原因,川东南地区地震活动趋势和潜在地震危险性仍值得进一步关注.  相似文献   

16.
浙江湖南镇水库的诱发地震   总被引:5,自引:7,他引:5       下载免费PDF全文
1982年和1983年汛期在水库地震区设立密集地震台网。观测表明,地震群集在水库近岸,深度仅几百米。地震与库水位的急剧升降几乎同时出现。几百次单个地震的震源机制解显示出以逆断层和正断层机制为主。地震是库水渗入后在库岸局部应力和岩体重力作用下沿小断层、节理错动的结果,发生破坏性地震的可能性很小  相似文献   

17.
GPS observations in the Western Bohemia/Vogtland earthquake swarm region revealed indications of horizontal displacements of low amplitude, and no clear long-term trend in 1993–2007. On the other hand, in 1998–2001 there was relatively significant active movement along NNE-SSW oriented line that we called the “Cheb-Kraslice GPS Boundary” (ChKB), identical with an important limitation of earthquake activity. The most impressive were dextral (right-lateral) movements in the 1998–1999 period followed by reverse sinistral (left-lateral) movements in 1999–2000 that correlate with prevailing motion defined by fault plane solutions of the Autumn 2000 earthquake swarm. Before the February 2004 micro-swarm, two points located on opposite sides of the Mariánské Lázně fault showed extension in the order of about 7 mm in the same NNE-SSW direction of ChKB. The new NOKO permanent GPS station in Novy Kostel showed the peak-to-peak vertical changes up to 10 mm before and during the February 2007 micro-swarm. Annual precise levelling campaigns in the local network around Novy Kostel revealed regular vertical displacements during the 1994, 1997 and 2000 earthquake swarms. The points around the Novy Kostel seismological station showed uplift during the active periods, including the micro-swarm February 2004. However, no such indication was observed on levelling points in the period of the February 2007 swarm. Long-term vertical displacements depend on the same direction NNE-SSW (ChKB) as the GPS displacements. Both geodetic techniques have revealed oscillating displacements, GPS horizontal, and levelling vertical, rather than any long-term trends in the study period 1993–2007. The displacements exhibited significant spatial and temporal relation to tectonic activity (earthquake swarms) including their coincidence with the seismologically determined sense of motion along the fault plane during earthquakes.  相似文献   

18.
The seismicity of small earthquakes in the Weihe Graben has changed after the Wenchuan earthquake. In detail,the seismicity around the Qishan-Mazhao fault in the western Weihe Graben decreased, while the seismicity in Gaoling and Jingyang Counties in the middle portion of the Weihe Graben and that in the area between Hancheng and Yuncheng Cities in eastern Weihe Graben increased. In this paper, the stress loading on the major activity faults in the Weihe Graben induced by the Wenchuan earthquake is discussed based on the Coulomb stress theory.The results show that the Wenchuan earthquake has exerted an unloading effect in the western Weihe Graben and a loading effect in the middle and eastern Weihe Graben. The spatially varied Coulomb stress is consistent with the seismicity distribution, indicating that the seismicity change is closely associated with the stress loading caused by the Wenchuan earthquake.  相似文献   

19.
Huilong Xu  Yasue Oki 《Island Arc》2004,13(2):333-345
Abstract   The Shinanogawa Seismic Belt in the Northern Fossa Magna, Honshu Island, Japan, extends along the Shinano River, bounding the Eurasian Plate and the Okhotsk Plate. The geopressured hydrothermal system occurs widely in the Northern Fossa Magna region. Many destructive earthquakes are related to the activity of this system in the Shinanogawa Seismic Belt. Expulsion of a geopressured hydrothermal system and rising from depth along an active fault triggers the occurrence of an earthquake and opens the fault as a pathway. Anomalous areas in temperature, electrical conductivity and Cl concentration of groundwater trend north–east in a linear distribution, and convincingly demonstrate the presence of a buried active fault at the epicentral area of the destructive earthquake in the Shinanogawa Seismic Belt. The distribution of the major axis of the anomalous area in groundwater temperature shows a strong positive relationship with earthquake magnitude, which means that the distribution of this area may indicate the scale of earthquake fault. The linearly anomalous areas in groundwater temperature, resulting from the percolation of a geopressured hydrothermal system, that have no record of previous destructive earthquake are predicted to be areas where destructive earthquakes could occur in the future. Four potential earthquake areas are proposed and discussed in this paper, based on re-examination of active faults and seismicity in the Shinanogawa Seismic Belt.  相似文献   

20.
INTRODUCTIONHowtocombinethestudyofseismogenictectonicswithearthquakepredictionisanurgentscientificdifficulty .Thereexistbiggapsbetweenstudymethodsandcurrentknowledgeonseismogenitectonics ,earthquakeprediction ,seismogenesisandthephysicsofearthquakeoccurre…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号