首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6769篇
  免费   221篇
  国内免费   66篇
测绘学   235篇
大气科学   663篇
地球物理   1392篇
地质学   2371篇
海洋学   658篇
天文学   1266篇
综合类   15篇
自然地理   456篇
  2023年   19篇
  2022年   48篇
  2021年   82篇
  2020年   98篇
  2019年   90篇
  2018年   199篇
  2017年   184篇
  2016年   252篇
  2015年   156篇
  2014年   210篇
  2013年   320篇
  2012年   292篇
  2011年   391篇
  2010年   307篇
  2009年   427篇
  2008年   361篇
  2007年   306篇
  2006年   319篇
  2005年   298篇
  2004年   392篇
  2003年   309篇
  2002年   234篇
  2001年   172篇
  2000年   161篇
  1999年   134篇
  1998年   160篇
  1997年   94篇
  1996年   74篇
  1995年   67篇
  1994年   58篇
  1993年   61篇
  1992年   59篇
  1991年   51篇
  1990年   47篇
  1989年   29篇
  1988年   20篇
  1987年   32篇
  1986年   25篇
  1985年   31篇
  1984年   44篇
  1983年   35篇
  1982年   21篇
  1981年   27篇
  1978年   29篇
  1977年   26篇
  1976年   27篇
  1975年   31篇
  1974年   19篇
  1973年   22篇
  1971年   19篇
排序方式: 共有7056条查询结果,搜索用时 296 毫秒
1.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
2.
Ocean Dynamics - One-dimensional models of exchange flows driven by horizontal density gradients are well known for performing poorly in situations with weak turbulent mixing. The main issue with...  相似文献   
3.
Atmospheric dust is an integral component of the Earth system with major implications for the climate, biosphere and public health. In this context, identifying and quantifying the provenance and the processes generating the various types of dust found in the atmosphere is paramount. Isotopic signatures of Pb, Nd, Sr, Zn, Cu and Fe are commonly used as sensitive geochemical tracers. However, their combined use is limited by the lack of (a) a dedicated chromatographic protocol to separate the six elements of interest for low‐mass samples and (b) specific reference materials for dust. Indeed, our work shows that USGS rock reference materials BHVO‐2, AGV‐2 and G‐2 are not applicable as substitute reference materials for dust. We characterised the isotopic signatures of these six elements in dust reference materials ATD and BCR‐723, representatives of natural and urban environments, respectively. To achieve this, we developed a specific procedure for dust, applicable in the 4–25 mg mass range, to separate the six elements using a multi‐column ion‐exchange chromatographic method and MC‐ICP‐MS measurements.  相似文献   
4.
The 2 to 5 km thick, sandstone-dominated (>90%) Jura Quartzite is an extreme example of a mature Neoproterozoic sandstone, previously interpreted as a tide-influenced shelf deposit and herein re-interpreted within a fluvio-tidal deltaic depositional model. Three issues are addressed: (i) evidence for the re-interpretation from tidal shelf to tidal delta; (ii) reasons for vertical facies uniformity; and (iii) sand supply mechanisms to form thick tidal-shelf sandstones. The predominant facies (compound cross-bedded, coarse-grained sandstones) represents the lower parts of metres to tens of metres high, transverse fluvio-tidal bedforms with superimposed smaller bedforms. Ubiquitous erosional surfaces, some with granule–pebble lags, record erosion of the upper parts of those bedforms. There was selective preservation of the higher energy, topographically-lower, parts of channel-bar systems. Strongly asymmetrical, bimodal, palaeocurrents are interpreted as due to associated selective preservation of fluvially-enhanced ebb tidal currents. Finer-grained facies are scarce, due largely to suspended sediment bypass. They record deposition in lower-energy environments, including channel mouth bars, between and down depositional-dip of higher energy fluvio-ebb tidal bars. The lack of wave-formed sedimentary structures and low continuity of mudstone and sandstone interbeds, support deposition in a non-shelf setting. Hence, a sand-rich, fluvial–tidal, current-dominated, largely sub-tidal, delta setting is proposed. This new interpretation avoids the problem of transporting large amounts of coarse sand to a shelf. Facies uniformity and vertical stacking are likely due to sediment oversupply and bypass rather than balanced sediment supply and subsidence rates. However, facies evidence of relative sea level changes is difficult to recognise, which is attributed to: (i) the areally extensive and polygenetic nature of the preserved facies, and (ii) a large stored sediment buffer that dampened response to relative sea-level and/or sediment supply changes. Consideration of preservation bias towards high-energy deposits may be more generally relevant, especially to thick Neoproterozoic and Lower Palaeozoic marine sandstones.  相似文献   
5.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   
6.
ABSTRACT

Underground urban development is rapidly expanding. Like all forms of ‘development’, utilising the underneath of cities can present a range of possibilities and problems. Much underground urban development, however, has been conceptualised through a technical rather than a broader social lens. This is problematic, not least as these developments are usually financed with public money, while their governance is often realised through complicated and opaque public–private partnerships. In this context, the urban underground is often present as sub terra nullius: an epistemologically blank slate waiting to be exploited with the necessary technology and funding. In this paper, the author presents four analytical strata to help us to rethink how urban undergrounds are conceptualised and developed. Drawing on examples from Australia, she presents how we need to appreciate the more-than-human geographies of the underground (stratum 1); critically understand the dynamics of volumetric dispossession (stratum 2); question who owns the underground and how (stratum 3); and rethink how the underground is accessed (stratum 4). By engaging with these themes, we can explore ways to move subterranean urban development away from a technoscientific tunnelling decision-making process to one that engages with the social, political and economic implications of urban infrastructural projects.  相似文献   
7.
Catchments have highly variable yields of runoff and soil erosion. The size, land use and the surface cover play a significant role and influence the catchment response and parameter values of simulation models. Two experimental basins—the Cariri basins—were equipped in a semi-arid region of Brazil, for obtaining runoff and sediment yield at different catchment scales, as well as, to evaluate the influence of the land use and surface cover. In the first basin, located in the municipality of Sumé, the field studies were carried out at two different scales: four micro-catchments with an area of around 0.5 ha and nine standard Wischmeier-type erosion plots of 100 m2. The experimental units had varied vegetation and management. They were subjected only to natural rainfall events, and were monitored from 1982 to 1991. The total runoff and total sediment yield were determined for each of the events. The installations in the second basin, in the municipality of São João do Cariri, from 1999, include two erosion plots, three micro-catchments, and two sub-catchments of a small basin. These basins are still being monitored for runoff and sediment production. Among the micro-catchments two are nested to detect any scale effect at the micro-catchment level. Nearly 600 events of precipitation, that produced runoff in at least one of the experimental units, have been registered. These data have been used to evaluate the influence of various factors, including cultivation practices and to calibrate hydrological models for plots and micro-catchments. Parameters have been tested by means of cross validations among micro-catchments and sub-catchments. The data sets are made available to all the catchment hydrology researchers and others at https://doi.org/10.5281/zenodo.4690886 .  相似文献   
8.
Side channel construction is a common intervention applied to increase a river's conveyance capacity and to increase its ecological value. Past modelling efforts suggest two mechanisms affecting the morphodynamic change of a side channel: (1) a difference in channel slope between the side channel and the main channel and (2) bend flow just upstream of the bifurcation. The objective of this paper was to assess the conditions under which side channels generally aggrade or degrade and to assess the characteristic timescales of the associated morphological change. We use a one‐dimensional bifurcation model to predict the development of side channel systems and the characteristic timescale for a wide range of conditions. We then compare these results to multitemporal aerial images of four side channel systems. We consider the following mechanisms at the bifurcation to be important for side channel development: sediment diversion due to the bifurcation angle, sediment diversion due to the transverse bed slope, partitioning of suspended load, mixed sediment processes such as sorting at the bifurcation, bank erosion, deposition due to vegetation, and floodplain sedimentation. There are limitations to using a one‐dimensional numerical model as it can only account for these mechanisms in a parametrized manner, but the model reproduces general behaviour of the natural side channels until floodplain‐forming processes become important. The main result is a set of stability diagrams with key model parameters that can be used to assess the development of a side channel system and the associated timescale, which will aid in the future design and maintenance of side channel systems. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
9.
Channel bank failure, and collapses of shoal margins and beaches due to flow slides, have been recorded in Dutch estuaries for the past 200 years but have hardly been recognized elsewhere. Current predictions lack forecasting capabilities, because they were validated and calibrated for historic data of cross‐sections in specific systems, allowing local hindcast rather than location and probability forecasting. The objectives of this study were to investigate where on shoal margins collapses typically occur and what shoal margin collapse geometries and volumes are, such that we can predict their occurrence. We identified shoal margin collapses, generally completely submerged, from bathymetry data by analyzing digital elevation models of difference of the Western Scheldt for the period 1959–2015. We used the bathymetry data to determine the conditions for occurrence, specifically to obtain slope height and angle, and applied these variables in a shoal margin collapse predictor. We found 299 collapses along 300 km of shoal margin boundaries over 56 years, meaning that more than five collapses occur on average per year. The average shoal margin collapse body is well approximated by a 1/3 ellipsoid shape, covers on average an area of 34 000 m2 and has an average volume of 100 000 m3. Shoal margin collapses occur mainly at locations where shoals take up a proportionally larger area than average in the cross‐section of the entire estuary, and occur most frequently where lateral shoal margin displacement is low. A receiver operating characteristic curve shows that the forecasting method predicts the shoal margin collapse location well. We conclude that the locations of the shoal margin collapses are well predicted by the variation in conditions of the relative slope height and angle within the Western Scheldt, and likely locations are at laterally relatively stable shoal margins. This provides hypotheses aiding the recognition of these features in sandy estuaries worldwide. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
10.
We describe a partial filament eruption on 11 December 2011 that demonstrates that the inclusion of mass is an important next step for understanding solar eruptions. Observations from the Solar Terrestrial Relations Observatory-Behind (STEREO-B) and the Solar Dynamics Observatory (SDO) spacecraft were used to remove line-of-sight projection effects in filament motion and correlate the effect of plasma dynamics with the evolution of the filament height. Flux cancellation and nearby flux emergence are shown to have played a role in increasing the height of the filament prior to eruption. The two viewpoints allow the quantitative estimation of a large mass-unloading, the subsequent radial expansion, and the eruption of the filament to be investigated. A 1.8 to 4.1 lower-limit ratio between gravitational and magnetic-tension forces was found. We therefore conclude that following the loss-of-equilibrium of the flux-rope, the radial expansion of the flux-rope was restrained by the filamentary material until 70% of the mass had evacuated the structure through mass-unloading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号