首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5–20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic stratigraphy, suggesting that the diatreme eruption did not penetrate below the base of the uppermost country rock unit, a sandstone aquifer ∼360 m thick. By comparison, other NVF diatremes several tens of kilometers away were excavated to depths of ∼1,000 m beneath the paleosurface (e.g., Delaney PT. Ship Rock, New Mexico: the vent of a violent volcanic eruption. In: Beus SS (ed) Geological society of America Centennial Field Guide, Rocky Mountain Section 2:411–415 (1987)). This can be accounted for by structurally controlled variations in aquifer thickness beneath different regions of the volcanic field. Variations in accidental clast composition and bedding style around the edifice are indicative of a laterally migrating or widening vent that encountered lateral variations in subsurface geology. We offer reasonable evidence that this subsurface lithology controlled the availability of external water to the magma, which in turn controlled characteristics of deposits and their distribution around the vent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The Quaternary Herchenberg composite tephra cone (East Eifel, FR Germany) with an original bulk volume of 1.17·107 m3 (DRE of 8.2·106 m3) and dimensions of ca. 900·600·90 m (length·width·height) erupted in three main stages: (a) Initial eruptions along a NW-trending, 500-m-long fissure were dominantly Vulcanian in the northwest and Strombolian in the southeast. Removal of the unstable, underlying 20-m-thick Tertiary clays resulted in major collapse and repeated lateral caving of the crater. The northwestern Lower Cone 1 (LC1) was constructed by alternating Vulcanian and Strombolian eruptions. (b) Cone-building, mainly Strombolian eruptions resulted in two major scoria cones beginning initially in the northwest (Cone 1) and terminating in the southeast (Cones 2 and 3) following a period of simultaneous activity of cones 1 and 2. Lapilli deposits are subdivided by thin phreatomagmatic marker beds rich in Tertiary clays in the early stages and Devonian clasts in the later stages. Three dikes intruded radially into the flanks of cone 1. (c) The eruption and deposition of fine-grained uppermost layers (phreatomagmatic tuffs, accretionary lapilli, and Strombolian fallout lapilli) presumably from the northwestern center (cone 1) terminated the activity of Herchenberg volcano. The Herchenberg volcano is distinguished from most Strombolian scoria cones in the Eifel by (1) small volume of agglutinates in central craters, (2) scarcity of scoria bomb breccias, (3) well-bedded tephra deposits even in the proximal facies, (4) moderate fragmentation of tephra (small proportions of both ash and coarse lapilli/bomb-size fraction), (5) abundance of dense ellipsoidal juvenile lapilli, and (6) characteristic depositional cycles in the early eruptive stages beginning with laterally emplaced, fine-grained, xenolith-rich tephra and ending with fallout scoria lapilli. Herchenberg tephra is distinguished from maar deposits by (1) paucity of xenoliths, (2) higher depositional temperatures, (3) coarser grain size and thicker bedding, (4) absence of glassy quenched clasts except in the initial stages and late phreatomagmatic marker beds, and (5) predominance of Strombolian, cone-building activity. The characteristics of Herchenberg deposits are interpreted as due to a high proportion of magmatic volatiles (dominantly CO2) relative to low-viscosity magma during most of the eruptive activity.  相似文献   

3.
The pyroclastic deposits of many basaltic volcanic centres show abrupt transitions between contrasting eruptive styles, e.g., Hawaiian versus Strombolian, or `dry' magmatic versus `wet' phreatomagmatic. These transitions are controlled dominantly by variations in degassing patterns, magma ascent rates and degrees of interaction with external water. We use Crater Hill, a 29 ka explosive/effusive monogenetic centre in the Auckland volcanic field, New Zealand, as a case study of the transitions between these end-member eruptive styles. The Crater Hill eruption took place from at least 4 vents spaced along a NNE-trending, 600-m-long fissure that is contained entirely within a tuff ring generated during the earliest eruption phases. Early explosive phases at Crater Hill were characterised by eruption from multiple unstable and short-lived vents; later, dominantly extrusive, volcanism took place from a more stable point source. Most of the Crater Hill pyroclastic deposits were formed in 3 phreatomagmatic (P) and 4 `dry' magmatic (M) episodes, forming in turn the outer tuff ring and maar crater (P1, M1, P2) and scoria cone 1 (M2–M4). This activity was followed by formation of a lava shield and scoria cone 2. Purely `wet' activity is represented by the bulk of P1 and P2, and purely `dry' activity by much of M2–M4. However, M1 and parts of M2 and M4 show evidence for simultaneous eruptions of differing style from adjacent vents and rapid variations in the extent and timing of magma:water interaction at each vent. The nature of the wall-rock lithics, and these rapid variations in inferred water/magma ratios imply interaction was occurring mostly at depths of ≤80 m, and the vesicularity patterns in juvenile clasts from these and the P beds imply that rapid degassing occurred at these shallow levels. We suggest that abrupt transitions between eruptive styles, in time and space, at Crater Hill were linked to changes in the local magma supply rate and patterns and vigour of degassing during the final metres of ascent.  相似文献   

4.
The tuff ring of Averno (3700 years BP) is a wide maar-type, lake-filled volcano which formed during one of the most recent explosive eruptions inside the Campi Flegrei caldera.The eruptive products consist of (a) a basal coarse unit, intercalated ballistic fallout breccia, subplinian pumice deposits and pyroclastic surge bedsets and (b) an upper fine-grained, stratified, pyroclastic surge sequence.During the deposition of the lower unit both purely magmatic (lapilli breccia) and hydromagmatic episodes (wavy and planar bedded, fine ash pyroclastic surge bedsets) coexisted. The hydromagmatic deposits exhibit both erosive and depositional features. The upper unit mostly comprises fine grained, wet pyroclastic surge deposits. The pyroclastic surges were controlled by a highly irregular pre-existing topography, produced by volcano-tectonic dislocation of older tuff rings and cones.Both the upper and lower units show decreasing depletion of fines with increasing distance from the vent. The ballistic fallout layers, however, exhibit only a weak increase in fines with distance from the vent, in spite of marked fining of the lapilli and blocks. The deposits consist dominantly of moderately to highly vesicular juvenile material, generated by primary magmatic volatile driven fragmentation followed by episodes of near-surface magma-water interaction.The evolution of the eruption toward increased fragmentation and a more hydromagmatic character may reflect that the progressive depletion in magmatic volatiles and a decrease in conduit pressure during the last stage of the eruption, possibly associated with a widening of the vent at sea level.  相似文献   

5.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   

6.
The late Pleistocene San Venanzo maar and nearby Pian di Celle tuff ring in the San Venanzo area of Umbria, central Italy, appear to represent different aspects of an eruptive cycle accompanied by diatreme formation. Approximately 6x106 m3 of mostly lapillisized, juvenile ejecta with lesser amounts of lithics and 1x106 m3 of lava were erupted. The stratigraphy indicates intense explosive activity followed by lava flows and subvolcanic intrusions. The pyroclastic material includes lithic breccia derived from vent and diatreme wall erosion, roughly stratified lapilli tuff deposited by concentrated pyroclastic surge, chaotic scoriaceous pyroclastic flow and inverse graded grain-flow deposits. The key feature of the pyroclastics is the presence of concentric-shelled lapilli generated by accretion around the lithics during magma ascent in the diatreme conduits. The rock types range from kalsilite leucite olivine melilitite lavas and subvolcanic intrusions to carbonatite, phonolite and calcitic melilitite pyroclasts. Juvenile ejecta contain essential calcite whose composition and texture indicate a magmatic origin. Pyroclastic carbonatite activity is also indicated by the presence of carbonatite ash beds. The San Venanzo maar-forming event is believed to have been trigered by fluid-rich carbonatite-phonolite magma. The eruptive centre the moved to the Pian di Celle tuff ring, where the eruption of degassed olivine melilititic magma and late intrusions ended magmatic activity in the area. In both volcanoes the absence of phreatomagmatic features together with the presence of large amounts of primary calcite suggests carbonatite segregation and violent exsolution of CO2 which, flowing through the diatremes, produced the peculiar intrusive pyroclastic facies and triggered explosions.  相似文献   

7.
The Cana Creek Tuff is one of four rhyolitic ignimbrite members of the Late Carboniferous Currabubula Formation, a volcanogenic conglomeratic braidplain sequence exposed along the western margin of the New England Orogen in northeastern New South Wales. The source is not exposed but was probably located tens of kilometres to the west of existing outcrops. The medial to distal parts of the tuff average about 70 m in thickness, are widespread (minimum present area 1400 km2), and comprise a primary pyroclastic facies (ignimbrite, ash-fall tuff) and a redeposited volcaniclastic facies (sandstone, conglomerate). Both facies are composed of differing proportions of crystal fragments (quartz, plagioclase, K-feldspar), pumiceous clasts (pumice, shards, fine ash), and accidental lithics. The eruption responsible for this unit was explosive and of large magnitude (dense rock equivalent volume about 100 km3). That it was also phreatomagmatic in character is proposed on the basis of: the intimate association of primary and redeposited facies; the presence of accretionary lapilli both in ignimbrite and in ash-fall tuff; the fine grain size of juvenile pyroclasts; the low grade of the ignimbrite; and the close similarity in facies, composition and magnitude to the deposits from the 20,000y. B.P. phreatomagmatic eruption at Taupo, New Zealand (the Wairakei and parts of the Hinuera Formations). The eruption began and ended from a vent with excess water available, possibly submersed in a caldera lake, and generated volcaniclastic sheet floods and debris flows. The emplacement of the primary pyroclastic facies is correlated with an intervening stage when the water:magma mass ratio was lower. The deposits from a large-magnitude, phreatomagmatic eruption are predicted to show systematic lateral variations in facies. Primary pyroclastic facies predominate near the source although the preserved stratigraphy is an incomplete record because of widespread contemporaneous erosion. Volcaniclastic facies, redeposited from proximal sites by floods, dominate at medial and distal locations. In areas hundreds of kilometres from the source, the eruption is registered by thin layers of fine-grained airfall ash.  相似文献   

8.
Observations on phreatomagmatic ash deposits of Phlegraean Fields and Vesuvius supply evidence for the origin of vesiculated tuff in a cool environment. Early deposition by fallout of a matrix-free bed of damp accretionary lapilli is followed by deposition of cohesive mud or a mud rain. The lapilli bed becomes partly or completely transformed into a vesiculated tuff by mud percolation and eventual coalescence of accretionary lapilli with consequent trapping of air originally contained in the interstices. The proposed mechanism accounts for vesiculated tuff formation in distal deposits beyond limits commonly attained by pyroclastic surges. This same mechanism may, nevertheless, also operate in proximal tuff-ring and cone deposits during fallout of phreatomagmatic ash separating bed sets in surge-dominated successions. The sequence of events in the proposed model fits well with the evolution of a cooling phreatomagmatic ash cloud in which early ash aggregation (accretionary lapilli fallout) is followed closely by steam condensation (mud or muddy rainfall). This new model invoking a cool-temperature origin is intended to be complementary to previously proposed theories. Although difficult to assess because of the often complete obliteration of original lapilli, the process is believed to be relatively common in the generasion of vesiculated tuffs within phreatomagmatic deposits.  相似文献   

9.
White Island is an active andesitic-dacitic composite volcano surrounded by sea, yet isolated from sea water by chemically sealed zones that confine a long-lived acidic hydrothermal system, within a thick sequence of fine-grained volcaniclastic sediment and ash. The rise of at least 106 m3 of basic andesite magma to shallow levels and its interaction with the hydrothermal system resulted in the longest historical eruption sequence at White Island in 1976–1982. About 107 m3 of mixed lithic and juvenile ejecta was erupted, accompanied by collapse to form two coalescing maar-like craters. Vent position within the craters changed 5 times during the eruption, but the vents were repeatedly re-established along a line linking pre-1976 vents. The eruption sequence consisted of seven alternating phases of phreatomagmatic and Strombolian volcanism. Strombolian eruptions were preceded and followed by mildly explosive degassing and production of incandescent, blocky juvenile ash from the margins of the magma body. Phreatomagmatic phases contained two styles of activity: (a) near-continuous emission of gas and ash and (b) discrete explosions followed by prolonged quiescence. The near-continuous activity reculted from streaming of magmatic volatiles and phreatic steam through open conduits, frittering juvennile shards from the margins of the magma and eroding loose lithic particles from the unconsolidated wall rock. The larger discrete explosions produced ballistic block aprons, downwind lobes of fall tephra, and cohesive wet surge deposits confined to the main crater. The key features of the larger explosions were their shallow focus, random occurrence and lack of precursors, and the thermal heterogeneity of the ejecta. This White Island eruption was unusual because of the low discharge rate of magma over an extended time period and because of the influence of a unique physical and hydrological setting. The low rate of magma rise led to very effective separation of magmatic volatiles and high fluxes of magmatic gas even during phreatic phases of the eruption. While true Strombolian phases did occur, more frequently the decoupled magmatic gas rose to interact with the conduit walls and hydrothermal system, producing phreatomagmatic eruptions. The form of these wet explosions was governed by a delicate balance between erosion and collapse of the weak conduit walls. If the walls were relatively stable, fine ash was slowly eroded and erupted in weak, near-continous phreatomagmatic events. When the walls were unstable, wall collapse triggered larger discrete phreatomagmatic explosions.  相似文献   

10.
Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.  相似文献   

11.
The 274 ka “Basalt-Trachytic Tuff of Tuoripunzoli” (TBTT) from Roccamonfina volcano (Roman Region, Italy) consists of a basaltic scoria lapilli fall (Unit A) overlain by a trachytic sequence formed by a surge (Unit B), repetitive pumice lapilli and ash-rich layers both of fallout origin (Unit C) and a pyroclastic flow deposit (Unit D). The TBTT is widespread (40 km2) in the northern sector of the volcano, but limited to a small area on the southern slopes of the main cone. Interpolation between the northern deposits and the latter one yields a minimum depositional area of 123 km2, and an approximate bulk volume of 0.2-0.3 km3. Isopach and isopleth maps are consistent with a source vent within the main caldera of Roccamonfina.Unit A shows a fairly good sorting and a moderate grain size; glass fragments are cuspate and vesicular. Unit B is fine grained and poorly sorted; shards are blocky and nonvesicular. Pumice lapilli of Unit C are moderately sorted and moderately coarse grained. Glass shards are equant and vesicular. Lithic clasts are strongly comminuted to submillimetric sizes. By contrast, the ash-rich internal divisions are very fine grained and poorly sorted. They consist of a mixture of equant shards which are prevailingly blocky and poorly vesicular. Unit D is a massive, poorly sorted, moderately coarse-grained deposit. Glass fragments are nearly equant and slightly or nonvesicular.The TBTT is interpreted as due to eruption of a basaltic magma followed in rapid succession by one trachyte magma. Unit A formed by Subplinian fallout of a moderate, purely magmatic column. Interaction between a trachyte magma and water resulted in eruption of surge Unit B. A high-standing eruption column erupted alternating fallout pumice lapilli and fallout ashes. Pumice lapilli originated prevailingly from the inner part of the eruption column, whereas magma-water interaction on the external parts of the column resulted in ash fallout. The uppermost pyroclastic flow Unit D is interpreted as due to final collapse of the eruption column.  相似文献   

12.
The Pleistocene basanite-tephrite Rothenberg cone complex in the East Eifel was constructed by alternating dominantly Strombolian (S1–3) and dominantly phreatomagmatic (P1–3) phases of volcanism along a NNE-SSW linear vent system. Strombolian eruptions, from the central vent of the S1 scoria cone, and phreatomagmatic eruptions, from a vent on the southern margin of the cone, occurred simultaneously during the second phreatomagmatic phase (P2). The P2 deposits are a complex sequence in which Strombolian fallout ejecta is intimately admixed with phreatomagmatic fallout and pyroclastic surge material. Every bed contains at least trace amounts of ejecta from both sources but, at every site, an alternation of Strombolian-dominant and phreatomagmatic-dominant units is recorded. Each bed also shows marked lateral changes with a progressive northward increase in the proportion of Strombolian material. The two eruptive styles produced morphologically distinct clast populations often with widely separated (5–7 φ) grain size modes. The phreatomagmatic component of the P2 deposits is inferred to be the result of shallow interaction of external water and cool, partially degassed magma which reached the surface at a time when the magma column was retreating from the northern Strombolian central vent.The Rothenberg deposits illustrate the complexity and sensitivity of controls on Strombolian and associated phreatomagmatic volcanism, and the shallow depth of fragmentation during such eruptions. During such shallow eruptions minor, ephemeral and localised variations in the rate of rise and discharge of magma, and vent geometry and hydrology significantly influence the magma:water ratio and hence eruptive style.  相似文献   

13.
An integrated approach involving volcanology, geochemistry and numerical modelling has enabled the reconstruction of the volcanic history of the Fox kimberlite pipe. The observed deposits within the vent include a basal massive, poorly sorted, matrix supported, lithic fragment rich, eruption column collapse lapilli tuff. Extensive vent widening during the climactic magmatic phase of the eruption led to overloading of the eruption column with cold dense country rock lithic fragments, dense juvenile pyroclasts and olivine crystals, triggering column collapse. > 40% dilution of the kimberlite by granodiorite country rock lithic fragments is observed both in the physical componentry of the rocks and in the geochemical signature, where enrichment in Al2O3 and Na2O compared to average values for coherent kimberlite is seen. The wide, deep, open vent provided a trap for a significant proportion of the collapsing column material, preventing large scale run-away in the form of pyroclastic flow onto the ground surface, although minor flows probably also occurred. A massive to diffusely bedded, poorly sorted, matrix supported, accretionary-lapilli bearing, lithic fragment rich, lapilli tuff overlies the column collapse deposit providing evidence for a late phreatomagmatic eruption stage, caused by the explosive interaction of external water with residual magma. Correlation of pipe morphology and internal stratigraphy indicate that widening of the pipe occurred during this latter stage and a thick granodiorite cobble-boulder breccia was deposited. Ash- and accretionary lapilli-rich tephra, deposited on the crater rim during the late phreatomagmatic stage, was subsequently resedimented into the vent. Incompatible elements such as Nb are used as indicators of the proportion of the melt fraction, or kimberlite ash, retained or removed by eruptive processes. When compared to average coherent kimberlite the ash-rich deposits exhibit ~ 30% loss of fines whereas the column collapse deposit exhibits ~ 50% loss. This shows that despite the poorly sorted nature of the column collapse deposit significant elutriation has occurred during the eruption, indicating the existence of a high sustained eruption column. The deposits within Fox record a complex eruption sequence showing a transition from a probable violent sub-plinian style eruption, driven by instantaneous exsolution of magmatic volatiles, to a late phreatomagmatic eruption phase. Mass eruption rate and duration of the sub-plinian phase of the eruption have been determined based on the dimensions of milled country-rock boulders found within the intra-vent deposits. Calculations show a short lived eruption of one to eleven days for the sub-plinian magmatic phase, which is similar in duration to small volume basaltic eruptions. This is in general agreement with durations of kimberlite eruptions calculated using entirely different approaches and parameters, such as predictions of magma ascent rates in kimberlite dykes.  相似文献   

14.
The Golan Heights is a Plio-Pleistocene volcanic plateau. Cinder cones of Late Pleistocene age are very common in the eastern and northern Golan, while phreatomagmatic deposits are relatively rare and occur just in two structures — the maar of Birket Ram and the tuff ring of Mt. Avital. The complex of Mt. Avital includes two large cinder cones, a tuff ring with an elongated central depression and several basaltic flows, some of them breach the cinder cones. The (exposed) eruptive history of the complex includes (1) an early stage of basaltic lava flows, (2) strombolian activity and the buildup of the southern cinder cone, (3) a second stage of basaltic flows and the buildup of the northern cinder cone, and then a transition to (4) phreatomagmatic explosions. The phreatomagmatic deposits include surges, lapilli fallout deposits and coarse-grained lithic tuff breccias, which were found up to 200 m above the central depression. Basaltic and scoriaceous clasts are the main component of all deposits, while juvenile material is usually a minor component, almost absent in the lapilli deposits.It is suggested that the phreatomagmatic events in Mt. Avital were induced by the infiltration of water from a lake that existed in a nearby topographic low (Quneitra Valley). The lake was formed or significantly expanded at about 300 ka due to a lava flow that blocked the drainage of the valley to the west. The interlayering of tuff and scoria at the top of the northern cinder cone and the good preservation of a lava flow top breccia under the surges imply that the phreatomagmatic activity immediately followed and even coincided with the last stages of strombolian activity. It is suggested that the dry–wet transition was triggered by the effusion of the second stage lavas and the buildup of the northern cinder cone, which probably caused a reduction of pressure in the magmatic system and allowed the lake water an access to the magmatic system. The minimum age of the phreatomagmatic events is determined by a 54 ka Musterian site which lies directly on top of the tuff in the Quneitra Valley.  相似文献   

15.
The Croscat pyroclastic succession has been analysed to investigate the transition between different eruptive styles in basaltic monogenetic volcanoes, with particular emphasis on the role of phreatomagmatism in triggering Violent Strombolian eruptions. Croscat volcano, an 11 ka basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF) shows pyroclastic deposits related both to magmatic and phreatomagmatic explosions.Lithofacies analysis, grain size distribution, chemical composition, glass shard morphologies, vesicularity, bubble-number density and crystallinity of the Croscat pyroclastic succession have been used to characterize the different eruptive styles. Eruptions at Croscat began with fissural Hawaiian-type fountaining that rapidly changed to eruption types transitional between Hawaiian and Strombolian from a central vent. A first phreatomagmatic phase occurred by the interaction between magma and water from a shallow aquifer system at the waning of the Hawaiian- and Strombolian-types stage. A Violent Strombolian explosion then occurred, producing a widespread (8 km2), voluminous tephra blanket. The related deposits are characterized by the presence of wood-shaped, highly vesicular scoriae. Glass-bearing xenoliths (buchites) are also present within the deposit. At the waning of the Violent Strombolian phase a second phreatomagmatic phase occurred, producing a second voluminous deposit dispersed over 8.4 km2. The eruption ended with a lava flow emission and consequent breaching of the western-side of the volcano. Our data suggest that the Croscat Violent Strombolian phase was related to the ascent of deeper, crystal-poor, highly vesicular magma under fast decompression rate. Particles and vesicles elongation and brittle failure observed in the wood-shaped clasts indicate that fragmentation during Violent Strombolian phase was enhanced by high strain-rate of the magma within the conduit.  相似文献   

16.
Monogenetic basaltic volcanoes are the most common volcanic landforms on the continents. They encompass a range of morphologies from small pyroclastic constructs to larger shields and reflect a wide range of eruptive processes. This paper reviews physical volcanological aspects of continental basaltic eruptions that are driven primarily by magmatic volatiles. Explosive eruption styles include Hawaiian and Strombolian (sensu stricto) and violent Strombolian end members, and a full spectrum of styles that are transitional between these end members. The end-member explosive styles generate characteristic facies within the resulting pyroclastic constructs (proximal) and beyond in tephra fall deposits (medial to distal). Explosive and effusive behavior can be simultaneous from the same conduit system and is a complex function of composition, ascent rate, degassing, and multiphase processes. Lavas are produced by direct effusion from central vents and fissures or from breakouts (boccas, located along cone slopes or at the base of a cone or rampart) that are controlled by varying combinations of cone structure, feeder dike processes, local effusion rate and topography. Clastogenic lavas are also produced by rapid accumulation of hot material from a pyroclastic column, or by more gradual welding and collapse of a pyroclastic edifice shortly after eruptions. Lava flows interact with — and counteract — cone building through the process of rafting. Eruption processes are closely coupled to shallow magma ascent dynamics, which in turn are variably controlled by pre-existing structures and interaction of the rising magmatic mixture with wall rocks. Locations and length scales of shallow intrusive features can be related to deeper length scales within the magma source zone in the mantle. Coupling between tectonic forces, magma mass flux, and heat flow range from weak (low magma flux basaltic fields) to sufficiently strong that some basaltic fields produce polygenetic composite volcanoes with more evolved compositions. Throughout the paper we identify key problems where additional research will help to advance our overall understanding of this important type of volcanism.  相似文献   

17.
The youngest dacitic Plinian eruption in west-central Nicaragua, forming the 18 km3 Chiltepe Tephra (CT), occurred about nineteen hundred years ago at Apoyeque stratovolcano, which dominates the Chiltepe volcanic complex 15 km north of the capital Managua, where the CT is 2 m thick. We have traced the CT from its proximal facies at the crater rim, through the medial facies in the lowlands around Apoyeque, and to the distal facies up to 550 km offshore in the Pacific. While medial and distal facies consist of widespread Plinian fall deposits, the proximal facies reveals the complexity of this eruption, which we divide into four phases (I–IV). Interaction of rising magma with a pre-existing crater lake generated the phreatomagmatic opening phase I of the eruption, which produced ash fall with accretionary lapilli. Phase II marked a rapid change to persistent magmatic activity that yielded several large Plinian eruptions, declining through a period of unstable eruption conditions, followed by a short hiatus. Phase III began with unstable conditions, probably as a result of eastward migration and widening of the vent, leading to a second period of Plinian eruptions with three major events reaching magma discharge rates five times larger than those of phase II. Phase III again declined through unstable eruption conditions before magmatic activity terminated. Numerous explosions in the shallow hydrothermal system during the final phase IV resulted in the formation of a phreatic tuff ring on the rim of Apoyeque crater. The white, highly-vesicular, dacitic CT pumice contains plagioclase (An45–68), orthopyroxene, clinopyroxene, and minor hornblende, apatite and titanomagnetite phenocrysts. A very subordinate fraction of gray pumice has the highest crystal content, the least evolved bulk-rock, but the most evolved matrix-glass composition. The CT dacite has two unusual compositional features: (1) all white dacite has the same melt (matrix-glass) composition such that variations in bulk-rock compositions (64–68 wt% SiO2) simply reflect different phenocryst contents of 10–35%, interpreted as the result of gradual phenocryst settling in the magma chamber. (2) Abundant olivine crystals with a bimodal distribution in Mg# (modes at Mg# = 0.75 and Mg# = 0.8) are dispersed throughout the erupted dacite. These are clearly out of equilibrium with the dacitic melt and are interpreted as xenocrysts derived from the basaltic Nejapa-Miraflores volcanic lineament that intersects the Chiltepe volcanic complex and was contemporaneously active. Thermobarometric estimates place the dacitic CT magma reservoir in the upper crust (<250 MPa), with a temperature of about 890°C and about 5 wt% water dissolved in the melt. Comparing water and chlorine contents with respective solubility models suggests that volatile degassing began in the magma reservoir and triggered the CT eruption. From the vertical compositional variation pattern of the CT we deduce that the conduit tapped the magma chamber not at the top but from the side, at some deeper level, and that subsequent magma withdrawal was governed by both variations in discharge rate and possible upward migration and/or widening of the conduit entrance.  相似文献   

18.
The Pinacate volcanic field, Sonora, Mexico, contains 400 cinder cones and eight maars. It is noteworthy that most of the maar-forming, phreatomagmatic eruptions were immediately preceded by effusive and Strombolian activity rather than occurring when magma first approached the surface. The Strombolian activity may have facilitated access of groundwater to the conduits in this arid region. The field evidence suggests that phreatomagmatism is inhibited unless the magma flux is low relative to the rate of water supply and unless the top of the magma column has subsided, probably below the water table. The latter condition is difficult to prove in the absence of direct observation, and alternative hypotheses involving disturbance of the conduit system are considered. The spatial distribution of maars in the Pinacate and the lithology of their associated tuffaceous ejecta both may reflect the course of an ancient river channel whose permeable gravels were pierced by the magmatic conduits.  相似文献   

19.
20.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号