首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flux rate of cosmic rays incident on the Earth’s upper atmosphere is modulated by the solar wind and the Earth’s magnetic field. The amount of solar wind is not constant due to changes in solar activity in each solar cycle, and hence the level of cosmic ray modulation varies with solar activity. In this context, we have investigated the variability and the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters from January 1982 through December 2008. Simultaneous observations have been made to quantify the exact relationship between the cosmic ray intensity and those parameters during the solar maxima and minima, respectively. It is found that the stronger the interplanetary magnetic field, solar wind plasma velocity, and solar wind plasma temperature, the weaker the cosmic ray intensity. Hence, the lowest cosmic ray intensity has good correlations with simultaneous solar parameters, while the highest cosmic ray intensity does not. Our results show that higher solar activity is responsible for a higher geomagnetic effect and vice versa.  相似文献   

2.
This paper discusses solar cosmic ray phenomena and related topics from the solar physical point of view. Basic physics of the solar atmosphere and solar flare phenomena are, therefore, considered in some detail. Since solar cosmic rays are usually produced by solar flares, we must first understand the processes and mechanism of solar flares, especially the so-called proton flares, in order to understand the acceleration mechanism of solar cosmic rays and their behaviour in both the solar atmosphere and interplanetary space. For this reason, detailed discussion is given on various phenomena associated with solar flares, proton flare characteristics, and the mechanism of solar flares.Since the discovery of solar cosmic rays by Forbush, the interplanetary space has been thought of as medium in which solar cosmic rays propagate. In this paper, the propagation of solar cosmic rays in this space is, therefore, discussed briefly by referring to the observed magnetic properties of this space. Finally, some problems related to the physics of galactic cosmic rays are discussed.Astrophysics and Space Science Review Paper.  相似文献   

3.
Solar flares and the cosmic ray intensity   总被引:2,自引:0,他引:2  
C. J. Hatton 《Solar physics》1980,66(1):159-165
The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance 1. This model leads to a radius for the modulation region of 60–70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20.  相似文献   

4.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   

5.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

6.
In this work the galactic cosmic ray modulation in relation to solar activity indices and heliospheric parameters during the years 1996??C?2010 covering solar cycle 23 and the solar minimum between cycles 23 and 24 is studied. A new perspective of this contribution is that cosmic ray data with a rigidity of 10 GV at the top of the atmosphere obtained from many ground-based neutron monitors were used. The proposed empirical relation gave much better results than those in previous works concerning the hysteresis effect. The proposed models obtained from a combination of solar activity indices and heliospheric parameters give a standard deviation <?10?% for all the cases. The correlation coefficient between the cosmic ray variations of 10?GV and the sunspot number reached a value of r=?0.89 with a time lag of 13.6±0.4 months. The best reproduction of the cosmic ray intensity is obtained by taking into account solar and interplanetary indices such as sunspot number, interplanetary magnetic field, CME index, and heliospheric current sheet tilt. The standard deviation between the observed and calculated values is about 7.15?% for all of solar cycle 23; it also works very well during the different phases of the cycle. Moreover, the use of the cosmic ray intensity of 10?GV during the long minimum period between cycles 23 and 24 is of special interest and is discussed in terms of cosmic ray intensity modulation.  相似文献   

7.
This paper discusses the relationship between some characteristics of microwave type IV radio bursts and solar cosmic ray protons of MeV energy. It is shown that the peak flux intensity of those bursts is almost linearly correlated with the MeV proton peak flux observed by satellites near the Earth and that protons and electrons would be accelerated simultaneously by a similar mechanism during the explosive phase of solar flares.Brief discussion is given on the propagation of solar cosmic rays in the solar envelope after ejection from the flare regions.  相似文献   

8.
After observation of hundreds of Thunderstorm Ground Enhancements (TGEs) we measure energy spectra of particles originated in clouds and directed towards Earth. We use these “beams” for calibration of cosmic ray detectors located beneath the clouds at an altitude of 3200 m at Mount Aragats in Armenia. The calibrations of particle detectors with fluxes of TGE gamma rays are in good agreement with simulation results and allow estimation of the energy thresholds and efficiencies of numerous particle detectors used for studying galactic and solar cosmic rays.  相似文献   

9.
The behaviour of relative content of one-fold neutrons in the incident flux of cosmic rays during Forbush-decreases and solar cosmic ray flares is considered based on the network of cosmic ray stations. The barometric dependence of this value on the network of cosmic ray stations. The barometric dependence of this value on the latitude and see level altitude of a cosmic ray station is obtained.  相似文献   

10.
The simultaneous enhancement or subsidence of both the high-speed solar wind streams and the galactic cosmic rays in the minimum or the maximum phase of the solar cycle are interpreted in a unified manner by the concept of geometrical evolution of the general magnetic field of the corona-heliomagnetosphere system. The coronal general magnetic field evolves from an open dipole-like configuration in the minimum phase to a closed configuration with many loop-like formations in the maximum phase of the solar cycle. This concept, developed in a theoretical solar-cycle model driven by the dynamo action of the global convection, is examined and found to be valid by studying the evolution of the coronal general magnetic field calculated from the observed surface general magnetic field of 1959–1974. It is also found that the energy density of the poloidal component of the general surface field, from which the coronal field originates, attained a maximum in the maximum phase and showed a evolution with virtually no phase delay with respect to that of the toroidal component of the field, to which the sunspot activity is related. The subsidence of the high-speed solar wind in the maximum phase is understood as a braking of the solar wind streams by the tightly closed and strong coronal field lines in the lower corona in the maximum phase. The field lines of the heliomagnetosphere, which originate from the coronal field lines drawn by the solar wind, are inferred to be also more tightly closed at the heliopause in the maximum phase than in the minimum phase. The decrease of the galactic cosmic rays in the maximum phase (known as the Forbush's negative correlation between the galactic cosmic ray intensity and the solar activity or the Forbush solar-cycle modulation of the galactic cosmic rays) is interpreted as a braking of the cosmic rays by the closed magnetic field lines at the heliopause. The observed phase lag (approximately one year) of the galactic cosmic ray modulation with respect to the evolution of the solar cycle, and the observed absence of the gradient of the total cosmic ray intensity between 1 AU and 8 AU, are discussed to support this view of the cosmic ray modulation at the remote heliopause, and reject other hypotheses to explain the phenomenon in terms of the magnetic irregularities of various kinds carried by the solar wind: The short-term Forbush decrease at a time of a flare shows that the magnetic irregularities can react on the cosmic rays relatively near the Sun if they even played a dominant role in the long-term modulation. The concept of the general magnetic field of the corona and the surface is also used to understand the basic nature of the surface field itself, by comparing the geometry of the calculated coronal field lines with the eclipse photographs of the corona, and by discussing, in the context of the coronal general magnetic field associated with the solar cycle, the process of the emergence of the coronal field lines from the interior and the formation of the transequatorial arches and loops connecting the two hemispheres in the corona.  相似文献   

11.
We study the temporal evolution of cosmic ray intensity during ~27-day Carrington rotation periods applying the method of superposed epoch analysis. We discuss about the average oscillations in the galactic cosmic ray intensity, as observed by ground based neutron monitors, during the course of Carrington rotation in low solar activity conditions and in different polarity states of the heliosphere (A<0 and A>0). During minimum and decreasing phases in low solar activity conditions, we compare the oscillation in one polarity state with that observed in other polarity state in similar phases of solar activity. We find difference in the evolution and amplitude of ~27-day variation during A<0 and A>0 epoch. We also compare the average variations in cosmic ray intensity with the simultaneous variations of solar wind parameters such as solar wind speed and interplanetary magnetic field strength. From the correlation analysis between the cosmic ray intensity and the solar wind speed during the course of Carrington rotation, we find that the correlation is stronger for A>0 than A<0.  相似文献   

12.
Proposed solar wind-magnetosphere energy coupling functions are studied. An empirical formula proposed by Svalgaard (1977) is found to predict the geomagnetic activity quite well.

The influence of solar wind interaction regions on the tropospheric circulation, through a suggested cosmic ray mechanism, was investigated. The cosmic ray intensity at Earth clearly showed a decrease at the time of passage of an interaction region. It is suggested that the well-known dip in the Vorticity Area Index may be caused by an interaction-modulated decrease in cosmic ray intensity.  相似文献   


13.
In this work we present a cosmic ray model that couples primary solar cosmic rays at the top of the Earth’s atmosphere with the secondary ones detected at ground level by neutron monitors during Ground-Level Enhancements (GLEs). The Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model constitutes a new version of the already existing NMBANGLE model, differing in the solar cosmic ray spectrum assumed. The total output of the model is a multi-dimensional GLE picture that reveals part of the characteristics of the big solar proton events recorded at ground level. We apply both versions of the model to the GLE of 15 April 2001 (GLE60) and compare the results.  相似文献   

14.
Abstract— We present Ne data from plagioclase separates from the solar noble‐gas‐rich meteorite Kapoeta, obtained mainly by in vacuo etching. samples rich in solar gases contain an excess of cosmogenic ne compared to solar‐gas‐poor samples, testifying to an exposure to cosmic rays in the parent body regolith. The 21Ne/22Ne ratio of the excess component is slightly lower than that of the Ne acquired during the meteoroid flight. Model calculations indicate that the observed isotopic composition of the excess Ne can be produced by galactic cosmic rays at a reasonable mean shielding of around a hundred to a few hundred grams per square centimeter. No substantial contribution from Ne produced by solar cosmic rays is needed to explain the data. We therefore conclude that they do not offer evidence for a substantially enhanced flux of solar energetic particles early in solar history, contrary to other claims. This conclusion is in agreement with solar flare track data.  相似文献   

15.
The effect of high-speed recurrent solar wind streams from coronal holes on the galactic cosmic rays intensity is investigated. The distribution of galactic cosmic rays for different solar cycles is considered based on the data of the world network of neutron monitors. Within the inhomogeneous model, which includes a homogeneous background and regions of high-speed streams (HSS’s), the transport equation has been solved and the effect of HSS’s on the spatial distribution of galactic cosmic rays is estimated. It is shown that theoretical calculations are agreed with the experimental results obtained for 2000–2014 under different assumptions about the mean free path of cosmic rays in the corresponding period of HSS’s.  相似文献   

16.
Concurrent observations of the solar flare of March 12, 1969 by two spacecrafts separated in solar longitude by 38° show that the accessibility at 1 AU to cosmic ray particles is not a simple function of the relative solar longitude. The cosmic ray flux, degree of anisotropy, and rise time all indicate that the favored path for cosmic ray propagation in this event was some 40° to the east of the nominal Archimedes spiral line of force from the flare location. This is interpreted as evidence for either (a) extreme stochastical wandering of the lines of force of the interplanetary magnetic field, or (b) the redistribution of the cosmic rays in coronal magnetic fields prior to escape onto the nominal Archimedes spiral lines of force.Now at CSIRO, G.P.O. Box 124, Port Melbourne, Victoria 3207, Australia.Now at Physical Research Laboratory, Ahmedabad, India.  相似文献   

17.
The previously developed basic theory of the heliospheric modulation of high-energy cosmic rays is generalized to lower energies. Comparison of the theory with the results of long-term observations of cosmic rays in the stratosphere carried out by the group from the Lebedev Institute of Physics inMoscow andMurmansk shows satisfactory agreement. The cosmic rays are shown to behave quite differently when even and odd solar cycles alternate. Possible causes of the anomalously high cosmic-ray intensity recorded during the last solar activity minimum are discussed.  相似文献   

18.
Caballero  R.  Valdés-galicia  J.F. 《Solar physics》2003,213(2):413-426
Galactic cosmic ray fluctuations from six mountain altitude neutron monitors around the world are analyzed during the period 1990–1999. The period comprises the maximum and declining phase of solar cycle 22 and the beginning of cycle 23. The evolution of the most significant periodicities and comparisons with solar activity and interplanetary indicators are presented. We found a 38-day variation present in all neutron monitors, solar activity parameters, and IMF fluctuations. The possible origin of this and other stable periodicities of cosmic ray variations in the analyzed period are discussed.  相似文献   

19.
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ∼500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ∼-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days. Published in Astrofizika, Vol. 51, No. 2, pp. 255–265 (May 2008).  相似文献   

20.
The origin of the elements from Cu to As in the UH (ultra-heavy) cosmic rays is investigated and related to current concepts of the nucleosynthesis of solar system material. The charge spectrum of the UH cosmic rays in the interval 29Z60 is studied via a fully developed propagation calculation for source abundances given by solar system material, ther-process, the massive-star core helium-burnings-process, and explosive carbon burning. None of these sources considered individually can explain the cosmic ray observations. However a combination of material produced in ther-process, the core helium-burnings-process and in explosive carbon burning provides a good representation of the experimental data. The cosmic-rayr-process is found to differ from solar systemr-process events by an underproduction of the low-massr-process peaks relative to theA195 peak. The large cosmicray abundance forZ=40–44 may be due to anr-process fission component, but this explanation is by no means certain. Improved cosmic-ray data, especially for Zn–Sr, can provide limits to the various source contributions. The model described here gives a consistent picture for the origin of both the cosmic rays and the solar system elements just beyond iron, and adds additional evidence for the importance of massive stars as a site of nucleosynthesis and the birthplace of the cosmic rays.Enrico Fermi Institute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号