首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cloud structures on microwave radiances at frequencies from 89-190 GHz are investigated by simulations using the Goddard cumulus ensemble model data as input for a radiative transfer model. It was found that the brightness temperatures at these frequencies have different sensitivities to clouds with a tilted structure. The different sensitivities to altitude and amount of hydrometeors allow the estimation of the canting angle and tilt direction of tilted clouds using brightness temperatures at the water vapor channels at 183.3 /spl plusmn/ 1 and 183.3 /spl plusmn/ 7 GHz. The estimated canting angle and tilt direction are in agreement with the model situation. This method provides a potential to estimate tilted convective structures from microwave radiometric observations at 183.3 /spl plusmn/ 1 and 183.3 /spl plusmn/ 7 GHz. It is applied to a tilted storm observed from the National Aeronautics and Space Administration's ER-2 aircraft flying at about 20 km on August 26, 1998 during the third Convection and Moisture Experiment using the observed downlooking brightness temperatures at the water vapor channels of a Millimeter-wave Imaging Radiometer. The estimated results are in good agreement with the realistic storm situation obtained from the simultaneous observations of the ER-2 Doppler radar. This method also provides information about the vertical displacement of cloud structure and thereby to estimate the accurate location of surface rainfall. This is important when validating precipitation retrieval based on observations of the ice scattering above surface rainfall against surface rain observations using the microwave frequencies sensitive to high altitudes.  相似文献   

2.
Extraction of all cumuliform clouds from infrared satellite images is important for cloud studies. Existing methods have focused on extracting only the cumulonimbus clouds. Over monsoon Asia, warm cumulus and cumulus congestus clouds are a large fraction of total cumuliform clouds and are covered by cirrus. An extraction method based only on brightness temperatures (BT) is not sufficient for the detection of these cumuliform clouds. In this letter, a new cloud extraction technique based on spatial characteristics of the convective clouds is presented. The À trous wavelet transform (ATWT) is shown here to successfully extract both shallow and deep convective clouds. The depression in BT caused by the cold cloud tops corresponds to negative wavelet components found by the ATWT.   相似文献   

3.
The surface radiance spectrum within the terrestrial infrared window (i.e., wavelengths between 8-12 /spl mu/m or wavenumbers between 833-1250 cm/sup -1/) is sensitive to the optical and microphysical properties of cirrus clouds. Numerous microwindows where atmospheric absorption is minimum exist in the spectral regions of 820-960 cm/sup -1/ and 1100-1240 cm/sup -1/. The minimum radiances at the microwindows in these two spectral regions can be fitted by using two linear lines. The slope of the fitting line for the spectral region of 820-960 cm/sup -1/ is sensitive to the effective size of ice crystals within cirrus clouds, whereas the intercept of the fitting line for the spectral region of 1100-1240 cm/sup -1/ is sensitive to the optical thickness of the clouds. Based on this spectral feature, a new retrieval method has been developed for simultaneously retrieving cirrus optical thickness and the effective particle size of ice crystals. Furthermore, the ice water path of cirrus clouds can be estimated from the retrieved values of cloud optical thickness and effective particle size.  相似文献   

4.
A new technique to identify mixed-phase clouds but also clouds with supercooled water droplets using satellite measurements is proposed. The technique is based on measurements of the backscattered solar light at wavelengths 1.55 and 1.67 /spl mu/m in combination with cloud brightness temperature measurements at 12 /spl mu/m. For the first time, the concept of the phase index-temperature correlation plot (the P-T diagram) is introduced in the cloud remote sensing. Retrievals of cloud temperature and cloud phase index are performed using data from the Advanced Along Track Scanning Radiometer (AATSR) and Scaning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) both onboard the Envisat platform.  相似文献   

5.
The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.  相似文献   

6.
High-resolution airborne infrared measurements of ocean skin temperature   总被引:1,自引:0,他引:1  
Airborne measurements of ocean skin temperature T/sub s/ are presented from the Coupled Boundary Layers, Air-Sea Transfer in Low Winds (CBLAST-Low) Pilot Experiment in August 2001 off Martha's Vineyard, MA. We used an infrared (IR) camera with a spatial resolution of 1 m or less and temperature resolution of roughly 0.02/spl deg/C. Using subframe sampling of the IR imagery, we achieve lower noise and higher spatial resolution than reported by previous investigators using IR radiometers. Fine-scale maps of T/sub s/ exhibit horizontal variability over spatial scales ranging from O(10 km) down to O(1 m) that are related to atmospheric and subsurface phenomena under low to moderate wind conditions. Based on supporting measurements of wind and waves, we identify coherent ramp-like structures in T/sub s/ with stratification breakdown and meandering streaky features with internal waves. Regional maps of T/sub s/ show the standard deviation for the region is /spl plusmn/1.04/spl deg/C, while the meridional and zonal variability is 0.23/spl deg/C /spl middot/ km/sup -1/ and 0.27/spl deg/C /spl middot/ km/sup -1/, respectively. This temperature variability results in meridional and zonal scalar heat flux variability of 7.0 W /spl middot/ m/sup -2/ /spl middot/ km/sup -1/ and 7.6 W /spl middot/ m/sup -2/ /spl middot/ km/sup -1/, respectively. Our results demonstrate the potential for airborne IR imagery accompanied by high-quality ocean data to identify T/sub s/ features produced by subsurface circulation.  相似文献   

7.
FY-2红外云图中强对流云团的短时自动预报算法   总被引:2,自引:1,他引:1  
刘延安  魏鸣  高炜  李南 《遥感学报》2012,16(1):79-92
目前气象预报业务中,预报员主要借助卫星云图,定性判断云团的移动趋势,缺乏形式化的定量评判方法。本文基于FY-2C与FY-2D的高时间分辨率的近红外影像(10.3—11.3μm),采用亮温和面积阈值方法进行云团识别,然后根据最大相关系数云团匹配技术进行追踪,系统地实现强对流云团的自动临近预测。实验结果表明,本文提出的最大相关系数追踪比传统的交叉相关系数法具有更高的匹配精度和运行效率,而且研究发现云团质心外推明显优于最低亮温外推,平均亮温、面积、圆形度对云团的分裂合并有较好的指示作用,经列联表法检验,本文提出的自动识别追踪技术具有较高预测精度和预测时效,并且为卫星云图业务化应用提供了定量科学依据。  相似文献   

8.
FY-3A星MWHS反演中纬度和热带大气水汽   总被引:2,自引:0,他引:2  
何杰颖  张升伟 《遥感学报》2012,16(3):562-578
风云三号A星(FY-3A)搭载的微波湿度(MWHS)计采用双边带接收机体制,选择主要受水汽影响的(183.31±1) GHz,(183.31±3) GHz,(183.31±7) GHz和窗区150 GHz作为通道频率。本文首先分析了观测亮温值与利用辐射传输方程仿真的亮温值之间的关系,二者相比具有较好的一致性。其次利用神经网络方法反演大气相对湿度,并与线性回归方法进行对比,本文选用的区域内,神经网络方法优于线性回归法。最后,利用本文创建的神经网络模型与正在业务使用的AMSU-B反演模型进行反演均方差和稳定度对比,结果表明,本文创建的神经网络模型在所选区域,大气相对湿度反演精度与AMSU-B神经网络模型相当(反演均方差为15%-25%);水汽密度反演均方差除地面未知因素影响外,与探空观测相比,整体均方差小于1 g/m3;不论在中纬度地区还是热带地区,都能较好地反演大气湿度的垂直分布廓线。同时,本文初次尝试在神经网络反演湿度廓线中引入墨西哥帽小波函数,结果表明,运用墨西哥帽小波函数在保证反演性能的同时,能有效减小迭代时间,避免陷入局部迭代。  相似文献   

9.
The most significant part of prediction of precipitation is the detection and identification of convective (cumulonimbus) clouds, also the tracking of cloud movement is important for identification of location of precipitation. A very simple methodology for detecting convective clouds and then tracking its movement from a series of infrared (IR) images is proposed in this paper. IR image is segmented using k-means clustering algorithm, which has been implemented using Euclidean, Manhattan and Mahalanobis distances and the results have been compared. Cloud clusters have been identified from segmented image and subsequently the large clusters were extracted. Center of Mass (CoM) was calculated for each selected cloud cluster and its position after every 30 min was predicted and compared with the actual values. If the predicted position deviates, the proposed models automatically adjusts itself, and the next prediction becomes closer to original values of position.  相似文献   

10.
针对云检测在高亮度地表以及雪覆盖区域存在过度检测的问题,设计了一种不依赖热红外波段的增强型多时相云检测EMTCD(Enhanced Multiple Temporal Cloud Detection)算法。首先,利用云的光谱特征建立单时相云检测规则,并基于云、雪的光谱差异构建了增强型云指数ECI(Enhanced Cloud Index),改进了云、雪的区分能力;其次,以同一区域无云影像为参考,基于ECI指数构建了多时相云检测算法,较好地克服了单时相云检测中高亮度地表、雪和云容易混淆的问题,提高了云检测的精度;最后,选择两个典型区域的Landsat-8 OLI影像,对比分析了不同算法的云检测结果。实验结果表明:ECI指数能够有效区分云、雪,EMTCD方法的平均检测精度达到93.2%,高于Fmask(Function of mask)(81.85%)、MTCD(Multi-Temporal Cloud Detection)(66.14%)和Landsat-8地表反射率产品LaSRC(Landsat-8 Surface Reflectance Code)的云检测结果(86.3%)。因此,本文提出的EMTCD云检测算法能够有效地减少高亮度地表和雪的干扰,实现不依赖热红外波段的高精度云检测。  相似文献   

11.
 基于多光谱综合的MODIS数据云检测研究   总被引:8,自引:2,他引:8  
云检测是卫星遥感数据处理中不可缺少的工作。通过分析云在不同波段中的大气辐射特点,结合MODIS数据的光谱特性,提出 一种多光谱综合的云检测方法。该算法从可见光反射率、红外波段亮温值以及亮温差等方面综合考虑,逐步建立一个云检测掩模。通 过对不同时期不同背景的MODIS数据进行验证和对比分析,结果表明,该模型的云检测效果理想,尤其对可见光波段难以识别的薄卷 云也有很好效果,为有效利用MODIS数据以及进行更加精确的反演提供可靠依据。  相似文献   

12.
周伟  关键  姜涛  何友 《遥感学报》2012,16(1):132-142
提出了一种有效针对多光谱遥感影像的云影检测与阴影区域修复方法。基于同一地区时相相近的两幅影像,充分利用碎云及阴影的光谱特性分别对云影区域进行融合增强,然后采用Otsu算法求解最佳阈值自动检测出云及阴影区域,根据云影的出现会引起两幅影像局部相应区域明显的亮度变化,可排除亮地物和水体的影响,建立归一化的云影密度图,在此基础上,采用线性加权组合与光谱直方图匹配相结合的方法对其加以修复,利用SPOT 4影像进行的实验表明其修复效果完全能够满足应用需要。  相似文献   

13.
The dual-frequency Airborne Precipitation Radar-2 (APR-2) was deployed during the Wakasa Bay Experiment in 2003, for validation of the Advanced Microwave Scanning Radiometer-EOS. Besides providing extensive observations of diverse precipitating systems, this Ku-(13.4 GHz) and Ka-band (35.6 GHz) cross-track scanning radar measured sea surface backscatter simultaneously. While the characteristics of the normalized sea surface cross section /spl sigma//sup 0/ at Ku-band are well understood and widely published, the existing experimental data concerning /spl sigma//sup 0/ at Ka-band are scarce and results are inconsistent. In this letter, the Ku/Ka-band /spl sigma//sup 0/ measurements collected by APR-2, together with the estimated uncertainties, are discussed. In general, the measured /spl sigma//sup 0/ at Ka-band at around 10/spl deg/ incidence angle appears to be close to that at Ku-band /spl sigma//sup 0/, and Ka-band exhibits a nonnegligible difference in wind dependence with respect to Ku-band for moderate to high winds.  相似文献   

14.
Active fire detection using satellite thermal sensors usually involves thresholding the detected brightness temperature in several bands. Most frequently used features for fire detection are the brightness temperature in the 4-/spl mu/m wavelength band (T/sub 4/) and the brightness temperature difference between 4- and 11-/spl mu/m bands (/spl Delta/T=T/sub 4/-T/sub 11/). In this letter, the task of active fire detection is examined in the context of a stochastic model for target detection. The proposed fire detection method consists of applying a decorrelation transform in the (T/sub 4/,/spl Delta/T) space. Probability density functions for the fire and background pixels are then computed in the transformed variable space using simulated Moderate Resolution Imaging Spectroradiometer (MODIS) thermal data under different atmospheric humidity conditions and for cases of flaming and smoldering fires. The Pareto curve for each detection case is constructed. Optimal thresholds are derived by minimizing a cost function, which is a weighted sum of the omission and commission errors. The method has also been tested on a MODIS reference dataset validated using high-resolution SPOT images. The results show that the detection errors are comparable with the expected values, and the proposed method performs slightly better than the standard MODIS absolute detection method in terms of the lower cost function.  相似文献   

15.
Clouds are obstructions for land-surface observation, which result in the regional information being blurred or even lost. Thin clouds are transparent, and images of regions covered by thin clouds contain information about both the atmosphere and the ground. Therefore, thin cloud removal is a challenging task as the ground information is easily affected when the thin cloud removal is performed. An efficient and effective thin cloud removal method is proposed for visible remote sensing images in this paper, with the aim being to remove the thin clouds and also restore the ground information. Since thin cloud is considered as low-frequency information, the proposed method is based on the classic homomorphic filter and is executed in the frequency domain. The optimal cut-off frequency for each channel is determined semi-automatically. In order to preserve the clear pixels and ensure the high fidelity of the result, cloudy pixels are detected and handled separately. As a particular kind of low-frequency information, cloud-free water surfaces are specially treated and corrected. Since only cloudy pixels are involved in the calculation, the method is highly efficient and is suited for large remote sensing scenes. Scenes including different land-cover types were selected to validate the proposed method, and a comparison analysis with other methods was also performed. The experimental results confirm that the proposed method is effective in correcting thin cloud contaminated images while preserving the true spectral information.  相似文献   

16.
Clouds contribute significantly to the formation of many of the natural hazards. Hence cloud mapping and its classification becomes a major component of the various physical models which are used for forecasting natural hazards. The problem of cloud data classification from NOAA AVHRR (advance very high resolution radiometer) satellite imagery using image transformation techniques is considered in this paper. The singular value decomposition (SVD) scheme is used to extract the salient spectral and textural features attributed to satellite snow and cloud data in visible and IR channels. The goals of this paper are to discriminate between clear sky and clouds in an 8 × 8 pixel array of 1.1 km AVHRR data. If clouds are present then classify them as low, medium or high range. This scheme can effectively segregate clouds and non-cloud features in the visible and IR bands of the imagery. It can also classify clouds as low, medium or high range with a success rate of 70–90%. Computer-based snow and cloud discrimination and automatic cloud classification system will help the forecaster in various climatological applications, viz., energy balance estimation, precipitation forecasting, landslide forecasting, weather forecasting and avalanche forecasting etc.  相似文献   

17.
基于改进U-Net网络的遥感图像云检测   总被引:1,自引:0,他引:1  
为了解决U-Net模型应用于云检测时对碎云和薄云存在漏检的问题,本文提出了一种改进的U-Net网络模型,并应用于FY-4A数据进行云检测。首先,利用国家气象卫星中心提供的云检测产品生成二分类云标签;其次,将U-Net模型的编码器与残差模块相结合,使得网络参数共享,并避免深层网络的退化问题;最后,在解码器中融入密集连接模块,将浅层特征与深层特征进行连接,便于获取新的特征,并提高特征使用率。试验结果表明,模型在测试集上的IOU值和Dice系数分别为91.5%和95.2%,可以很好地检测出薄云及大量碎云,效果明显优于U-Net模型。  相似文献   

18.
The ground-based infrared radiance measurements acquired on July 14, 20, and 28, 2002 during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign have been used for simultaneously retrieving the optical thickness and effective particle size on the basis of the retrieval algorithm reported in the preceding counterpart of this paper. The corresponding ice water path is derived from the retrieved optical thickness and effective particle size. Specifically, the data used for the retrieval include: 1) the infrared radiance spectrum observed by an atmospheric emitted radiance interferometer at the surface; 2) the sky condition and cloud height determined from a sky imager and a micropulse lidar; and 3) the sounding data for the profiles of temperature, pressure, and relative humidity. For these three case studies, the retrieved cirrus optical thickness, effective particle size, and ice water path are in the range of 0.2-1.5, 18-42 /spl mu/m, and 2-15 g /spl middot/ m/sup -2/, respectively. Furthermore, error analyses show that the retrieval uncertainties of the optical thickness and effective particle size are less than 15% if the uncertainty of water vapor vertical profile is within 5%. The retrieval errors are within 10% if the uncertainty of cloud temperature is within 7 K.  相似文献   

19.
人工增雨作为应急抗旱和缓解水资源紧张的重要手段,与社会经济可持续发展、生态安全和人民生活密切相关。航线设计是飞机人工增雨作业方案设计的一项重要内容,基于GIS平台自动化设计飞行航线将成为趋势。在传统飞行航线设计方案的基础上,研究提出了基于ArcGIS Engine的半圆弧过渡条播航线、"弓"字形条播航线和"之"字形条播航线三种层状云作业"穿云"航线与一种对流云或层积混合云作业"绕云"航线的自动化设计算法。应用结果显示,四种自动化算法均能够快速有效地设计出飞机航线,取得很好的效果。  相似文献   

20.
风云三号卫星被动微波反演海洋上空云液态水含量   总被引:2,自引:0,他引:2  
窦芳丽  商建  吴琼  谷松岩 《遥感学报》2020,24(6):766-775
云液态水含量是气候和水循环研究的重要云微物理参数,也是目前气候变化研究中的最不确定因素之一。通过极轨气象卫星被动微波观测的光谱和极化特征能够实现对云液态水含量的直接测量,本文介绍了一种基于风云三号卫星微波成像仪(MWRI)观测亮温的全天候云液态水含量反演算法,利用快速辐射传输模式、云模型和大气廓线库建立MWRI模拟亮温库并训练反演系数的宽气候态物理算法可以保证算法系数在不同季节和不同地区的适应性。同时提出了一种基于观测增量(O-B)筛选晴空像元并对算法系数及比例因子进行订正的方法。利用统计直方图方法和卫星间交叉比对方法对反演产品精度进行了检验,统计直方图方法检验结果表明,FY-3C云水反演误差为0.028 mm,FY-3D为0.025 mm,与国外同类产品的精度相当;与低轨卫星微波辐射计GMI云水产品的交叉比对结果表明,两者具有较高一致性,均方根误差为0.0325 mm。FY-3C/3D CLW产品目前已经投入业务应用,上下午星组网能够一天内基本覆盖全球,实现全球云水分布监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号