首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
In the semiarid Horqin Sandy Land of northern China, land desertification is the main causation in vegetation degradation and formation of moving dunes. A study was conducted from 1996 to 2005 to monitor the changes of vegetation characteristics and soil properties after moving dunes were fenced. The changes were compared between moving sand dunes with exclosure and without exclosure to evaluate the effectiveness of vegetation and soil restoration after exclosure establishment. The results show that exlosure establishment facilitated the colonization and development of plant species by ameliorating stressful environmental conditions. Species diversity, average coverage, and plant density significantly increased after exclosure of moving sand dunes along sequence compared with sand dunes without exclosure. Vegetation recovery on moving sand dunes accelerated by exclosure resulted in significant changes in soil properties including increased silt and clay contents, organic C and total N and decreased sand content, especially at the 0-5 cm depth. The results implied that moving sand dunes can be rapidly fixed by construction of exclosure.  相似文献   

2.
Vegetation and soil surveys were conducted under different site conditions in 2007–2011 to study species diversity using richness, evenness and diversity indices, in the middle portion of the Heihe River Basin. The relationship between species distribution and soil environmental factors was also studied by Canonical Correspondence Analysis (CCA). Results show that vegetation coverage and species diversity were the highest in the interdune lowland, and the lowest in the mobile dune. Results of the Hill’s index (diversity ordering) shows that species diversity is reduced along decreasing soil water content, and the order of species diversity was interdune lowland, flat slope, fixed dune, semifixed dune and mobile dune. The influence degree of soil factors on vegetation distribution was soil water content > pH > total K > organic matter > available N > total N > available K > total P > saline content > available P. Soil water content and pH were important factors significantly affecting spatial distribution difference of vegetation, the environmental explanation was 98%.  相似文献   

3.
古尔班通古特沙漠植被与环境关系分析   总被引:2,自引:0,他引:2  
The Gurbantunggut Desert is the largest stable and semi-stable sand desert in China, yet few data exist on vegetation pattern and species-environment relationships for these diverse desert landscapes. The sand dunes of the survey area are mainly of the longi- tudinal form from north to south, but checkerboard-shaped and honeycomb-shaped forms are also present, with the height of 10-50 m. We measured vegetation and soil data on north-south transects and compared them with vegetation and soil data on east-west transects. Analysis revealed that the varying trend and strength of the species diversity, dominance and cover of the plant communities in the longitudinal and transverse directions across the landscape are significantly different. The results of CCA ordination show that the microhabitats of soil organic matter (OM), soil salts (TS), sorting index ( σ ), topsoil water-content (SM) and pH relate to the differences in vegetation observed as differences in species assemblage from salt-intolerant ephemerals, micro-subshrubs and subshrubs to salt-tolerant shrubs and micro-arbors. The terrain (alt.) and soil texture (the contents of Mz and Ф 1) affect the spatial differentiation of many species. However, this spatial differentiation is not so marked on transects running longitudinally with the landscape, in the same direction as the dunes. The species of the desert vegetation have formed three assemblages under the action of habitat gradients, relating to three sections running transversely across the landscape, at right angles to the direction of the dune crests. In the mid-east section of the study area the topography is higher, with sand-lands or dune-slopes with coarse particles. Here the dominant vegetation comprises shrubs and subshrubs of Seriphidium santofium and Ephedra distachya, with large numbers of ephemeral and ephemeroid plants of Senecio subdentatus, and Carex physodes in spring and summer. On the soil of the dune-slopes in the mid-west of the study area, with coarse partic  相似文献   

4.
Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study, the Capillary Rise Method was used to measure the SWR in the artificial vegetation area in Shapotou, located in the southeast area of the Tengger Desert, Ningxia Province of western China. The variation of the soil water repellency among different minor topographies, different depths and different particle sizes was analyzed. The results of the study indicate that the SWR shows distinct changes with vegetation restoration, and it increases with an increase in the period of dune stabilization. In the same vegetation area, the SWR of soils in inter-dune depressions or windward slopes is slightly greater than that in crest or leeward slopes. The SWR of 0–3 cm topsoil is significantly greater than that in the 3–6 cm soil layer. The SWR decreases with an increase in grain size and the differences among the SWRs of different sieved soil fractions are found to be significant. There is also a significantly positive correlation between the SWR and the proportion of soils with grain sizes of 0–0.05, 0.05–0.01 and 0.01–0.15 mm, and a significantly negative correlation between the SWR and the propotion of soils with grain sizes exceeding 0.15 mm. The increase of SWR in revegetation areas may depend on the continuous depositing of atmospheric dust on the stabilized dune surface as well as the formation of biological soil crusts, especially on the formation of algal and lichen crusts. Enhanced SWR influences the effectiveness of water use of sand plants inhabiting the sand dunes.  相似文献   

5.
Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.  相似文献   

6.
塔里木河下游植被生态需水量(英文)   总被引:4,自引:0,他引:4  
We have appraised the relationships between soil moisture,groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China,by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots.It is noted that groundwater depth,soil moisture and plant species diversity are closely related.It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River.We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas.Based on different vegetation types and acreage with different groundwater depth,the total ecological water demand(EWD)of natural vegetation in 2005 was 2.4×108m 3in the lower reaches of the Tarim River.Analyzing the monthly EWD,we found that the EWD in the growth season(from April to September)is 81%of the year's total EWD.The EWD in May,June and July was 47%of the year's total EWD,which indicates the best time for dispensing artificial water.This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin.  相似文献   

7.
In many arid ecosystems,vegetation frequently occurs in high-cover patches interspersed in a matrix of low plant cover.However,theoretical explanations for shrub patch pattern dynamics along climate gradients remain unclear on a large scale.This context aimed to assess the variance of the Reaumuria soongorica patch structure along the precipitation gradient and the factors that affect patch structure formation in the middle and lower Heihe River Basin(HRB).Field investigations on vegetation patterns and heterogeneity in soil properties were conducted during 2014 and 2015.The results showed that patch height,size and plant-to-patch distance were smaller in high precipitation habitats than in low precipitation sites.Climate,soil and vegetation explained 82.5% of the variance in patch structure.Spatially,R.soongorica shifted from a clumped to a random pattern on the landscape towards the MAP gradient,and heterogeneity in the surface soil properties(the ratio of biological soil crust(BSC) to bare gravels(BG)) determined the R.soongorica population distribution pattern in the middle and lower HRB.A conceptual model,which integrated water availability and plant facilitation and competition effects,was revealed that R.soongorica changed from a flexible water use strategy in high precipitation regions to a consistent water use strategy in low precipitation areas.Our study provides a comprehensive quantification of the variance in shrub patch structure along a precipitation gradient and may improve our understanding of vegetation pattern dynamics in the Gobi Desert under future climate change.  相似文献   

8.
Soil erosion is a major threat to our terrestrial ecosystems and an important global environmental problem. The Loess Plateau in China is one of the regions that suffered more severe soil erosion and undergoing climate warming and drying in the past decades. The vegetation restoration named Grain-to-Green Program has now been operating for more than 10 years. It is necessary to assess the variation of soil erosion and the response of precipita- tion and vegetation restoration to soil erosion on the Loess Plateau. In the study, the Revised Universal Soil Loss Equation (RUSLE) was applied to evaluate annual soil loss caused by water erosion. The results showed as follows. The soil erosion on the Loess Plateau between 2000 and 2010 averaged for 15.2 t hm-2 a 1 and was characterized as light for the value less than 25 t hm-2 a-1. The severe soil erosion higher than 25 t hm-2 a-~ was mainly distributed in the gully and hilly regions in the central, southwestern, and some scattered areas of earth-rocky mountainous areas on the Loess Plateau. The soil erosion on the Loess Plateau showed a deceasing trend in recent decade and reduced more at rates more than 1 t hm 2 a 1 in the areas suffering severe soil loss. Benefited from the improved vegetation cover and ecological construction, the soil erosion on the Loess Plateau was significantly declined, es- pecially in the east of Yulin, most parts of Yah'an prefectures in Shaanxi Province, and the west of Luliang and Linfen prefectures in Shanxi Province in the hilly and gully regions. The variation of vegetation cover responding to soil erosion in these areas showed the relatively higher contribution than the precipitation. However, most areas in Qingyang and Dingxi pre- fectures in Gansu Province and Guyuan in Ningxia Hui Autonomous Region were predomi- nantly related to precipitation.  相似文献   

9.
古尔班通古特沙漠短命植物分布及其沙面稳定意义   总被引:7,自引:3,他引:4  
Based on systematically monitoring plants on dune ridges in the southern part of the Gurbantunggut Desert in 2002, this paper, from the angle of dune stabilization by vegetation,describes the temporal and spatial distribution patterns of ephemeral plants on isolated sand dunes,analyses the natural invasion processes of ephemeral plants on human-disturbed sand surface and expounds the importance of ephemeral plants in stabilizing sand dune surface. A total of 45 plant species were identified in the study area, 29 of which are ephemeral plants. Ephemeral plants sprouted in early April and completed their life-circle within about two months. Just as aeolian sand activities came to the strongest stage from April to June in desert regions of northern Xinjiang, the total coverage of trees, shrubs and herbs of long vegetational period on most dune ridges was less than 10%, while the mean coverage of ephemeral plants reached 13.9% in April, 40.2% in May and 14.1% in June. Therefore ephemeral plants acted as the major contributor to dune surface stabilization in the Gurbantunggut Desert.Investigations of vegetation restoration on engineering-disturbed dune surface show that ephemeral plants first recolonized the disturbed dune surface.  相似文献   

10.
Serious soil erosion has already resulted in degradation of the Loess Plateau of China. Soil erosion is commonly accompanied by extensive soil nutrient loss. Because of enrichment processes,sediment nutrient content is often higher than that of natural soil. The objective of this study is to determine the enrichments of organic matter and total nitrogen in sediment in hilly and gully loess areas on the Loess Plateau of China. Measurements of enrichment ratios (ER) of organic matter (EROM) and total nitrogen (ERTN) in sediment as affected by rainfall, slope gradient, tillage, and fertilization were made in the field under natural rainfall conditions. The results showed that the enrichment of clay in sediment resulted in the enrichment of organic matter (OM) and total nitrogen(TN) in sediment. The averages of sediment clay ER, EROM and ERTN for the various slope gradients were 1.77, 2.09 and 1.61, respectively. The soil erosive module was negatively correlated with EROM and ERTN. Our results indicate that measures to reduce soil erosion, i.e. reducing rainfall erosivity, decreasing soil slope gradient, decreasing fertilizer use, and using level trenches, may increase EROM and ERTN. Both quantity and quality of sediment yield should be considered when implementing erosion control measures.  相似文献   

11.
The distribution of plant species and relationships between species and soil factors in the east central part of Gurbantunggut Desert was studied to provide more insight into the flora and determine differences in vegetation across various parts of the desert. Two-way Cluster Analysis showed that the vegetation in the area could be divided into three groups, the first group was dominated by the shrub species, Ephedra przewalskii and the grass species, Carex physodes mainly in areas of flat grounds and gentle slopes; the second group was dominated by C. physodes, Artemisia songorica and A. xerophytica mainly on the slope of sand dunes and the third group was dominated by the shrub species, Haloxylon persicum mainly on the top of sand dunes. There was no difference in plant density between Groups 1 and 2 but there was a significant decrease in Group 3. Soil water under vegetation Group 3 was much lower than that in the other two groups at all soil depths. The EC, organic matter, total P and soluble Na, Ca and Mg varied very similarly with soil water. Canonical correspondence analysis (CCA) satisfactorily assessed the species-soil relations in the area. The distribution of plant species was strongly correlated with the soil factors of water content, organic matter, EC and nutrients. The variations in species occurrence explained by the three CCA axes were about 70%, indicating that some explanatory site variables may exist outside our studied parameters. Soil texture is suggested to be included in future studies to improve the explanation of CCA.  相似文献   

12.
河西走廊荒漠绿洲过渡带封育对土壤和植被的影响   总被引:2,自引:1,他引:1  
在河西走廊荒漠绿洲过渡带,封育天然植被是植被群落恢复、防止绿洲沙漠化的有效措施。以流动沙丘作为对照(0年),对封育5年和15年的半固沙和固定沙丘植被群落以及土壤进行调查取样和分析。结果表明:随着封育年限增加,天然固沙植被群落生物多样性增加,灌木层和草本层植物密度、盖度和生物量都显著增加,灌木层盖度从10%增加到40%,草本层以一年生草本植物为主,物种从5种增加到8种,生物量从1 g·m-2增加到13 g·m-2。随着天然植被盖度增加,土壤表层沙土细粒化明显,沙土中黏粉粒含量显著增加,土壤质地由粗质沙粒向细质沙粒转变;随着沙土中黏粉粒成分的增加,沙土有机质、全氮、全磷含量也增加,灌丛下土壤养分含量高于灌丛间,“沃岛效应”明显。同时,在灌丛下表层土壤出现明显的盐分集聚现象,其中SO42-、K+、Na+含量分别增加了6、3、17倍。在降水100 mm左右的荒漠绿洲过渡带,封育可以显著恢复固沙植被群落和提高沙土质地和养分。  相似文献   

13.
灌丛对流动沙地土壤特性和草本植物的影响   总被引:28,自引:16,他引:12  
通过对流动沙地灌丛内外土壤特性、土壤养分含量、土壤种子库和草本植物群落特征的差异性调查,分析了灌丛对沙地土壤特性和林下草本植被的影响。结果表明,在流动沙地0—20 cm土壤中细沙、极细沙、粘粉粒、有机质、总氮和总磷、有效磷和土壤水分含量,小叶锦鸡儿灌丛下分别较灌丛外高17.3%、4.4%、 49.5%、43.8%、40.0%、23.1%、16.3%和10.8%,黄柳灌丛下较灌丛外分别高3.5%、21.3%、0.0%、20.0%、16.7%、8.3%、10.6%和28.1%。小叶锦鸡儿、差不嘎蒿和黄柳灌丛下凋落物蓄积量要比灌丛外分别高18.3倍、365.2倍和15.5倍。差不嘎蒿灌丛下土壤种子库密度较灌丛外高10.9倍。原为半固定、半流动沙地优势种的多年生草本植物白草,不仅能在流动沙地灌丛下存活,而且具有较高的密度、高度、盖度和地上生物量。结果还表明,从灌丛中心到灌丛边缘,凋落物产量、土壤种子库密度、草本植物密度、盖度、生物量均存在明显的递减梯度,在灌丛外不远处消失。这些结果说明,在流动沙地,灌丛具有明显的“肥岛”效应和“保种”作用。  相似文献   

14.
乌兰布和沙漠典型植物群落土壤风蚀可蚀性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为探明植被恢复对乌兰布和沙漠土壤风蚀可蚀性的影响,以乌兰布和沙漠内不同沙地固 定阶段的 8 种典型植物群落及群落内表土作为研究对象,对土壤物理因子(可蚀性颗粒含量、土壤 含水量、有机质含量)、土壤结皮因子、植被因子 3 类土壤风蚀可蚀性因子指标进行监测,分析土壤 风蚀可蚀性因子在不同植物群落类型间、沙地固定阶段间的差异。结果表明:(1)在乌兰布和沙漠 典型植物群落中,沙蓬、沙生针茅、盐爪爪等草本植物群落的土壤风蚀可蚀性最强,白刺、梭梭、沙 冬青等灌木植物群落土壤风蚀可蚀性弱于草本植物群落,说明灌木林能显著降低土壤风蚀作用。 (2)随着沙地的不断固定,土壤结构不断发育,土壤可蚀性不断降低,土壤风蚀可蚀性强弱表现为 固定沙地<半固定沙地<流动沙地。(3)土壤可蚀性颗粒含量、土壤有机质含量、土壤含水量、土壤结 皮、植被因子与植被类型及沙地固定阶段具有显著相关关系。因此,在沙区生态建设工程中,为了 减少土壤风蚀量,不仅要考虑物种的选择,还要促进人工生态系统的演替和恢复,从而有效降低土 壤风蚀可蚀性。研究结果可为乌兰布和沙区植被生态系统服务功能的科学评价、防沙治沙工程的 建设与管理提供一定参考。  相似文献   

15.
沙坡头固定沙丘结皮层的微生物区系动态   总被引:22,自引:7,他引:15  
对中科院沙坡头沙漠研究试验站的人工植被固定沙丘、红卫自然植被固定沙丘的结皮层和流动沙丘表层(0~ 05cm)中的微生物类群数量的研究结果表明:①好气性细菌数量影响着微生物总数量的变化趋势;②微生物总数量分布依次排列为:自然植被固定沙丘>1956年栽植区>1964年栽植区>自然半固定沙丘>1982年栽植区>流动沙丘;③土壤微生物类群数量与结皮层的形成、植物覆盖度和土壤含水率等因子有密切的关系;④结皮层中的微生物类群数量与流动沙丘的固定程度呈正向关系。  相似文献   

16.
古尔班通古特沙漠纵向沙垄植被空间异质性   总被引:5,自引:3,他引:2  
在古尔班通古特沙漠南部纵向沙垄上按5 m×10 m的网格测度植被样方100个,采集浅层风沙土样品184件。调查发现,乔灌木层片和草本层片的分布及相互关系明显受沙垄地形影响,并且在干旱环境下种群间的竞争和空间上的互补使两层片生态优势度具有显著的相关性。地统计分析结果显示,纵向沙垄上植被空间异质性表现为木本层片的物种多样性呈斑块状分布,草本层片物种多样性呈现平行沙垄的带状结构和斑块结构叠加的特点,而植被盖度则在垂直沙垄走向的方向上具有强烈的梯度性变化。和沙垄土壤理化性质空间格局特征相对比,植被盖度及物种多样性与风沙土浅层含水量在自相关空间(变程)及空间异质性程度上比较接近。这是纵向沙垄小生态系统中草本植物和浅层土壤水分耦合关系在空间上的反映,也是木本植物对水分和土壤资源在小尺度(m)上竞争及中小尺度(10~100 m)上互补的结果。  相似文献   

17.
研究呼伦贝尔沙地植物群落与土壤特征相互关系有助于促进中国北方的生态恢复与重建工作。分析了呼伦贝尔沙地北部沙带58个样地174个样方的植物和土壤的调查数据,调查到94种植物,分属于26科64属,其中菊科(Compositae)、禾本科(Gramineae)、豆科(Leguminosae)和蔷薇科(Rosaceae)为前四大科,占总物种数55.33%。采用Ward系统分类法,将所调查植被分为4类。寸草薹-二裂委陵菜群落(Carex duriuscula-Potentilla bifurca) Tsallis多样性最高,冰草-星毛委陵菜-糙隐子草群落(Agropyron cristatum-Potentilla acaulis-Cleistogenes squarrosa) Tsallis多样性最低。不同植物群落间土壤物理特性有显著差异,化学特征差异不显著。随着土层深度的增加,各群落土壤全氮、全磷、有机质含量逐渐降低,表聚现象明显,脚薹草-贝加尔针茅群落(Carex pediformis-Stipa baicalensis)和冰草-星毛委陵菜-糙隐子草群落养分层次特征显著,羊草群落(Leymus chinensis)和寸草薹-二裂委陵菜群落养分层次特征不明显。CCA排序结果表明影响植被群落物种分布的土壤因子有全氮、全磷、有机质、pH和土壤水分,其中深层土壤全氮、全磷、有机质(20~40 cm土层)的作用最显著。呼伦贝尔沙地北部沙带植物群落分布存在较显著差异,呈现出斑块状分布规律,而土壤养分对植被群落格局具有重要影响。  相似文献   

18.
土壤水分是沙区主要的生态限制因子,其分布受气候、地形和植被等众多因素的影响。以腾格里沙漠沙坡头地区3种类型的沙丘(固定沙丘、半固定沙丘和流动沙丘)为研究对象,利用方差分析和冗余分析(RDA)等方法对沙丘不同部位和不同深度土壤水分的分布特征及其与地形-植被因子之间的关系进行了综合分析。结果表明:(1) 不同类型沙丘上0~300 cm的土壤水分随着深度的增加而增加,表层土壤水分的波动程度大于中层和深层。(2) 固定沙丘不同部位及不同深度的土壤水分之间没有明显的差异,半固定沙丘和流动沙丘迎风坡与丘底的土壤水分高于背风坡和丘顶。(3) 固定沙丘上的土壤水分受地形-植被因子的影响较半固定沙丘和流动沙丘小,影响固定沙丘土壤水分的主要因子有坡向、高差和灌木多度。(4) 地形-植被因子与研究区绝大多数半固定沙丘和流动沙丘的土壤水分均有负相关关系。研究揭示了腾格里沙漠土壤水分的分布规律及其与地形-植被因子的关系,对制定相应的防风固沙措施以及建立科学合理的植物固沙模式有积极的指导作用。  相似文献   

19.
在科尔沁沙地的流动沙丘上采用不同的人工措施,即铺设秸秆栅栏沙障、草方格和栽植差不嘎蒿,对沙丘的固定作用进行了研究。结果表明三种措施都有利于增加沙丘植物的多样性和生物量,但栽植差不嘎蒿和草方格好于秸秆栅栏沙障;沙丘固定过程中,植物的演替顺序有沙蓬-差不嘎蒿-狗尾草-黄蒿的趋势;植物生物量的形成与土壤湿度关系密切,应用试验数据建立了生物量(Y)与土壤湿度(X)的回归关系方程。Y=-13.7x2+72.5x-11.42 R2=0.824。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号