首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73287篇
  免费   1750篇
  国内免费   1210篇
测绘学   2129篇
大气科学   5544篇
地球物理   15082篇
地质学   25566篇
海洋学   6607篇
天文学   16522篇
综合类   343篇
自然地理   4454篇
  2021年   715篇
  2020年   757篇
  2019年   865篇
  2018年   1745篇
  2017年   1654篇
  2016年   2072篇
  2015年   1291篇
  2014年   1999篇
  2013年   3702篇
  2012年   2371篇
  2011年   3201篇
  2010年   2840篇
  2009年   3745篇
  2008年   3229篇
  2007年   3295篇
  2006年   3138篇
  2005年   2333篇
  2004年   2280篇
  2003年   2046篇
  2002年   2040篇
  2001年   1756篇
  2000年   1602篇
  1999年   1371篇
  1998年   1387篇
  1997年   1370篇
  1996年   1095篇
  1995年   1150篇
  1994年   1039篇
  1993年   911篇
  1992年   845篇
  1991年   841篇
  1990年   844篇
  1989年   799篇
  1988年   735篇
  1987年   879篇
  1986年   756篇
  1985年   918篇
  1984年   1112篇
  1983年   984篇
  1982年   951篇
  1981年   848篇
  1980年   823篇
  1979年   755篇
  1978年   766篇
  1977年   697篇
  1976年   639篇
  1975年   633篇
  1974年   603篇
  1973年   664篇
  1972年   441篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
Systematic variations in atmospheric heat exchange, surface residence time, and groundwater influx across montane stream networks commonly produce an increasing stream temperature trend with decreasing elevation. However, complex stream temperature profiles that differ from this common longitudinal trend also exist, suggesting that stream temperatures may be influenced by complex interactions among hydrologic and atmospheric processes. Lakes within stream networks form one potential source of temperature profile complexity due to the spatially variable contribution of lake-sourced water to stream flow. We investigated temperature profile complexity in a multi-season stream temperature dataset collected across a montane stream network containing many alpine lakes. This investigation was performed by making comparisons between multiple statistical models that used different combinations of stream and lake characteristics to represent specific hypotheses for the controls on stream temperature. The compared models included a set of models which used a topographically derived estimate of the hydrologic influence of lakes to separate and quantify the effects of stream elevation and lake source-water contributions to longitudinal stream temperature patterns. This source-water mixing model provided a parsimonious explanation for complex stream-network temperature patterns in the summer and autumn, and this approach may be further applicable to other systems where stream temperatures are influenced by multiple water sources. Simpler models that discounted lake effects were more optimal during the winter and spring, suggesting that complex patterns in stream temperature profiles may emerge and subside temporally, across seasons, in response to diversity of water temperatures from different sources.  相似文献   
2.
Springs are the point of origin for most headwater streams and are important regulators of their chemical composition. We analysed solute concentrations of water emerging from 57 springs within the 3 km2 Fool Creek catchment at the Fraser Experimental Forest and considered sources of spatial variation among them and their influence on the chemical composition of downstream water. On average, calcium and acid neutralizing capacity (bicarbonate-ANC) comprised 50 and 90% of the cation and anion charge respectively, in both spring and stream water. Variation in inorganic chemical composition among springs reflected distinct groundwater sources and catchment geology. Springs emerging through glacial deposits in the upper portion of the catchment were the most dilute and similar to snowmelt, whereas lower elevation springs were more concentrated in cations and ANC. Water emerging from a handful of springs in a geologically faulted portion of the catchment were more concentrated than all others and had a predominant effect on downstream ion concentrations. Chemical similarity indicated that these springs were linked along surface and subsurface flowpaths. This survey shows that springwater chemistry is influenced at nested spatial scales including broad geologic conditions, elevational and spatial attributes and isolated local features. Our results highlight the role of overlapping factors on solute export from headwater catchments.  相似文献   
3.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
4.
Astronomy Letters - We consider the spatial restricted circular three-body problem in the nonresonant case. The massless body (satellite) is assumed to have a large sail area and, therefore, the...  相似文献   
5.
Izmailov  I. S.  Shakht  N. A.  Polyakov  E. V.  Gorshanov  D. L.  Pogodin  M. A. 《Astrophysics》2021,64(2):160-171
Astrophysics - This paper is a continuation of our earlier work devoted to determining the orbit and mass of the star 61 Cyg and the changes in the photometric characteristics of its components....  相似文献   
6.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
7.
Abstract

Large debris flows in steep-sloped ravines debouching to the Rimac River, in metropolitan Lima (Peruvian capital), have resulted in considerable loss of life and property adversely impacting communities in the region. Temporal, spatial and volumetric features of debris flows are difficult to predict, and it is of utmost importance that achievable management solutions are found to reduce the impact of these catastrophic events. The emotional and economic toll of these debris flows on this increasingly densely populated capital city in South America is devastating where communities must live in such inadequate and dangerous conditions. To address this problem, the application of advanced Japanese technology, Sustainable Actions Basin Orientation (SABO), has been investigated using a geomorphological modelling to develop an implementation plan. Rayos de Sol stream basin in Chosica, was selected as a pilot to develop the proposal, as it is considered high risk due to the presence of ancient debris flows and recent flows in 2012, 2015 and 2017. The recurrence of debris flows in this location has resulted in numerous deaths and catastrophic property losses. This study combines geologic and geomorphic mapping and hydraulic and landform evolution numerical modelling. The implementation of a SABO Master Plan based on the multidisciplinary assessment hazard scenarios, will allow the implementation of feasible mitigation actions. The SABO technology has been applied successfully in Japan and other countries in areas with steep short slopes, similar to the conditions surrounding the Peruvian capital. Results from this study will be presented to the Peruvian Government as part of an action plan to manage debris-flow impact.
  1. KEY POINTS
  2. High-risk mass slope failure is linked to poor urban planning in urban developing regions of Lima the capital of Peru.

  3. A multidisciplinary study including geotechnical and hydrological analysis, engineering design, and socio-economic research is required to implement a SABO Master Plan, and this basin is pilot study basin.

  4. At the present time, a maintenance programme for existing hydraulic structures should be implemented, and a flood risk management plan developed may propose the relocation of some communities and infrastructure.

  相似文献   
8.
Ocean Dynamics - One-dimensional models of exchange flows driven by horizontal density gradients are well known for performing poorly in situations with weak turbulent mixing. The main issue with...  相似文献   
9.
Doklady Earth Sciences - A first set of K–Ar isotopic ages obtained, which allowed to estimate the age of the largest volcanoes of the Anaunsky Dol (3.2, 2.2 and 1.9 Ma) and eruptive centers...  相似文献   
10.
Doklady Earth Sciences - Oxidation decomposition of titanomagnetite grains to the magnetite–ilmenite lattice during the formation of igneous rock can lead to thermochemical remanent...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号