首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Thurber iterative simultaneous inversion program is used to determine the three-dimensionalP-wave velocity structure in the Aswan seismic region of Egypt. The tomographic inversion presented in this study is based on 1131P-phase observations at 13 stations from 89 local earthquakes, all of which occurred within the Kalabsha fault zone. The assumed initial velocity model is that deduced from local explosion experiments. The results indicate that the Aswan region is characterized by a heterogeneous crust, consisting of a shallow, low-velocity zone and a deeper high-velocity anomaly. Seismic velocity structure within the shallow part demonstrates that the inferred change in velocity exists primarily across the east-west trending Kalabsha fault scarp, whereas the high-velocity zone is located south of this fault. Two well-resolved, low-velocity zones appear within the upper 6 km of the crust. The first coincides with a graben structure located between the Kalabsha and Seiyal faults and the second exists between the N-S Kurkur fault and the main axis of Lake Aswan. Both low-velocity zones occupy an area of approximately 30×40 km, located along the western bank of the lake. The most significant result of this study is that the location of the deeper, high-velocity anomaly coincides with the concentration of seismic activity in the lower crustal layer.  相似文献   

2.
Resistivity structure of a seismic gap along the Atotsugawa Fault, Japan   总被引:1,自引:0,他引:1  
Seismicity along the Atotsugawa Fault, located in central Japan, shows a clear heterogeneity. The central segment of the fault with low-seismicity is recognized as a seismic gap, although a lot of micro-earthquakes occur along this fault. In order to elucidate the cause of the heterogeneity in seismicity, the electrical resistivity structure was investigated around the Atotsugawa Fault by using the magnetotelluric (MT) method. The regional geoelectrical strikes are approximately parallel to the fault in a low-frequency range. We constructed two-dimensional resistivity models across the fault using TM-mode MT responses to minimize three-dimensional effects on the modeling process. A smooth inversion algorithm was used, and the static-shifts on the apparent resistivity were corrected in the inversion process.A shallow, low resistivity zone along the fault is found from the surface to a depth of 1-2 km in the best-fit model across the high-seismicity segment of the fault. On the other hand, the corresponding low resistivity zone along the low-seismicity segment is limited to a shallower depth less than 1 km. The low resistivity zone along the Atotsugawa Fault is possibly due to fluid in the fracture zone; the segment with higher levels of seismicity may have higher fluid content in the fault zone compared with the lower seismicity segment. On a view of the crustal structure, a lateral resistivity variation in a depth range of 3-12 km is found below the fault trace in the high-seismicity segment, while a resistive layer of wide extent is found at a depth of about 5 km below the fault trace in the low-seismicity segment. The resistive layer is explained by less fluid condition and possibly characterized as high rigidity. Differences in the resistivity structures between low and high-seismicity segments of the fault suggest that the seismic gap in the central part of the Atotsugawa Fault may be interpreted as a locked segment. Thus, MT is an effective method in evaluating a cause and future activity of seismic gaps along active faults.The lower crust appears as a conductive zone beneath the low-seismicity segment, less conductive beneath the high-seismicity segment. Fluid is inferred as a preferable cause of the conductive zone in this study. It is suggested that the conductive lower crust beneath the low-seismicity segment is recognized where fluid is trapped by an impermeable layer in the upper crust. On the other hand, fluid in the lower crust may upwell to the surface along the high-seismicity segment of the fault.  相似文献   

3.
The data described here are obtained from the continuous record of earthquakeactivity and lake water-level variation in the Lake Aswan area in Egypt between 1982 and 1997. The seismicity is monitored by a local telemetered seismograph network. The hypocentral parameters of earthquakes have been determined using Hypo71. The earthquake foci are distributed in two seismic zones, shallow and deep in the crust. Shallow events have focal depths of less than 10 km. Deep events extend from 10 to 30 km. The temporal sequence of seismicity iscorrelated with both the water-level variation and the average daily change of the water level in the lake Aswan. The temporal variation of the seismicityindicates that there are only six sequences of increased seismic activity during 1982–1997. The correlation between the seismic activity and the daily variation of the lake water level is poorly observed except with the June 1987 events swarm, which was accompanied by the presence of an anomaly in rate of water level decreasing. It is concluded that the increase in seismic activity in the Aswan reservoir is demonstrating an example of rapid reservoir-triggered seismicity. The deeper seismic sequence in this area, which was associated with the November 14, 1981 mainshock (MD = 5.7), and the earlier seismicity (1981–82), has been correlated with a deeper high velocity anomaly (Awad and Mizoue, 1995-b).  相似文献   

4.
Data from ten magnetotelluric (MT) stations over the Wind River Uplift and adjacent basins are interpreted with constraints from the Consortium for Continental Reflection Profiling (COCORP) seismic reflection data and from gravity data. The MT data reveal the general configuration of the conductive basins and resistive uplifts; low resistivity zones are interpreted as faults which correspond to those visible in the COCORP sections.

The Wind River Thrust Fault is modelled as a conductive zone that can be traced to a depth of at least 20 km, and the crust beneath the Green River Basin is about 40 km thick.

The modelled constant dip of the Wind River Thrust is consistent with a tectonic model of lateral compressive stress.  相似文献   


5.
本文对一条布设在滇西盈江—龙陵地区的大地电磁剖面(苏典—中山剖面)数据进行了精细处理和二维反演解释,得到了测区较高置信度的二维电性结构.该电性模型纵向上表现为高阻-低阻-高阻的"三明治"式岩石圈电性结构,上地壳为平均厚度约为10km的高阻地层,在约6~16km地壳深度范围发育有电阻率为几欧姆米的显著高导层,下地壳底部和上地幔顶部表现为电性较为均匀的相对高阻层.横向上自西向东划分出以大盈江断裂带、龙陵—瑞丽断裂带为限的3个主要构造区域.壳内分布的高导层沿剖面表现出一定的横向不均匀性,其在龙陵—瑞丽断裂带下方消失,在该处形成了腾冲地块和保山地块的电性构造边界.电性结构表明,大盈江断裂附近高导层顶界面浅,两侧高阻体厚度小,因此难以形成较大规模的相互作用,致其附近浅震源、小震级的地震活跃;龙陵—瑞丽断裂两侧的高阻体较厚,易积累较大的应力,具有大震的深部孕震环境,故其附近发生过多次7级以上强震.  相似文献   

6.
Aswan Lake is the second largest man-made lake in the world. Its filling started 1964 and reached the maximum water level in 1978. An earthquake of magnitude 5.5 took place in 1981 along the most active fault near the lake (Kalabsha fault). This earthquake was follwed by a tremendous number of smaller events that continue till now.Seismicity and the underground water table around the lake are monitored continuously through a radio-telemetered network. A local geodetic network was established around parts of the active faults in the northwestern part of the High Dam Lake, for monitoring vertical and lateral movements. The Kalabsha local geodetic network (the first one) was established around an active part of the Kalabsha fault in 1983. Precise geodetic measurements have benn carried out twice a year since 1984.On the basis of the repeated geodetic measurements, seismicity of the area and geophysical as well as geological data, the present state of the geodynamical properties of the Kalabsha area is studied.Remarkable horizontal movements were detected; they are correlated with the seismicity of the area and are attributed to the differential loading by the lake. The Kalabsha fault is a right-lateral strike-slip motion on an E-W plane. The magnitude of the movements detected along the fault is variable for the different epochs of measurements and is correlated with both seismicity and water loading in the lake.  相似文献   

7.
The Yishu fault zone is one of the branch faults of the Tanlu fault zone in its central part. Moderate and strong earthquakes occurred in the Yishu fault zone repeatedly. Due to its complex structure, the Yishu fault zone attracts much attention from earthquake researches. The Anqiu and Juxian electromagnetic stations in Shandong Province locate near the Anqiu-Juxian Fault and Changyi-Dadian Fault, which are branches of the Yishu fault zone, respectively. Geoelectric field and geomagnetic field observation were carried out in these two stations. The Wudi electromagnetic station is in the west of Tanlu fault zone in the Jidong-Bohai block and 230km from Anqiu electromagnetic station. This paper firstly describes the crustal structure near the electromagnetic stations by using magnetotelluric(MT)method. By processing the data carefully, we obtain the MT data in good quality near the stations. The MT data of each electromagnetic station and its nearby area suggests that the electrical structure and geological structure of the station are comparable. This paper applied 1-D and 2-D inversion for MT data and obtained the crustal electrical structure model beneath the Anqiu and Juxian seismic station. The shallow electrical structure from the MT method was compared with the results of symmetrical quadrupole electrical sounding. The model suggests that the electrical structure beneath the Anqiu and Juxian electromagnetic stations is complex and shows the feature of block boundary. The Wudi electromagnetic station is located inside a basin, the crustal structure shows layered feature typical for the stable blocks. Beneath the Anqiu electromagnetic station, there is a 1km-thick relative low resistivity layer in the shallow crust and a high resistivity body beneath it with a depth of 13km. There is a high resistivity structure in the crust beneath the Juxian electromagnetic station. The crustal structures are divided into two different parts by Anqiu-Juxian Fault and Changyi-Dadian Fault, respectively. More conductive layers appear to the west of the two faults. Plenty of fluid possibly exists within the conductive body to the west of Changyi-Dadian Fault, which plays important role in the earthquake generation. There is a relative low resistivity layer in the crust within 1~2km beneath the Wudi electromagnetic station. Beneath the relatively low resistivity layer, a relatively high resistivity layer extends to a depth of around 15km, and the resistivity value decreases with the increase of depth. The electrical resistivity model suggests the seismic activity of the Yishu fault zone around the Anqiu and Juxian electromagnetic stations should be taken into account seriously, and monitoring and research on it need to be strengthened. The results of this paper provide a certain reference value for the crustal structure research to similar stations.  相似文献   

8.
鲜水河断裂带南段深部变形的重复地震研究   总被引:4,自引:3,他引:1       下载免费PDF全文
利用2000—2013年四川数字地震台网和水库台网的波形资料以及川西流动台阵的事件波形,通过辨识发生在同一断层位置上的重复地震来定量研究鲜水河断裂带南段的深部变形.针对研究区台站分布稀疏的客观情况,应用了子采样条件下基于S-P相对到时差来约束震源位置一致性的方法,在鲜水河断裂带识别出11组重复地震,并利用连续波形资料进行了重复地震完整性的初步测试,同时运用结合波形互相关资料的双差法来完成研究区背景地震和重复地震位置的精确定位.重新定位后的地震图像展示研究区中上地壳存在明显缺震层,其与壳内的低速低阻层相吻合.利用重复地震的地震矩和重复间隔,估算出鲜水河断裂带南段孕震深部的滑动速率为3.0~10.2mm·a-1,显示研究区不同地震构造区的深部滑动速率存在明显差异.  相似文献   

9.
Aswan Lake started impounding in 1964 and reached the highest water level so far in 1978 with a capacity of 133.8 km3, thus forming the second largest man-made lake in the world. An earthquake of magnitude 5.3 (Ms) took place on 14 November 1981 along the most active part of the E-W Kalabsha fault beneath the Kalabsha bay (the largest bay of the lake). This earthquake was followed by a tremendous number of smaller events that continue till now. A radio-telemetry network of 13 seismic short period stations and a piezometer network of six wells were established around the northern part of the lake.Epicenters were found to cluster around active faults near the lake. The space-time distribution and the relation of the seismicity with the lake water level fluctuations were studied. Six years after flooding the eastern segment of the Kalabsha fault, strong seismicity began following the main shock of 14 November 1981. It occurred four days after the reservoir had reached its seasonal max level. The effect of the North African drought (1982 to present) is clearly seen in the reservoir water level. As it decreased and left the most active fault segments uncovered, the activity (Gebel Marawa area) decreased sharply. Also, the shallow activity was found to be more sensitive to rapid discharging than to the filling. This study indicates that geology, topography, lineations in seismicity, offsets in the faults, changes in fault trends and focal mechanisms are closely related. No relation was found between earthquake activity and both-ground water table fluctuations and water temperatures measured in wells located around the Kalabsha area.  相似文献   

10.
唐山地震区地壳结构和构造:深地震反射剖面结果   总被引:9,自引:1,他引:8       下载免费PDF全文
1976年7月28日,在唐山地区发生了7.8级大地震.为了研究该区的地壳结构和断裂的深浅构造关系,2009年,我们在唐山市南部的丰南地区,跨唐山断裂带完成了1条道间距40m、炮间距200m、50次覆盖的深地震反射探测剖面.结果表明:研究区的地壳厚度为32 ~ 34km,莫霍面自东向西逐渐加深,在丰南县和宣庄镇之间,中-...  相似文献   

11.
The Red River Fault in western Yunnan is one of the longest strike-slip faults in China and has a high seismic potential. To investigate its complicated structure, a near-NS directed 300km long wide-angle reflection/refraction seismic profile was laid out from Yunxian to Ninglang, across the Red River Fault. The 2-D velocity structure model along the profile was obtained through 1-D and 2-D analysis and fitting the observed data with combination of first-arrival traveltime tomography and forward modeling. The results indicate:In the crust, the average P-wave velocity is 6.2~6.3km/s and basically shows a positive gradient structure, but there are some low velocity anomalies at different area in upper and lower crust. Regarding the crust boundary, a relative large lateral variation exists in the depth of Moho, which goes deeper from south to north, ranging from 45km to as deep as 54km; compared to other typical continental crust, the study area demonstrates a striking thickening. It should be mentioned that the crustal thickening is mainly observed in the lower crust, while the upper and middle crust possess nearly constant thickness. We observed strong seismic velocity contrast across the Red River Fault, which emphasizes the role of the fault as an important tectonic boundary between Yangtze paraplatform and Sanjiang geosynclinal system. Along the profile, the Moho depth has no remarkable variation when crossing the Red River Fault. Combining with other study results on nearby area, it proves that there is notable heterogeneity between different parts of the Red River Fault.  相似文献   

12.
The North American Central Plains conductivity anomaly (NACP) lies, virtually in its entirety, within the Trans-Hudson Orogen. Accordingly, should these two features prove to be contemporaneous, then the geometrical relationship between these two is of foremost importance to any evolutionary tectonic model proposed to explain the collision of the Superior and Churchill Provinces in the Hudsonian, and a model that does not include a mechanism for the generation of this anomaly is obviously untenable.

In order to map better the trend of the NACP in the Province of Saskatchewan, Canada, two magnetotelluric (MT) profiles were conducted over the NACP previously defined by magnetometer arrays and profiles. Data from these two profiles, along with an earlier MT profile just north of the U.S./Canadian border, suggest that the NACP is not a continuous feature, but rather that it exhibits a definite break at latitude 51° N. Other geophysical evidence examined herein is concordant with this characteristic. If a second MT anomaly mapped to the northwest of this break is, in fact, a manifestation of the same geological structure, then one possible interpretation is of a major NW-SE trending sinistral fault in the deep crust, previously undetected, with a movement of some 100–150 km along strike.

The MT data from the southernmost profile, after correction for static shift, are modelled in a 2D manner, and it is shown that the NACP is consistent with an arcuate structure in vertical section of high conductivity (> 2 S m−1) beginning at a depth of 10 km centred on 103° W dipping down to the west reaching possibly the base of the crust. It is also shown that such an arcuate shape in section can explain an observed gravity high of 40 mgal. Such high conductivities cannot be explained in terms of connected fluids, as it would require implausibly high porosities (12–20%). A comprehensive interpretation of all the geophysical data would have to account for the observed characteristics of the anomalous region; which are, high electrical conductivity, positive density contrast, no magnetization, and high heat flow in the basement, in terms of a single causative body. One possible explanation is presented in terms of a zone of lithospheric weakness along which was emplaced low-density differentia from a mantle-derived body. An alternative explanation could be the phase transformation of obducted material into eclogite or serpentinite. However, difficulties exist with both of these explanations and further data are required.  相似文献   


13.
The urban active fault survey is of great significance to improve the development and utilization of urban underground space, the urban resilience, the regional seismic reference modeling, and the natural hazard prevention. The Beijing-Tianjin metropolitan region with the densest population is one of the most developed and most important urban groups, located at the northeastern North China plain. There are several fault systems crossing and converging in this region, and most of the faults are buried. The tectonic setting of the faults is complex from shallow to deep. There are frequent historical earthquakes in this area, which results in higher earthquake risk and geological hazards. There are two seismicity active belts in this area. One is the NE directed earthquake belt located at the east part of the profile in northern Ninghai near the Tangshan earthquake region. The other is located in the Beijing plain in the northwest of the profile and near the southern end of Yanshan fold belt, where the 1679 M8.0 Sanhe-Pinggu earthquake occurred, the largest historical earthquake of this area. Besides, there are some small earthquake activities related to the Xiadian Fault and the Cangdong Fault at the central part of the profile.
The seismic refraction experiment is an efficient approach for urban active fault survey, especially in large- and medium-size cities. This method was widely applied to the urban hazard assessment of Los Angeles. We applied a regularized tomography method to modeling the upper crustal velocity structure from the high-resolution seismic refraction profile data which is across the Beijing-Tianjin metropolitan region. This seismic refraction profile, with 185km in length, 18 chemical explosive shots and 500m observation space, is the profile with densest seismic acquisition in the Beijing-Tianjin metropolitan region up to now. We used the trial-error method to optimize the starting velocity model for the first-arrival traveltime inversion. The multiple scale checker board tests were applied to the tomographic result assessment, which is a non-linear method to quantitatively estimate the inversion results. The resolution of the tomographic model is 2km to 4km through the ray-path coverage when the threshold value is 0.5 and is 4km to 7km through the ray-path coverage when the threshold value is 0.7. The tomographic model reveals a very thick sediment cover on the crystalline basement beneath the Beijing-Tianjin metropolitan region. The P wave velocity of near surface is 1.6km/s. The thickest sediment cover area locates in the Huanghua sag and the Wuqing sag with a thickness of 8km, and the thinnest area is located at the Beijing sag with a thickness of 2km. The thickness of the sediment cover is 4km and 5km in the Cangxian uplift and the Dacang sag, respectively. The depth of crystalline basement and the tectonic features of the geological subunits are related to the extension and rift movement since the Cenozoic, which is the dynamics of formation of the giant basins.
It is difficult to identify a buried fault system, for a tomographic regularization process includes velocity smoothing, and limited by the seismic reflection imaging method, it is more difficult to image the steep fault. Velocity and seismic phase variations usually provide important references that describe the geometry of the faults where there are velocity differences between the two sides of fault. In this paper, we analyzed the structural features of the faults with big velocity difference between the two sides of the fault system using the velocity difference revealed by tomography and the lateral seismic variations in seismograms, and constrained the geometry of the major faults in the study region from near surface to upper crust. Both the Baodi Fault and the Xiadian Fault are very steep with clear velocity difference between their two sides. The seismic refraction phases and the tomographic model indicate that they both cut the crystalline basement and extend to 12km deep. The Baodi Fault is the boundary between the Dachang sag and the Wuqing sag. The Xiadian Fault is a listric fault and a boundary between the Tongxian uplift and the Dachang sag. The tomographic model and the earthquake locations show that the near-vertical Shunyi-Liangxiang Fault, with a certain amount of velocity difference between its two sides, cuts the crystalline basement, and the seismicity on the fault is frequent since Cenozoic. The Shunyi-Liangxiang Fault can be identified deep to 20km according to the seismicity hypocenters.
The dense acquisition seismic refraction is a good approach to construct velocity model of the upper crust and helpful to identify the buried faults where there are velocity differences between their two sides. Our results show that the seismic refraction survey is a useful implement which provides comprehensive references for imaging the fault geometry in urban active fault survey.  相似文献   

14.
We assembled all available magnetotelluric (MT) sounding curves that cover characteristic provinces of Europe. The depths of layers with increased electrical conductivities estimated from MT sounding curves by the respective authors were compared with a model of the lithosphere thickness derived from seismic P residuals. Regions of a relatively thin and thick lithosphere are characterized by positive and negative P residuals, respectively.

We have found a good correspondence with both sets of results. In the central part of the Pannonian Basin the depth of the lithosphere-asthenosphere transition is estimated at 60–80 km and 100–120 km at the flanks. The results for the Bohemian Massif show deeper levels of this transition between 100 and 200 km. These depths seem to be typical of the lithosphere base beneath the Variscan domain of Central Europe.  相似文献   


15.
Magnetotelluric (MT) observations at some sites in the vicinity of the Waterberg Fault/Omaruru Lineament (WF/OL), a major tectono-stratigraphic zone boundary in the Central Zone of the Damara Belt, show evidence for strong three-dimensional (3D) effects. We observe very high skew values, phases over 90°, and a strong correlation of parallel components of the electric and magnetic fields at long periods. Because of the dense site spacing and good spatial coverage, we can positively attribute these effects to local geology and are able to resolve structural detail within the WF/OL. Mapping LaTorraca’s electric characteristic vectors in form of ellipses proved particularly useful in identifying key elements of the conductivity structure for subsequent modelling. 3D and 2D anisotropic modelling can reproduce most of the observed 3D effects. The conductivity anomalies revealed in the area are: (i) a conductive ring structure in the shallow crust along the northern part of the profile; (ii) an anisotropic region in the upper crust with high conductivity parallel to the WF/OL; (iii) anisotropy in the lower crust with a different but undetermined strike direction; and (iv) a shallow elongated conductor sub-normal to the WF/OL. Modelling studies further suggest that the (anisotropic) fault zone is approximately 10 km wide and may reach down to a depth of 14 km or more.  相似文献   

16.
Anomalies of electrical conductivity are considered in relation to other geophysical parameters, such as seismic wave velocity, attenuation, seismicity and density, and to tectonic features. In the case of active subduction zones there appears to be a good correlation between low conductivity and the seismic quality factor Q. Beneath western North America, a conductive zone in the uppermost mantle apparently is controlled by the thickness and severity of the low-velocity layer. Anomalies in conductivity beneath rift valleys can be related to regions of intermediate seismic P-wave velocity, typically about 7.0 km/sec, which is suggestive of partial melting of mantle material. Within the continental crust, anomalies in conductivity are not, in general, thermally controlled, but they can show correlations with seismicity, and may indicate intra-plate boundaries.  相似文献   

17.
2016年12月—2018年4月间布设于汶川、芦山地震之间地震空段的密集监测台阵(LmsSGA)提供了密集的观测数据.通过拾取地震走时、初始定位,计算地方震级,得到了完备性震级为0级的地震目录.更加完备的地震目录为地震空段及周围地震活动的时空分布特征和孕震风险性评估提供了丰富的信息.重定位结果显示地震主要集中于龙门山断裂带深度为5~20km的孕震层内.地震活动频繁的汶川、芦山主震区,震源的空间分布模式与其早期余震相似,说明两次大地震的区域仍处于缓慢的应力调整阶段.青藏高原物质东向挤出受宝兴、彭灌杂岩阻挡,在两个杂岩体西北侧地震活动频繁.地震活动性分布显示汶川—茂县、映秀—北川断裂上存在一个清晰的长约30km,宽约20km的地震活动"空白"区域,与其下方因部分熔融而产生的低速体分布一致,我们推测熔融体的加温作用是导致空段内极低的地震活动性的主要原因.监测时段内仍观测到降雨变化率和地震数量呈反相关关系,再次证实了汶川—芦山地震间地震空段及邻区内季节性降雨对地震活动性存在一定调节作用.综合分析S波速度模型、历史强震活动及b值,我们推断地震空段东部的彭灌断裂中段及周围部分隐伏断层存在发生强震的风险.  相似文献   

18.
The northeastern Hainan Province is one of the areas subjected to the strongest, most frequent and longest-lasting volcanic activities in China since the Cenozoic era. Under the influence of magma and fault activities, northeastern Hainan Island has experienced many moderate and strong earthquakes in history. The Qiongshan M7.5 earthquake occurred in this region in 1605. The deformation measurement and InSAR data found a subsidence area in the south of the Qiongshan M7.5 earthquake. Small earthquakes frequently occur in this area. It has been inferred by some studies on this subsidence area, namely the Puqianwan-Fengjiawan seismic belt, that the subsidence and frequent seismic activity are related to the development of deep magma systems. Magnetotelluric methods are very sensitive to subsurface fluid, different temperature conditions, and resistivity property of the medium in the molten state. With the development of magnetotelluric three-dimensional inversion technique, using dense array magnetotelluric data in three-dimensional inversion can image the medium resistivity occurrence state and position in the volcanic area. To study the deep structure of the magma system and its relationship with seismic activity, we conducted MT observations on two profiles that cross Leihuling and Ma'anling volcanoes. Phase tensor decomposition was used to analyze the electrical structure. This paper investigates the two MT profiles using three-dimensional electromagnetic imaging technology and obtains the electrical structure of the two profiles. The result reveals the media properties and high conductivity bodies' occurrence range beneath the volcanic area in the northeastern Hainan. There are obvious differences in the electrical structure of the northeastern Hainan. The resistivity values are high in the east and low in the west. In addition, there are two high conductivity bodies in the northeast of Hainan. The high conductivity body C1 inclines to the west and locates beneath the Chengmai County area in the northwestern Hainan Island(west of the Leihuling-Ma'anling volcanoes). Its resistivity value is less than several Ωm. This low resistive body is 40km long in WE direction and 30km wide in SN direction. Its burial depth is about 2km near the HNL1 profile and 6km near the NHNL1 profile. Its bottom reaches the depth of about 25~30km, which may be close to or through the Moho surface depth of 25~26km in this area. It is speculated that the magma eruption of Leihuling-Ma'anling volcanoes did not migrate vertically from its deep part to the surface. The high conductivity body C2 locates beneath Longquan. The buried depth of C2 tends to be shallower from north to south, but there is no exposed surface in the study area, nor is it connected with the shallow low-resistivity layer. It is speculated that the C2 may be a magmatic sac trapped in the crust, but may have nothing to do with the eruption of Ma'anling-Leihuling volcanoes. The recent volcanic magma in this area comes from the lower crust and upper mantle of the ocean area to the west of Hainan Island. As magma enters the upper and middle crust, it continues to move shallowly and eastward. In this process, it should be blocked by the high resistance structure on the east side of the Changliu-Xiangou Fault and then erupt around this fault, thus forming numerous craters in this area. After the repeated eruption, deep magma channels gradually closed and volcanic activity weakened. The magma in the mid-upper crust cooled consolidated gradually, but the speed was uneven in different areas, resulting in the channels having closed down gradually in some places, and some are in the process of closing. Our results show an uneven rise and fall depth of the low resistivity body in the middle and lower crust. There is no high conductivity body in the deep part of the Puqianwan-Fengjiawan seismic belt and the subsidence area in the northeastern Hainan, which rules out the possibility that the small earthquakes are related to deep magma systems.  相似文献   

19.
川西地区小震重新定位及其活动构造意义   总被引:59,自引:18,他引:59       下载免费PDF全文
使用双差地震定位法对川西地区1992~2002年的13367个小震进行重新定位, 初步分析了地震活动性与地表活动构造的关系及其揭示的构造信息. 重新定位后,地震活动沿活动断裂成线(带)状分布现象非常突出,呈现出与地表活动构造的密切关系:结构简单的单一走滑断层具有上宽下陡的花状结构特征,拉分盆地与逆断裂具有线性而发散的分布式结构特征,逆断裂之下还存在缺震层. 此外,沿活动断裂带地震活动还具有空间分段性,揭示出局部地段存在着隐伏活动断裂和可圈定为地震危险区的地震空区. 震源深度分布显示,川西高原在15~20km的深度范围内普遍存在厚度约5km的缺震层,以高温高压实验结果为基础,通过计算川西地区地壳强度表明,大约14~19km的深度范围花岗岩处于塑性流变状态,说明缺震层的出现具有地壳物质塑性变形基础.  相似文献   

20.
HUANG Hao  FU Hong 《地震地质》2019,41(6):1413-1428
Using the seismic waveform data of Xiaowan seismic network and Yunnan seismic network, we determined the focal mechanisms of 36 earthquakes(ML ≥ 3.0)from Jun. 2005 to Dec. 2008 and 51 earthquakes(ML ≥ 2.5)from Jan. 2009 to Dec. 2015 by generalized polarity and amplitude technique. We inverted tectonic stress field of the Xiaowan reservoir before impounding, using the focal mechanisms of 36 earthquakes(ML ≥ 3.0)from Jun. 2005 to Dec. 2008 and CAP solutions of 58 earthquakes(ML ≥ 4.0)collected and the solutions in the Global Centroid Moment Tensor(GCMT)catalog; We inverted local stress field of the reservoir-triggered earthquake clustering area, using 51 earthquakes(ML ≥ 2.5)from Jan. 2009 to Dec. 2015. Focal mechanisms statistics show that, the Weixi-Qiaohou Fault is the seismic fault. Focal mechanisms were strike-slip type in initial stage, but normal fault type in later stage. Focal depths statistics of 51 earthquakes(ML ≥ 2.5)show that, the average value of focal depths in period Ⅰ, period Ⅱ and period Ⅲ are 8.2km, 7.3km and 7.8km respectively and the standard deviations are 4.3km, 3.5km and 6.0km respectively. The average value of focal depths is basically stable in different period, only the standard deviation is slightly different. Therefore, there is not positive connection between focal depth and deviation of focal mechanisms. What's more, there are 2 earthquakes(number 46 and number 47 in Fig.5 and Table 3)with almost the same magnitude, epicenter and focal depth, but they have different faulting types as normal and strike-slip. The focal mechanism of event No.46 is strike:302°, dip:40° and rake:-97° for plane Ⅰ, however, the focal mechanism of event No.47 is strike:292°, dip:82° and rake:140° for plane Ⅰ. Likewise, earthquake of number 3 and number 18 have similar characteristic. Therefore, the obvious focal mechanism difference of similar earthquake pair indicates the complexity of Weixi-Qiaohou Fault. Considering the quiet-active character of reservoir-triggered earthquakes, we discussed the change of local stress field in different period. The σ1 of tectonic stress field was in the near-south direction, with a dip angle of 14° before the impoundment, however, the direction of σ1 of local stress field changed continuously, with the dip angle getting larger after the impoundment. The direction of σ1 of local stress field of reservoir-triggered earthquake clustering area is close to the strike of Weixi-Qiaohou Fault, and reservoir impoundment increased the shear stress in the fault, so the weakening of fault was beneficial to trigger earthquakes. Comprehensive analysis suggests that fluid permeation and pore pressure diffusion caused by the water impounding, and the weakening of fault caused by local stress field are the key factors to trigger earthquake in the Xiaowan reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号