首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An integrated approach involving volcanology, geochemistry and numerical modelling has enabled the reconstruction of the volcanic history of the Fox kimberlite pipe. The observed deposits within the vent include a basal massive, poorly sorted, matrix supported, lithic fragment rich, eruption column collapse lapilli tuff. Extensive vent widening during the climactic magmatic phase of the eruption led to overloading of the eruption column with cold dense country rock lithic fragments, dense juvenile pyroclasts and olivine crystals, triggering column collapse. > 40% dilution of the kimberlite by granodiorite country rock lithic fragments is observed both in the physical componentry of the rocks and in the geochemical signature, where enrichment in Al2O3 and Na2O compared to average values for coherent kimberlite is seen. The wide, deep, open vent provided a trap for a significant proportion of the collapsing column material, preventing large scale run-away in the form of pyroclastic flow onto the ground surface, although minor flows probably also occurred. A massive to diffusely bedded, poorly sorted, matrix supported, accretionary-lapilli bearing, lithic fragment rich, lapilli tuff overlies the column collapse deposit providing evidence for a late phreatomagmatic eruption stage, caused by the explosive interaction of external water with residual magma. Correlation of pipe morphology and internal stratigraphy indicate that widening of the pipe occurred during this latter stage and a thick granodiorite cobble-boulder breccia was deposited. Ash- and accretionary lapilli-rich tephra, deposited on the crater rim during the late phreatomagmatic stage, was subsequently resedimented into the vent. Incompatible elements such as Nb are used as indicators of the proportion of the melt fraction, or kimberlite ash, retained or removed by eruptive processes. When compared to average coherent kimberlite the ash-rich deposits exhibit ~ 30% loss of fines whereas the column collapse deposit exhibits ~ 50% loss. This shows that despite the poorly sorted nature of the column collapse deposit significant elutriation has occurred during the eruption, indicating the existence of a high sustained eruption column. The deposits within Fox record a complex eruption sequence showing a transition from a probable violent sub-plinian style eruption, driven by instantaneous exsolution of magmatic volatiles, to a late phreatomagmatic eruption phase. Mass eruption rate and duration of the sub-plinian phase of the eruption have been determined based on the dimensions of milled country-rock boulders found within the intra-vent deposits. Calculations show a short lived eruption of one to eleven days for the sub-plinian magmatic phase, which is similar in duration to small volume basaltic eruptions. This is in general agreement with durations of kimberlite eruptions calculated using entirely different approaches and parameters, such as predictions of magma ascent rates in kimberlite dykes.  相似文献   

2.
K2 is a steep-sided kimberlite pipe with a complex internal geology. Geological mapping, logging of drillcore and petrographic studies indicate that it comprises layered breccias and pyroclastic rocks of various grain sizes, lithic contents and internal structures. The pipe comprises two geologically distinct parts: K2 West is a layered sequence of juvenile- and lithic-rich breccias, which dip 20–45° inwards, and K2 East consists of a steep-sided pipe-like body filled with massive volcaniclastic kimberlite nested within the K2 pipe. The layered sequence in K2 West is present to > 900 m below present surface and is interpreted as a sequence of pyroclastic rocks generated by explosive eruptions and mass-wasting breccias generated by rock fall and sector collapse of the pipe walls: both processes occurred in tandem during the infill of the pipe. Several breccia lobes extend across the pipe and are truncated by the steep contact with K2 East. Dense pyroclastic rocks within the layered sequence are interpreted as welded deposits. K2 East represents a conduit that was blasted through the layered breccia sequence at a late stage in the eruption. This phase may have involved fluidisation of trapped pyroclasts, with loss of fine particles and comminution of coarse clasts. We conclude that the K2 kimberlite pipe was emplaced in several distinct stages that consisted of an initial explosive enlargement, followed by alternating phases of accumulation and ejection.  相似文献   

3.
The BK9 kimberlite consists of three overlapping pipes. It contains two dark varieties of massive volcaniclastic kimberlite, informally termed dark volcaniclastic kimberlite (DVK). DVK(ns) is present in the north and south pipes and is interbedded with lenses of basalt breccia at the margins of the pipes. DVK(c) is present within the central pipe where it is overlain by a sequence of basalt breccias with interbedded volcanogenic sediments. The features observed within the DVK units of the BK9 kimberlite provide strong evidence for gas fluidisation of the accumulating pyroclastic material. These include the massive interior of the pipes, marginal epiclastic units, well-dispersed country-rock xenoliths and small-scale heterogeneities in lithic clast abundance. The upper portions of the central pipe provide a record of the transition from pyroclastic eruption and infill to passive epiclastic infilling of the crater, after the eruption has ceased. The wall-rock of the BK9 kimberlite dips inwards and is interpreted as post pipe-fill subsidence of the adjacent country rock. The two DVK units contain interstitial, silt-sized pyroclasts. The DVK(ns) has a higher fraction of former melt and displays evidence of incipient welding, as a result of differences in eruption dynamics. These units demonstrate that whilst DVK is comparable in many respects to MVK and forms part of a spectrum of volcaniclastic rocks formed by fluidisation, it differs in frequently containing silt-sized particles and including agglutinated and welded varieties with a high melt fraction. The DVK varieties, studied here, also have a distinctive hydrothermal assemblage, resulting from the abundance of low-silica accidental lithic clasts. Both the hydrothermal alteration and the abundance of silt-sized particles contribute to the DVKs distinctive dark colour.  相似文献   

4.
Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200–440°C and in crater-filling talus breccias and volcaniclastic breccias at <180°C. The results from the K1 and K2 pipes at Venetia suggest emplacement temperatures for the vent-filling breccias of 260°C to >560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10–30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300–400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the emplacement temperatures of different kimberlite facies.  相似文献   

5.
The Volcanic Sedimentary Complex (VSC) of the Iberian Pyrite Belt (IPB) in southern Portugal and Spain, comprises an Upper Devonian to Lower Carboniferous submarine succession with a variety of felsic volcanic lithofacies. The architecture of the felsic volcanic centres includes felsic lavas/domes, pyroclastic units, intrusions and minor mafic units that define lava–cryptodome–pumice cone volcanoes. The diversity of volcanic lithofacies recognized in different areas of the IPB mainly reflects variations in proximity to source, but also differences in the eruption style. The IPB volcanoes are intrabasinal, range in length from 2 km to > 8 km and their thickest sections vary from ∼ 400 m to > 800 m. These volcanoes are dominated by felsic lavas/domes that occur at several stratigraphic positions within the volcanic centre, however the pyroclastic units are also abundant and are spatially related to the lavas/domes. The intrusions are minor, and define cryptodomes and partly-extrusive cryptodomes. The hydrothermal systems that formed the Neves Corvo and Lousal massive sulfide ore deposits are associated with effusive units of felsic volcanic centres. At Neves Corvo, the massive sulfide orebodies are associated to rhyolitic lavas that overlie relatively thick fiamme-rich pyroclastic unit. In several other locations within the belt, pyroclastic units contain sulfide clasts that may have been derived from yet to be discovered coeval massive sulfide deposits at or below the sea floor, which enhances the exploration potential of these pyroclastic units and demonstrates the need for volcanic facies analysis in exploration.  相似文献   

6.
The ~5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin–medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water–magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a “magmatic horizon” of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW–SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.  相似文献   

7.
The Neoproterozoic (815.4 ± 4.3 Ma) Aries kimberlite intrudes the King Leopold Sandstone and the Carson Volcanics in the central Kimberley Basin, northern Western Australia. Aries is comprised of a N–NNE-trending series of three diatremes and associated hypabyssal kimberlite dykes and plugs. The diatremes are volumetrically dominated by massive, clast-supported, accidental lithic-rich kimberlite breccias that were intruded by hypabyssal macrocrystic phlogopite kimberlite dykes and plugs with variably uniform- to globular segregationary-textured groundmasses. Lower-diatreme facies, accidental lithic-rich breccias probably formed through fall-back of debris into the vent with a major contribution from the collapse of the vent walls. These massive breccias are overlain by a sequence of bedded volcaniclastic breccias in the upper part of the north lobe diatreme. Abundant, poorly vesicular to nonvesicular, juvenile kimberlite ash and lapilli, with morphologies that are indicative of phreatomagmatic fragmentation processes, occur in a reversely graded volcaniclastic kimberlite breccia unit at the base of this sequence. This unit and overlying bedded accidental lithic-rich breccias are interpreted to be sediment gravity-flow deposits (including possible debris flows) derived from the collapse of the crater walls and/or tephra ring deposits that surrounded the crater. Diatreme-forming eruptions may have been initiated by magma–water interactions along fracture and joint-controlled aquifers within the King Leopold Sandstone. The current level of exposure of the diatremes probably extends from the lower-diatreme facies up into the base of a bedded upper-diatreme sequence.  相似文献   

8.
The Kos Plateau Tuff consists of pyroclastic deposits from a major Quaternary explosive rhyolitic eruption, centred about 10 km south of the island of Kos in the eastern Aegean, Greece. Five main units are present, the first two (units A and B) were the product of a phreatoplinian eruption. The eruption style then changed to `dry' explosive style as the eruption intensity increased forming a sequence of ignimbrites and initiating caldera collapse. The final waning phase returned to phreatomagmatic eruptive conditions (unit F). The phreatomagmatic units are fine grained, poorly sorted, and dominated by blocky vitric ash, thickly ash-coated lapilli and accretionary lapilli. They are non-welded and were probably deposited at temperatures below 100°C. All existing exposures occur at distances between 10 km and 40 km from the inferred source. Unit A is a widespread (>42 km from source), thin (upwind on Kos) to very thick (downwind), internally laminated, dominantly ash bed with mantling, sheet-like form. Upwind unit A and the lower and middle part of downwind unit A are ash-rich (ash-rich facies) whereas the upper part of downwind unit A includes thin beds of well sorted fine pumice lapilli (pumice-rich facies). Unit A is interpreted to be a phreatoplinian fall deposit. Although locally the bedforms were influenced by wind, surface water and topography. The nature and position of the pumice-rich facies suggests that the eruption style alternated between `wet' phreatoplinian and `dry' plinian during the final stages of unit A deposition.Unit B is exposed 10–19 km north of the inferred source on Kos, overlying unit A. It is a thick to very thick, internally stratified bed, dominated by ash-coated, medium and fine pumice lapilli in an ash matrix. Unit B shows a decrease in thickness and grain size and variations in bedforms downcurrent that allow definition of several different facies and laterally equivalent facies associations. Unit B ranges from being very thick, coarse and massive or wavy bedded in the closest outcrops to source, to being partly massive and partly diffusely stratified or cross-bedded in medial locations. Pinch and swell, clast-supported pumice layers are also present in medial locations. In the most distal sections, unit B is stratified or massive, and thinner and finer grained than elsewhere and dominated by thickly armoured lapilli. Unit B is interpreted to have been deposited from an unsteady, density stratified, pyroclastic density current which decelerated and progressively decreased its particle load with distance from source. Condensation of steam during outflow of the current promoted the early deposition of ash and resulted in the coarser pyroclasts being thickly ash-coated. The distribution, texture and stratigraphic position of unit B suggest that the pyroclastic density current was generated from collapse of the phreatoplinian column following a period of fluctuating discharge when the eruptive activity alternated between `wet' and `dry'. The pyroclastic density current was transitional in particle concentration between a dilute pyroclastic surge and a high particle concentration pyroclastic flow. Unidirectional bedforms in unit B suggest that the depositional boundary was commonly turbulent and in this respect did not resemble conventional pyroclastic flows. However, unit B is relatively thick and poorly sorted, and was deposited more than 19 km from source, implying that the current comprised a relatively high particle concentration and in this respect, did not resemble a typical pyroclastic surge.  相似文献   

9.
The complex eruption sequence from the ∼1000 A.D. caldera-forming eruption of Volcán Ceboruco, known as the Jala Pumice, offers an exceptional opportunity to examine how pyroclastic material is transported and deposited from pyroclastic density currents over variable topography. Three main pyroclastic surge deposits (S1, S2, and S3) and two pyroclastic flow deposits (Marquesado and North-Flank PFDs) were emplaced during this eruption. Pyroclastic surge deposits are massive, planar, or cross-bedded, poor-to-well sorted, and display fluctuations in thickness, median diameter, sorting, and lithology as a function of distance, topography, and flow dynamics. Marquesado pyroclastic flow deposits reveal lateral variations from massive, poorly sorted deposits located within 5 km of Ceboruco to planar bedded, moderately well sorted deposits located >15 km away over the nearly horizontal topography to the south of Ceboruco. North-Flank pyroclastic flow deposits also reveal lateral variations from massive, poorly sorted deposits located within 4 km of Ceboruco to planar bedded, moderately well sorted deposits located 8 km away atop an escarpment that steeply rises 230 m from the northern valley floor. Field observations, granulometric analyses, component analyses, and crystal sedimentation calculations along flow-parallel sampling transects all suggest that both surges and flows were density stratified currents, where deposition occurred from a basal region of higher particle concentration that was supplied from an overlying dilute layer that transports particles in suspension. This supports the idea of a transition between “flow” and “surge” end members with variations in particle concentration. Topography greatly affects the transport and depositional capacity of the pyroclastic density currents as a result of “blocking”, either by topographic obstacles or by abrupt breaks at the base of volcano slopes, whereas the origin of Jala Pumice surge deposits (phreatomagmatic versus magmatic) appears to have little impact on their flow dynamics. Editorial responsibility: A.W. Woods This revised version was published in February 2005 with corrections to the title. An erratum to this article is available at .  相似文献   

10.
The majority of tephra generated during the paroxysmal 1883 eruption of Krakatau volcano, Indonesia, was deposited in the sea within a 15-km radius of the caldera. Two syneruptive pyroclastic facies have been recovered in SCUBA cores which sampled the 1883 subaqueous pyroclastic deposit. The most commonly recovered facies is a massive textured, poorly sorted mixture of pumice and lithic lapilli-to-block-sized fragments set in a silty to sandy ash matrix. This facies is indistinguishable from the 1883 subaerial pyroclastic flow deposits preserved on the Krakatau islands on the basis of grain size and component abundances. A less common facies consists of well-sorted, planarlaminated to low-angle cross-bedded, vitric-enriched silty ash. Entrance of subaerial pyroclastic flows into the sea resulted in subaqueous deposition of the massive facies primarily by deceleration and sinking of highly concentrated, deflated components of pyroclastic flows as they traveled over water. The basal component of the deposit suggests no mixing with seawater as inferred from retention of the fine ash fraction, high temperature of emplacement, and lack of traction structures, and no significant hydraulic sorting of components. The laminated facies was most likely deposited from low-concentration pyroclastic density currents generated by shear along the boundary between the submarine pyroclastic flows and seawater. The Krakatau deposits are the first well-documented example of true submarine pyroclastic flow deposition from a modern eruption, and thus constitute an important analog for the interpretation of ancient sequences where subaqueous deposition has been inferred based on the facies characteristics of encapsulating sedimentary sequences.  相似文献   

11.
Ground-penetrating radar (GPR) is used to image and characterize fall and pyroclastic flow deposits from the 1815 eruption of Tambora volcano in Indonesia. Analysis of GPR common-mid-point (CMP) data indicate that the velocity of radar in the sub-surface is 0.1 m/ns, and this is used to establish a preliminary traveltime to-depth conversion for common-offset reflection profiles. Common-offset radar profiles were collected along the edge of an erosional gully that exposed approximately 1–2 m of volcanic stratigraphy. Additional trenching at select locations in the gully exposed the contact between the pre-1815 eruption surface and overlying pyroclastic deposit from the 1815 eruption. The deepest continuous, prominent reflection is shown to correspond to the interface between pre-eruption clay-rich soil and pyroclastics that reach a maximum thickness of 4 m along our profiles. This soil surface is distinctly terraced and is interpreted as the ground surface augmented for agriculture and buildings by people from the kingdom of Tambora. The correlation of volcanic stratigraphy and radar data at this location indicates that reflections are produced by the soil-pyroclastic deposit interface and the interface between pyroclastic flows (including pyroclastic surge) and the pumice-rich fall deposits. In the thickest deposits an additional reflection marks the interface between two pyroclastic flow units.  相似文献   

12.
The Rockeskyllerkopf Volcanic Complex (RVC) comprises three overlapping monogenetic volcanic centers: Southeast Lammersdorf (SEL), Mäuseberg (M) and Rockeskyllerkopf (RKK). Each volcanic center comprises proximal wall deposits with a well defined crater wall unconformity and crater fill deposits that partially to completely cover the outer crater wall. The SEL Center is a phreatomagmatic tuff ring composed of lithic rich tephra deposited by pyroclastic falls and surges. The second center, Mäuseberg, with its crater to the northwest of the SEL Center is predominantly magmatic. Topographic and outcrop patterns suggest that this center may have formed a series of overlapping scoria cones along a N–S trending fissure. The youngest center, RKK, which lies on a poorly developed palaeosol within the earlier Mäuseberg deposits, comprises a well developed proximal crater wall sequence. This sequence of magmatic, likely Strombolian, fall and grain avalanche deposits passes upward into a crater fill sequence that comprises variably welded bombs. The final eruptions in the center were massive lava flows that were ponded within the RKK crater. Ar–Ar age dating of reequilibrated fragments of phlogopite megacrysts in the SEL lavas indicates volcanic activity began at 474?±?39 ka. Literature K–Ar dates for the youngest lava flows in the RKK Center give ages of 360?±?60 to 470 ka. Our interpretation of the age data and the presence of the poorly developed palaeosol between the Mäuseberg and RKK centers indicates that volcanism in the RVC began around 470 ka with the eruption of the SEL and Mäuseberg centers followed a few thousand years later by the eruption of the RKK Center.  相似文献   

13.
Most if not all kimberlite pipes show a multitude of facies types, which imply that the pipes were emplaced under an episodic re-occurrence of eruptive phases, often with intermittent phases of volcanic quiescence. The majority of these facies can be related to either the fragmentation behaviour of the magma during emplacement or changing conditions during sedimentation of volcaniclastic deposits, as well as their alteration and compaction after deposition. An additional factor controlling pipe-facies architecture is the degree of mobility of the loci of explosions in the explosion chambers of the root zone or root zones at the base of the maar-diatreme volcano. In a growing pipe, the root zone moves downward and, with that movement, the overlying diatreme enlarges both in size and diameter. However, during the life span of the volcano, the explosion chamber can also move upward, back into the lower diatreme, where renewed explosions result in the destruction of older deposits and their structures. Next to vertical shifts of explosion chambers, the loci of explosions can also move laterally along the feeder dyke or dyke swarm. This mobility of explosion chambers results in a highly complex facies architecture in which a pipe can be composed of several separate root zones that are overlain by an amalgamated, crosscutting diatreme and maar crater with several lobes. Pipe complexity is amplified by periodic changes of the fragmentation behaviour and explosivity of kimberlite magma. Recent mapping and logging results of Canadian and African kimberlite pipes suggest that kimberlite magma fragmentation ranges from highly explosive with abundant entrained country rock fragments to weakly explosive spatter-like production with scarce xenoliths. On occasions, spatter may even reconstitute and form a texturally coherent deposit on the crater floor. In addition, ascending kimberlite magma can pass the loci of earlier fragmentation events in the root zone and intrudes as coherent hypabyssal kimberlite dykes in high pipe levels or forms extrusive lava lakes or flows on the crater floor or the syneruptive land surface, respectively. This highly variable emplacement behaviour is typical for basaltic maar-diatreme volcanoes and since similar deposits can also be found in kimberlites, it can be concluded that also the volcanological processes leading to these deposits are similar to the ones observed in basaltic pipes.  相似文献   

14.
Kimberlite pipes can contain significant proportions of dark and dense kimberlite that have mostly been interpreted as intrusive coherent (hypabyssal) in origin. This study reports a well-documented occurrence of a fresh intra-crater clastogenic extrusive coherent kimberlite that is concluded to have formed as a result of lava fountaining. This paper focuses on a dark, dense, competent, generally crystal-rich, massive kimberlite unit within the Victor Northwest kimberlite pipe (Ontario, Canada). Using a comprehensive volcanological and petrographic analysis of all available drill cores, it is shown that this unit has a fresh well-crystallised coherent groundmass and is extrusive and pyroclastic in origin. The proposed clastogenic coherent extrusive origin is based on deposit morphology, gradational contacts to enveloping pyroclastic units, as well as the presence of remnant pyroclast outlines and angular broken olivines. This paper, and an increasing number of other studies, suggest that fragmental extrusive coherent kimberlite in intra-crater settings may be more common than previously thought. The emplacement history and volcanology of these pipes need to be reconsidered based on the emerging importance of this particular kimberlite facies.  相似文献   

15.
火山碎屑流堆积因其巨大的危害性而成为火山学研究的重要课题之一。文中对长白山区天池火山千年大喷发火山碎屑流堆积进行了粒度分析。分析结果表明,火山碎屑流堆积分选差,伴生的灰云浪堆积分选性好。火山碎屑流堆积中的岩屑和浮岩的平均最大粒度随着离开火山口距离的加大而减小,反映火山碎屑流搬运过程中存在重力分选和机械磨损作用。火山碎屑流在搬运过程中发生了流体化作用,离开火山口越远流体化速度越小,反映火山碎屑流在搬运过程中发生了流体化去气作用,这种作用使火山碎屑流的粘度和屈服强度增加而导致沉积。流体化速度是控制搬运距离的因素之一,远源多渠道火山碎屑流的汇合使流体化速度增大,搬运距离更远,造成的灾害范围也增大  相似文献   

16.
Stratigraphic reconstruction of the Upper Pollara eruption has allowed for the inference of eruptive mechanisms and the distillation of a sedimentological model for pyroclastic density currents (PDCs) moving across variable topography. The pre-eruptive topography in the study area was characterised by a tuff ring-like morphology, with both inward and outward dipping slopes. Highly viscous, moderately porphyritic, dacitic to rhyolitic magmas fed the eruption, which was characterised by a Vulcanian eruptive style. The stratigraphic succession was divided into five eruption units (EUs), which result from different phases of the eruption separated by stases. Sustained columns occurred only during EU1, while PDC generation dominates EU2–5. Lithofacies analysis of the PDC deposits indicates the prevalence of massive coarse-grained deposits on the inner slopes of the Pollara crater, which are interpreted as the deposits of a flow-boundary zone dominated by granular flow or fluid escape regimes. Dune-bedded, massive to stratified lithofacies dominate the outer slopes of the Pollara crater, and are interpreted as the deposits of PDCs with flow-boundary zones in which traction played a major role. Thin, massive PDC deposits are exposed on the sub-horizontal Malfa terrace, and are interpreted as representative of flow-boundary zones dominated by a granular flow regime. The occurrence of stacked deposits indicates that most of the PDCs were characterised by unsteady pulsatory behaviour, with development of trains of pulses during their transport. The downcurrent lithofacies transitions observed for the Upper Pollara deposits have finally been compared with other similar lithofacies associations which have been described for short-lived PDCs at tuff rings, in order to discuss the influence of pre-eruptive topography on lithofacies association.  相似文献   

17.
Batur volcanic field (BVF) in Bali, Indonesia, underwent two successive caldera-forming eruptions, CI and CII (29,300 and 20,150 years b.p., respectively) that resulted in the deposition of dacitic ignimbrites. The respective ignimbrites show contrasted stratigraphies, exemplify the variability of dynamics associated with caldera-forming eruptions and provide insights into the possible controls exerted by caldera collapse mechanisms. The Ubud Ignimbrite is widespread and covers most of southern Bali. The deposits consist dominantly of pyroclastic flow with minor pumice fall deposits. The intra-caldera succession comprises three distinct, partially to densely welded cooling units separated by non-welded pyroclastic flow and fall deposits. The three cooling units consist of pyroclastic flow deposits only and together represent up to 16 distinct flow units, each including a thin, basal, lithic-rich breccia. This eruption was related to a 13.5×10 km caldera (CI) with a minimum collapsed volume of 62 km3. The floor of caldera CI is inferred to have a piecemeal geometry. The Ubud Ignimbrite is interpreted as the product of a relatively long-lasting, pulsating, collapsing fountain that underwent at least two time breaks. A stable column developed during the second time break. Discharge rate was high overall, but oscillatory, and increased toward the end of the eruption. These dynamics are thought to reflect sequential collapse of the CI structure. The Gunungkawi Ignimbrite is of more limited extent outside the source caldera and occurs only in central southern Bali. The Gunungkawi Ignimbrite proximal deposits consist of interbedded accretionary lapilli-bearing ash surge, ash fall, pumice lapilli fall and thin pyroclastic flow deposits, overlain by a thick and massive pyroclastic flow deposit with a thick basal lag breccia. The caldera (CII) is 7.5×6 km in size, with a minimum collapsed volume of 9 km3. The CII eruption included two distinct phases. During the first, eruption intensity was low to moderate and an unstable, essentially phreatomagmatic column developed. During the second phase, the onset of caldera collapse drastically increased the eruption intensity, resulting in column collapse. The caldera floor is believed to have subsided rapidly, producing a single, short-lived burst of high eruption intensity that resulted in the deposition of the uppermost massive pyroclastic flow.Editorial responsibility: T. Druitt  相似文献   

18.
19.
The Highway–Reward massive sulphide deposit is hosted by a silicic volcanic succession in the Cambro-Ordovician Seventy Mile Range Group, northeastern Australia. Three principal lithofacies associations have been identified in the host succession: the volcanogenic sedimentary facies association, the primary volcanic facies association and the resedimented syn-eruptive facies association. The volcanogenic sedimentary facies association comprises volcanic and non-volcanic siltstone and sandstone turbidites that indicate submarine settings below storm wave base. Lithofacies of the primary volcanic facies association include coherent rhyolite, rhyodacite and dacite, and associated non-stratified breccia facies (autoclastic breccia and peperite). The resedimented volcaniclastic facies association contains clasts that were initially formed and deposited by volcanic processes, but then redeposited by mass-flow processes. Resedimentation was more or less syn-eruptive so that the deposits are essentially monomictic and clast shapes are unmodified. This facies association includes monomictic rhyolitic to dacitic breccia (resedimented autoclastic facies), siltstone-matrix rhyolitic to dacitic breccia (resedimented intrusive hyaloclastite or resedimented peperite) and graded lithic-crystal-pumice breccia and sandstone (pumiceous and crystal-rich turbidites). The graded lithic-crystal-pumice breccia and sandstone facies is the submarine record of a volcanic centre(s) that is not preserved or is located outside the study area. Pumice, shards, and crystals are pyroclasts that reflect the importance of explosive magmatic and/or phreatomagmatic eruptions and suggest that the source vents were in shallow water or subaerial settings.The lithofacies associations at Highway–Reward collectively define a submarine, shallow-intrusion-dominated volcanic centre. Contact relationships and phenocryst populations indicate the presence of more than 13 distinct porphyritic units with a collective volume of 0.5 km3. Single porphyritic units vary from <10 to 350 m in thickness and some are less than 200 m in diameter. Ten of the porphyritic units studied in the immediate host sequence to the Highway–Reward deposit are entirely intrusive. Two of the units lack features diagnostic of their emplacement mechanism and could be either lavas and intrusions. Direct evidence for eruption at the seafloor is limited to a single partly extrusive cryptodome. However, distinctive units of resedimented autoclastic breccia indicate the presence nearby of additional lavas and domes.The size and shape of the lavas and intrusions reflect a restricted supply of magma during eruption/intrusion, the style of emplacement, and the subaqueous emplacement environment. Due to rapid quenching and mixing with unconsolidated clastic facies, the sills and cryptodomes did not spread far from their conduits. The shape and distribution of the lavas and intrusions were further influenced by the positions of previously or concurrently emplaced units. Magma preferentially invaded the sediment, avoiding the older units or conforming to their margins. Large intrusions and their dewatered envelope may have formed a barrier to the lateral progression and ascent of subsequent batches of magma.  相似文献   

20.
The distribution of diamonds within individual kimberlite pipes is poorly documented in the public domain due to the proprietary nature of the data. The study of the diamond distribution within two pipes, Fox and Koala, from the EKATI Diamond Mine, NWT, Canada, in conjunction with detailed facies models has shown several distinct relationships of deposit type and grade distribution. In both pipes, the lithological facies represent grade units which can be distinguished from each other in terms of relative size and abundance of diamonds. A positive relationship between olivine grain size and abundance with diamond size and abundance is observed, indicating that sorting of fragmental kimberlites influences diamond distribution. Though surface geological processes do not control the diamond potential of the erupting magma, they can be responsible for concentrating diamonds into economically significant proportions. A good understanding of the eruption, transport and depositional processes responsible for the individual lithological units and the diamond distribution within them is important for successful resource estimation. This may lead to recognition of areas suitable for selective mining, making a marginal deposit economic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号