首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The metamorphism in the Central Himalaya   总被引:10,自引:0,他引:10  
ABSTRACT All along the Himalayan chain an axis of crystalline rocks has been preserved, made of the Higher Himalaya crystalline and the crystalline nappes of the Lesser Himalaya. The salient points of the metamorphism, as deduced from data collected in central Himalaya (central Nepal and Kumaun), are:
  • 1 The Higher Himalaya crystalline, also called the Tibetan Slab, displays a polymetamorphic history with a first stage of Barrovian type overprinted by a lower pressure and/or higher temperature type metamorphism. The metamorphism is due to quick and quasi-adiabatic uplift of the Tibetan Slab by transport along an MCT ramp, accompanied by thermal refraction effects in the contact zone between the gneisses and their sedimentary cover. The resulting metamorphic pattern is an apparent (diachronic) inverse zonation, with the sillimanite zone above the kyanite zone.
  • 2 Conversely, the famous inverted zonation of the Lesser Himalaya is basically a primary pattern, acquired during a one-stage prograde metamorphism. Its origin must be related to the thrusting along the MCT, with heat supplied from the overlying hot Tibetan Slab, as shown by synmetamorphic microstructures and the close geometrical relationships between the metamorphic isograds and the thrust.
  • 3 Thermal equilibrium is reached between units above and below the MCT. Far behind the thrust tip there is good agreement between the maximum temperature attained in the hanging wall and the temperature of the Tibetan Slab during the second metamorphic stage; but closer to the MCT front, the thermal accordance between both sides of the thrust is due to a retrogressive metamorphic episode in the basal part of the Tibetan Slab.
  相似文献   

2.
Abstract Geological relationships and geochronological data suggest that in Miocene time the metamorphic core of the central Himalayan orogen was a wedge-shaped body bounded below by the N-dipping Main Central thrust system and above the N-dipping South Tibetan detachment system. We infer that synchronous movement on these fault systems expelled the metamorphic core southward toward the Indian foreland, thereby moderating the extreme topographic gradient at the southern margin of the Tibetan Plateau. Reaction textures, thermobarometric data and thermodynamic modelling of pelitic schists and gneisses from the Nyalam transect in southern Tibet (28°N, 86°E) imply that gravitational collapse of the orogen produced a complex thermal structure in the metamorphic core. Amphibolite facies metamorphism and anatexis at temperatures of 950 K and depths of at least 30 km accompanied the early stages of displacement on the Main Central thrust system. Our findings suggest that the late metamorphic history of these rocks was characterized by high- T decompression associated with roughly 15 km of unroofing by movement on the South Tibetan detachment system. In the middle of the metamorphic core, roughly 7–8 km below the basal detachment of the South Tibetan system, the decompression was essentially isothermal. Near the base of the metamorphic core, roughly 4–6 km above the Main Central thrust, the decompression was accompanied by about 150 K of cooling. We attribute the disparity between the P–T paths of these two structural levels to cooling of the lower part of the metamorphic core as a consequence of continued (and probably accelerated) underthrusting of cooler rocks in the footwall of the Main Central thrust at the same time as movement on the South Tibetan detachment system.  相似文献   

3.
ABSTRACT Metabasalts and metasedimentary rocks of the Devonian Central Metamorphic Belt comprise the lower plate of the east-dipping Trinity thrust system in the Klamath province. An inverted metamorphic gradient is preserved in the Central Metamorphic Belt; metamorphic conditions decrease from amphibolite facies adjacent to the Trinity thrust, through albite-epidote amphibolite facies, to upper greenschist facies at the base of the Central Metamorphic Belt. Mineral chemistry, mineral assemblages and limited geothermometry suggest that peak metamorphic conditions decrease structurally downward from 650 ± 50° C at the Trinity thrust to 500 ± 50° C at the base of the Central Metamorphic Belt, under pressures of 5 ± 3 kbar. Synmetamorphic Ab + Qtz veins, up to 1 m thick, increase in abundance towards the Trinity thrust. Infiltration of H2O-CO2 fluids derived from prograde devolatilization reactions in the Central Metamorphic Belt caused extensive hydration and metasomatism of the Trinity peridotite; the hanging wall block of the Trinity thrust zone. Geological relationships and the preserved inverted metamorphic gradient suggest that the Central Metamorphic Belt formed in an east-dipping Devonian subduction zone in an oceanic environment. The Central Metamorphic Belt appears to represent a discrete slice of accreted oceanic crust several km thick, rather than progressively accreted material. Metamorphic pressures recorded by the Central Metamorphic Belt are intermediate between the ∼2 kbar pressures recorded in dynamothermal aureoles beneath obducted ophiolites and the 7–10 kbar preserved in subduction-related inverted metamorphic gradients. The lack of blueschist facies mineral assemblages in the Central Metamorphic Belt may possibly be explained by an anomalously warm geotherm prior to subduction or early shear heating prior to the arrival of wet rocks at depth.  相似文献   

4.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   

5.
The Vincent thrust of the San Gabriel Mountains, southern California, separates eugeoclinal Pelona Schist from overlying Precambrian to Mesozoic igneous and metamorphic rocks of North American continental affinity. The thrust is generally considered to be synmetamorphic because of similarity in structural orientations and mineral assemblages between the Pelona Schist and mylonites at the base of the upper plate. In this study, compositions of calcic amphibole and plagioclase in the upper plate and structurally high Pelona Schist were compared to further test this interpretation. Amphibole in the schist is mostly actinolite to actinolitic hornblende with high Na/Al ratio, indicating relatively high-P/low-T metamorphism. Individual grains are zoned, with concentrations of both Na and Al decreasing from cores to rims. Premylonitic amphibole in the upper plate is hornblende, tschermakite and pargasite with compositions indicative of low- or medium-P metamorphism. During mylonitization, this amphibole was replaced by actinolite to actinolitic hornblende with a similar range of Na and Al as amphibole rims in the Pelona Schist, but with slightly lower Na/Al ratio. This is consistent with the decrease of Na/Al up-section previously noted within the Pelona Schist of this area, and is considered to be the result of an inverted thermal gradient during thrusting. Convergence of composition between schist and upper plate also occurs for K and Ti contents of amphibole and An content of plagioclase. These features provide strong evidence that mylonitization of the upper plate is closely related in space and time to metamorphism of the Pelona Schist and therefore that the Vincent thrust is a remnant of the primary fault along which the Pelona Schist and correlative units were subducted beneath North America. Nonetheless, very fine-scale differences in amphibole composition between the schist and upper plate may indicate that metamorphic re-equilibration could not quite keep pace with movement on the fault.  相似文献   

6.
GEOLOGY OF THE NORTHERN ARUN TECTONIC WINDOW1 BordetP .Recherchesg啨ologiquesdansl’HimalayaduN啨pal,r啨gionduMakalu[R].EditionsduCNRS ,Paris ,196 12 75 . 2 BordetP .G啨ologiedeladalleduTibet (Himalayacentral) [J].M啨moireshorss啨riedelaSociet啨g啨ologiquedeFrance,1977,8:2 35~ 2 5 0 . 3 BurcfielBC ,ChenZ ,HodgesKV ,etal.TheSouthTibetanDetachmentSystem ,Hima…  相似文献   

7.
《Journal of Structural Geology》2001,23(6-7):1031-1042
The Eastern Highlands shear zone in Cape Breton Island is a crustal scale thrust. It is characterized by an amphibolite-facies deformation zone ∼5 km wide formed deep in the crust that is overprinted by a greenschist-facies mylonite zone ∼1 km wide that formed at a more shallow level. Hornblende 40Ar/39Ar plateau ages on the hanging wall decrease towards the centre of the shear zone. In the older zone (over 7.8 km from the centre), the ages are between ∼565 and ∼545 Ma; in the younger zone (within 4.5 km of the centre), they are between ∼425 and ∼415 Ma; and in the transitional zone in between, they decrease abruptly from ∼545 to ∼425 Ma. Pressures of crystallization of plutons in the hanging wall, based on the Al-in-hornblende barometer and corresponding to depth of emplacement, increase towards the centre of the shear zone and indicate a differential uplift of up to ∼28 km associated with movement along the shear zone. The age pattern is interpreted to have resulted from the differential uplift. The pressure data show that rocks exposed in the younger zone were buried deep in the crust and did not cool through the hornblende Ar blocking temperature (∼500°C) until differential uplift occurred. The 40Ar/39Ar ages in the zone (∼425–415 Ma) thus date shear zone movement or the last stage of it. In contrast, rocks in the older zone were more shallowly buried before differential uplift and cooled through the blocking temperature soon after the emplacement of ∼565–555 Ma plutons in the area, long before shear zone movement. The transitional zone corresponds to the Ar partial retention zone before differential uplift. The 40Ar/39Ar age pattern thus reflects a Neoproterozoic to Silurian cooling profile that was exposed as a result of differential uplift related to movement along the shear zone. A similar K–Ar age pattern has been reported for the Alpine fault in New Zealand. It is suggested that such isotopic age patterns can be used to help constrain the ages, kinematics, displacements and depth of penetration of shear zones.  相似文献   

8.
Geothermometry and mineral assemblages show an increase of temperature structurally upwards across the Main Central Thrust (MCT); however, peak metamorphic pressures are similar across the boundary, and correspond to depths of 35–45 km. Garnet‐bearing samples from the uppermost Lesser Himalayan sequence (LHS) yield metamorphic conditions of 650–675 °C and 9–13 kbar. Staurolite‐kyanite schists, about 30 m above the MCT, yield P‐T conditions near 650 °C, 8–10 kbar. Kyanite‐bearing migmatites from the Greater Himalayan sequence (GHS) yield pressures of 10–14 kbar at 750–800 °C. Top‐to‐the‐south shearing is synchronous with, and postdates peak metamorphic mineral growth. Metamorphic monazite from a deformed and metamorphosed Proterozoic gneiss within the upper LHS yield U/Pb ages of 20–18 Ma. Staurolite‐kyanite schists within the GHS, a few metres above the MCT, yield monazite ages of c. 22 ± 1 Ma. We interpret these ages to reflect that prograde metamorphism and deformation within the Main Central Thrust Zone (MCTZ) was underway by c. 23 Ma. U/Pb crystallization ages of monazite and xenotime in a deformed kyanite‐bearing leucogranite and kyanite‐garnet migmatites about 2 km above the MCT suggest crystallization of partial melts at 18–16 Ma. Higher in the hanging wall, south‐verging shear bands filled with leucogranite and pegmatite yield U/Pb crystallization ages for monazite and xenotime of 14–15 Ma, and a 1–2 km thick leucogranite sill is 13.4 ± 0.2 Ma. Thus, metamorphism, plutonism and deformation within the GHS continued until at least 13 Ma. P‐T conditions at this time are estimated to be 500–600 °C and near 5 kbar. From these data we infer that the exhumation of the MCT zone from 35 to 45 km to around 18 km, occurred from 18 to 16 to c. 13 Ma, yielding an average exhumation rate of 3–9 mm year?1. This process of exhumation may reflect the ductile extrusion (by channel flow) of the MCTZ from between the overlying Tibetan Plateau and the underthrusting Indian plate, coupled with rapid erosion.  相似文献   

9.
In metamorphic core complexes it is commonly unclear whether lower plate mylonites formed as the down-dip continuation of a detachment fault, or whether they represent a subhorizontal shear zone that was captured by a more steeply dipping detachment fault. Detailed microstructural, fabric, and strain data from mylonites in the Buckskin-Rawhide metamorphic core complex, west-central Arizona, constrain the structural development of the lower plate shear zone. Widespread exposures of ∼22–21 Ma granitoids of the Swansea Plutonic Suite enable us to separate Miocene strain coeval with core complex extension from older deformation. Mylonites across the lower plate consistently record top-to-the-NE-directed shear. Miocene quartz and feldspar deformation/recrystallization mechanisms indicate ∼450–500 °C mylonitization temperatures that were relatively uniform across a distance of ∼35 km in the extension direction. Quartz dynamically recrystallized grain sizes do not systematically vary in the extension direction. Strain recorded in the Swansea Plutonic Suite is also relatively uniform in the extension direction, which is incompatible with models in which lower plate mylonites form as the ductile root of a major detachment fault. Altogether these data suggest the mylonitic shear zone initiated with a ≤4° dip and was unroofed by a more steeply dipping detachment fault system. Lower plate mylonites in the Buckskin-Rawhide metamorphic core complex thus represent a captured subhorizontal shear zone rather than the down-dip continuation of a detachment fault.  相似文献   

10.
This paper summarizes the studies of the metamorphic evolution of Central Nepal carried out by Nepali and international teams in the last 25 years. In Central Nepal, three metamorphic units are recognized. (1) The southernmost zone is the Lesser Himalaya, which is characterised by an inverted mineral zoning towards the Main Central Thrust (MCT) zone; (2) the Kathmandu nappe corresponds to an early (<22 Ma) out-of-sequence thrusting zone over the Lesser Himalaya along the Mahabharat thrust (MT) and is characterised by a Barrovian metamorphic evolution; (3) the Higher Himalayan Crystalline unit (HHC) is bounded at its base by the MCT and at its top by the South Tibetan Detachment system (STDS). It is characterised by successive tectonometamorphic episodes during the period spanning from 35–36 Ma to 2–3 Ma. Recent investigations suggest that the apparent metamorphic inversion througout the MCT zone does not reflect geothermal inversion. Instead, these investigations suggest successive cooling of the HHC along the MCT and the local preservation, above the MCT, of high-grade metamorphic rocks. The overall metamorphic history in Central Nepal from Oligocene to Pliocene, reflects the thermal reequilibration of rocks after thickening by conductive and advective heating and partial melting of the middle crust.  相似文献   

11.
Abstract An inverted metamorphic gradient associated with the northern mylonite zone of the Cheyenne belt, a deeply eroded Precambrian suture in southern Wyoming, has been documented within metasedimentary rocks of the Early Proterozoic Snowy Pass Supergroup. Metamorphic grade in the steeply dipping supracrustal sequence increases from the chlorite through the biotite, garnet, and staurolite zones both stratigraphically and structurally upward toward the northern mylonite zone. A minimum temperature increase of approximately 100° C over a km-wide zone is required for this transition. Parallelism of inverted isograds with the trace of the northern mylonite zone implies a genetic relationship between deformation associated with that zone and the inverted metamorphic gradient within the Snowy Pass Supergroup. Field evidence together with microstructural and petrofabric analysis indicate northward thrusting of amphibolite-grade rocks over rocks of the Snowy Pass Supergroup along the northern mylonite zone. Mineral equilibria and garnet-biotite geothermometry on synkinematic mineral assemblages within the Snowy Pass metasedimentary rocks indicate deformation at minimum temperatures of 480° C and pressures of 350–400 MPa (3°5–4°0 kbar). This implies tectonic burial or upper plate thickness of 13–15 km. The narrow character of metamorphic zonation and microtextures within the Snowy Pass Supergroup which indicate late synkine-matic growth of garnet and staurolite, preclude rotation of pre-existing isograds by folding as a mechanism for development of the inverted gradient. Conductive transport of heat from the upper into the lower plate across the originally low-angle thrust is insufficient to produce the necessary temperatures in the lower plate. Shear heating is considered insufficient to produce the observed metamorphic transition unless high shear stresses are postulated. Up-dip advection of metamorphic fluids is a feasible, but unproven, mechanism for heat transport. The possibility that rapid uplift due to stacking of several thrust sheets may have played a role in preserving the inverted metamorphic gradient cannot be evaluated at present.  相似文献   

12.
In this paper we present the current geological knowledge and the results of new geological and structural investigations in the Cho Oyu-Sagarmatha-Makalu region (Eastern Nepal and Southern Tibet).The tectonic setting of the middle and upper part of the Higher Himalayan Crystallines (HHC) and Tibetan Sedimentary Sequence is characterized by the presence of pervasive compressive tectonics with south-verging folds and shear zones overprinted by extensional tectonics.In the middle and upper part of the HHC two systems of folds (F2a and F2b) have been recognized, affecting the S1 high-grade schistosity causing kilometer-scale upright antiforms and synforms. The limbs of these upright folds are affected by F3 collapse folds, top-to-SE extensional shear zones and extensional crenulation cleavages linked to extensional tectonics.The uppermost portion of the HHC and the lower part of the Tibetan Sedimentary Sequence is affected by two major extensional fault zones with a top-to NE direction of movement. The lower ductile extensional shear zone brings into contact the North Col Formation with the high grade gneisses and micaschists of the HHC. It is regarded as the main feature of the South Tibetan Detachment System. The upper low-angle fault zone is characterized by ductile/brittle deformation and thin levels of cataclasites and brings the slightly metamorphosed Ordovician limestones into contact with the North Col Formation. Extensional tectonics continued with the formation of E–W trending high angle normal faults.Three metamorphic stages of Himalayan age are recognized in the HHC of the Sagarmatha-Makalu region. The first stage (M1) is eclogitic as documented by granulitized eclogites collected at the top of the Main Central Thrust Zone in the Kharta region of Southern Tibet. The second event recorded in the Kharta eclogites (M2) was granulitic, with medium P (0.55–0.65 GPa) and high T (750–770°C), and was followed by recrystallization in the amphibolite facies of low pressure and high T (M3). The first event has also been recorded in the overlying Barun Gneiss, where M1 was followed by decompression under increasing T, the M2 event, producing the dominant mineral assemblage (garnet-sillimanite-biotite), and then by strong decompression under high T, with growth of andalusite, cordierite and green spinel. Also, changes in phase compatibilities suggest an increase in metamorphic temperature (T) coupled with a decrease in metamorphic pressure (P) in some of the thrust sheets of the MCT Zone.A telescoped metamorphic zonation ranging from the sillimanite to the staurolite and biotite zones is characteristic of the ductile extensional shear zone which is the lower part of the STDS in the Sagarmatha region. Evidence for decompression under increasing temperature, anatexis and leucogranite emplacement accompanying extension in the HHC was found throughout the whole ductile shear zone, particularly in metapelites both below and above the Makalu leucogranite and in micaschists of the staurolite zone.  相似文献   

13.
SEISMOLOGICAL EVIDENCES FOR THE MULTIPLE INCOMPLETE CRUSTAL SUBDUCTIONS IN HIMALAYA AND SOUTHERN TIBET  相似文献   

14.
A combined metamorphic and isotopic study of lit‐par‐lit migmatites exposed in the hanging wall of the Main Central Thrust (MCT) from Sikkim has provided a unique insight into the pressure–temperature–time path of the High Himalayan Crystalline Series of the eastern Himalaya. The petrology and geochemistry of one such migmatite indicates that the leucosome comprises a crystallized peraluminous granite coexisting with sillimanite and alkali feldspar. Large garnet crystals (2–3 mm across) are strongly zoned and grew initially within the kyanite stability field. The melanosome is a biotite–garnet pelitic gneiss, with fibrolitic sillimanite resulting from polymorphic inversion of kyanite. By combining garnet zoning profiles with the NaCaMnKFMASHTO pseudosection appropriate to the bulk composition of a migmatite retrieved from c. 1 km above the thrust zone, it has been established that early garnet formed at pressures of 10–12 kbar, and that subsequent decompression caused the rock to enter the melt field at c. 8 kbar and c. 750 °C, generating peritectic sillimanite and alkali feldspar by the incongruent melting of muscovite. Continuing exhumation resulted in resorption of garnet. Sm–Nd growth ages of garnet cores and rim, indicate pre‐decompression garnet growth at 23 ± 3 Ma and near‐peak temperatures during melting at 16 ± 2 Ma. This provides a decompression rate of 2 ± 1 mm yr?1 that is consistent with exhumation rates inferred from mineral cooling ages from the eastern Himalaya. Simple 1D thermal modelling confirms that exhumation at this rate would result in a near‐isothermal decompression path, a result that is supported by the phase relations in both the melanosome and leucosome components of the migmatite. Results from this study suggest that anatexis of Miocene granite protoliths from the Himalaya was a consequence of rapid decompression, probably in response to movement on the MCT and on the South Tibetan detachment to the north.  相似文献   

15.
Abstract The crystalline core of the Himalayan orogen in the Langtang area of Nepal, located between the Annapurna-Manaslu region and the Everest region, contains middle to upper amphibolite grade pelitic gneisses and schists. These rocks are intimately associated with the Main Central Thrust (MCT), one of the major compressional structures in the northern Indian plate, which forms a 3.7-km-wide zone containing rocks of both footwall and hangingwall affinity. An inverted metamorphic gradient is noticeable from upper footwall through hangingwall rocks, where metamorphic conditions increase from garnet grade near the MCT zone to sillimanite + K-feldspar grade in the upper hangingwall. Petrographic data distinguish two metamorphic episodes that have affected the area: a high-pressure, moderate-temperature episode (M1) and a moderate-pressure, high-temperature episode (M2). Comparison with appropriate reaction boundaries suggests that conditions for M1 in the hangingwall were approximately 900–1200 MPa and 425–525°C. Thermobarometric results for 24 samples from the footwall, MCT zone and hangingwall reflect P-T conditions during the M2 phase of 400–1200 MPa and 490–660° C. The decrease in estimated palaeopressures from footwall to hangingwall approximate a lithostatic gradient of 27 MPa km-1, with slight fluctuations in the MCT zone reflecting structural discontinuities. In contrast to the palaeopressures, palaeotemperatures are indistinguishable across the entire area sampled. Although field evidence suggests the presence of the inverted palaeothermal gradient well known in the Himalaya, quantitative thermobarometry indicates that temperatures of final equilibration were all within error of each other across 17 km of section. At Langtang, change in pressure is responsible for the presence of the sequence of index minerals through the section. I interpret these data to reflect diachronous attainment of equilibrium temperature conditions in a lithostatic palaeopressure profile after ductile faulting of the sequence.  相似文献   

16.
Nepal can be divided into the following five east–west trending major tectonic zones. (i) The Terai Tectonic Zone which consists of over one km of Recent alluvium concealing the Churia Group (Siwalik equivalents) and underlying rocks of northern Peninsular India. Recently active southward-propagating thrusts and folds beneath the Terai have affected both the underlying Churia and the younger sediments. (ii) The Churia Zone, which consists of Neogene to Quaternary foreland basin deposits and forms the Himalayan mountain front. The Churia Zone represents the most tectonically active part of the Himalaya. Recent sedimentologic, geochronologic and paleomagnetic studies have yielded a much better understanding of the provenance, paleoenvironment of deposition and the ages of these sediments. The Churia Group was deposited between ∼14 Ma and ∼1 Ma. Sedimentary rocks of the Churia Group form an archive of the final drama of Himalayan uplift. Involvement of the underlying northern Peninsular Indian rocks in the active tectonics of the Churia Zone has also been recognised. Unmetamorphosed Phanerozoic rocks of Peninsular India underlying the Churia Zone that are involved in the Himalayan orogeny may represent a transitional environment between the Peninsula and the Tethyan margin of the continent. (iii) The Lesser Himalayan Zone, in which mainly Precambrian rocks are involved, consists of sedimentary rocks that were deposited on the Indian continental margin and represent the southernmost facies of the Tethyan sea. Panafrican diastrophism interrupted the sedimentation in the Lesser Himalayan Zone during terminal Precambrian time causing a widespread unconformity. That unconformity separates over 12 km of unfossiliferous sedimentary rocks in the Lesser Himalaya from overlying fossiliferous rocks which are >3 km thick and range in age from Permo-Carboniferous to Lower to Middle Eocene. The deposition of the Upper Oligocene–Lower Miocene fluvial Dumri Formation records the emergence of the Himalayan mountains from under the sea. The Dumri represents the earliest foreland basin deposit of the Himalayan orogen in Nepal. Lesser Himalayan rocks are less metamorphosed than the rocks of the overlying Bhimphedis nappes and the crystalline rocks of the Higher Himalayan Zone. A broad anticline in the north and a corresponding syncline in the south along the Mahabharat range, as well as a number of thrusts and faults are the major structures of the Lesser Himalayan Zone which is thrust over the Churia Group along the Main Boundary Thrust (MBT). (iv) The crystalline high-grade metamorphic rocks of the Higher Himalayan Zone form the backbone of the Himalaya and give rise to its formidable high ranges. The Main Central Thrust (MCT) marks the base of this zone. Understanding the origin, timing of movement and associated metamorphism along the MCT holds the key to many questions about the evolution of the Himalaya. For example: the question of whether there is only one or whether there are two MCTs has been a subject of prolonged discussion without any conclusion having been reached. The well-known inverted metamorphism of the Himalaya and the late orogenic magmatism are generally attributed to movement along the MCT that brought a hot slab of High Himalayan Zone rocks over the cold Lesser Himalayan sequence. Harrison and his co-workers, as described in a paper in this volume, have lately proposed a detailed model of how this process operated. The rocks of the Higher Himalayan Zone are generally considered to be Middle Cambrian to Late Proterozoic in age. (v) The Tibetan Tethys Zone is represented by Cambrian to Cretaceous-Eocene fossiliferous sedimentary rocks overlying the crystalline rocks of the Higher Himalaya along the Southern Tibetan Detachment Fault System (STDFS) which is a north dipping normal fault system. The fault has dragged down to the north a huge pile of the Tethyan sedimentary rocks forming some of the largest folds on the Earth. Those sediments are generally considered to have been deposited in a more distal part of the Tethys than were the Lesser Himalayan sediments.The present tectonic architecture of the Himalaya is dominated by three master thrusts: the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The age of initiation of these thrusts becomes younger from north to south, with the MCT as the oldest and the MFT as the youngest. All these thrusts are considered to come together at depth in a flat-lying decollement called the Main Himalayan Thrust (MHT). The Mahabharat Thrust (MT), an intermediate thrust between the MCT and the MBT is interpreted as having brought the Bhimphedi Group out over the Lesser Himalayan rocks giving rise to Lesser Himalayan nappes containing crystalline rocks. The position of roots of these nappes is still debated. The Southern Tibetan Detachment Fault System (STDFS) has played an important role in unroofing the higher Himalayan crystalline rocks.  相似文献   

17.
The Cretaceous to Palaeogene Alpine exhumation of previously buried Variscan basements is recorded in the southern portion of the Western Carpathians in the Gemeric and Veporic units. The Meso-Cenozoic collisional processes resulted in basement exhumation of the Tatric Unit from Palaeogene to Neogene times. According to zircon and apatite fission track data, the Gemeric Unit, an uppermost thick-skinned thrust sheet, cooled from depth levels of ∼10 up to 2.5 km (temperature interval of ∼250–60 °C) about 88–64 Ma ago, after the collapse of overlying Meliata-Turňa-Silica Mesozoic accretionary prism. The middle and lower thick-skinned thrust sheets, Veporic and Tatric units, cooled from the depths of ∼10 up to 2.5 km ∼110–40 Ma ago. The process was controlled by unroofing of footwall from beneath the Gemeric Unit. About 50–20 Ma ago, the internal zone of Tatric Unit gradually exhumed to depth of <2 km and some parts of the unit appeared at the surface level. However, the external zone of Tatric Unit was buried beneath the Eocene to Lower Miocene sedimentary successions and exhumed to the subsurface level at ∼21–8 Ma ago, as a result of oblique collision of the Western Carpathians with the European Platform.  相似文献   

18.
Abstract The magnitudes of plastic strains of 104 metacherts were determined from the deformed shape of initially spherical radiolarians in the Sambagawa high- P type metamorphic belt of Western Shikoku, Japan. The strain magnitude increases with increasing metamorphic temperature from several per cent to 250%. The a2/a3 ratio of strain ellipsoids in the higher metamorphic grades decreases with increasing metamorphic grade while the a1/a2 ratio increases rapidly. The long axis of the strain ellipsoid for every grade is nearly parallel to the length of the metamorphic belt, suggesting that the flow direction of the synmetamorphic deformation was uniform along the belt. A map of strain zones within the Sambagawa high- P type metamorphic belt reveals that the metamorphic belt underwent a progressive bulk inhomogeneous shear deformation and that the high-grade zones represent a deep-seated boundary shear zone on the accretionary wedge between a subducting oceanic plate and the immobile rigid continental plate.  相似文献   

19.
云南雪龙山韧性剪切带研究新进展   总被引:2,自引:0,他引:2       下载免费PDF全文
雪龙山变质带,变质级别达高绿片岩相到低角闪岩相,在区域上为一条韧性剪切带,具逆冲兼左行走滑的特点。左行走滑位移量达9.4km。流体包裹体研究表明,在韧性剪切阶段,属降温的退变质作用;构造地球化学研究表明,韧性剪切作用对元素的迁移和富集有较大影响,因此,对构造变形带中元素迁移富集规律的研究,对于探明矿床形成和指导找矿具有重要的理论意义和实际意义。  相似文献   

20.
Abstract

The Rhodope massif of Bulgaria and Greece is a complex of Mesozoic synmetamorphic nappes stacked in an Alpine active margin environment. A new analysis of the Triassic to Eocene history of the Vardar suture zone m Greece discloses its Cretaceous setting as a subduction trench. We present a geological traverse that takes into account these new observatons and runs from the Hellenides to the Balkans, i.e. from he African to the Eurasian sides of the Tethys ocean, respectively. The present review first defines the revisited limits of the Rhodope metamorphic complex. In particular, the lower part of the Serbo- Macedonian massif is an extension of the Rhodope units west of the Struma river. Its upper part is separated as the Frolosh greenschist unit, which underlies tectonic slivers of Carpathc-Balkanic type. Several greenschist units which locally yield Mesozoic fossils, follow the outer limits of the Rhodope. Their former attribution to a stratigraphic cover of the Rhodope has been proven false. They are divided into roof greenschists, which partly represent an extension of the Strandza Jurassic black shales basin, and western greenschists, which mostly derive from the Vardar Cretaceous olistostromic assemblage. The Rhodope complex of synmetamorphic nappes includes Continental Units and Mixed Units. The Continental Units comprise quartzo-feld-spathic gneisses in addition to thick marble layers. The Mixed Units comprise meta-ophiolites as large bodies or small knockers. They are imbricated, forming an open dome whose lower, Continental Unit constitutes the Drama window. The uppermost Mixed Unit is overlain by remnants of the European plate. The present-day structure results from combined large-scale thrust and exhumation tectonics. Regional inversions of synmetamorphic sense-of-shear indicate that intermediate parts of the wedge moved upward and forward with respect to both the lower and upper plates. A kinematic model is based on buoyancy-driven decoupling at depth between subducted continental crust and the subducting lithosphere. Continuing convergence allows coeval underthrusting of continental crust at the footwall, decoupling at depth, and upward-forward expulsion of a low-density metamorphic wedge above. The continental crust input and its upward return may have lasted for at least the whole of the Early Cretaceous, as indicated by isotopic ages and the deformation history of the upper plate. A Late Eocene marine transgression divides the ensuing structural and thermal evolution into a follow-up uplift stage and a renewed uplift stage. Revision of the limits of the Vardar belt in Greece first resulted in separating the Paikon mountain as a tectonic window below the Vardar nappes. It belongs to the western, Hellenic foreland into which a system of thrust developed downward between 60 and 40 Ma. The eastern limit is a dextral strike-slip fault zone that developed greenschist facies foliations locally dated at 50–40 Ma. Revision of the lithological components discloses the preponderance of Cretaceous volcano-detritic and olistostromic sequences that include metamorphite blocks of Rhodope origin. Rock units that belong to the Vardar proper (ophiolites, Triassic and Jurassic radiolarites, remnants of an eastern Triassic passive margin) attest for a purely oceanic basin. The Guevgueli arc documents the Jurassic change of the eastern Triassic passive margin into an active one. This arc magmatic activity ended in the Late Jurassic and plate convergence was transferred farther northeast to the subduction boundary along which the Rhodope metamorphic complex formed. We interpret the Rhodope and the Vardar as paired elements of a Cretaceous accretionary wedge. They document the tectonic process that exhumed metamorphic material from under the upper plate, and the tectonic-sedimentary process that fed the trench on the lower plate. The history of the Rhodope-Vardar pair is placed in the light of the history of the Tethys ocean between Africa and Europe. The Cretaceous subduction then appears as the forerunner of the present Hellenic subduction, accounting for several shifts at the expense of the lower plate. The Late Eocene shift, at the closure of the Pindos basin, is coeval with the initiation of new uplift and magmatism in the Rhodope, which probably document the final release of the low-density, continental root of the Rhodope from subduction drag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号